Comprehensive Overview of Innovative Strategies in Preventing Renal Ischemia-reperfusion Injury: Insights from Bibliometric and In silico Analyses


Cite item

Full Text

Abstract

Background:Ischemia-Reperfusion Injury (IRI) is a complex pathophysiological process with severe consequences, including irreversible loss of renal function. Various intraoperative prevention methods have been proposed to mitigate the harmful effects of warm ischemia and kidney reperfusion.

Aim:This comprehensive analysis provides an overview of pharmacological agents and intraoperative methods for preventing and treating renal IRI.

Methods:Our analysis revealed that eplerenone exhibited the highest binding affinity to crucial targets, including Aldehyde Dehydrogenase (AD), Estrogen Receptor (ER), Klotho protein, Mineralocorticoid Receptor (MR), and Toll-like Receptor 4 (TLR4). This finding indicates eplerenone's potential as a potent preventive agent against IRI, surpassing other available therapeutics like Benzodioxole, Hydrocortisone, Indoles, Nicotinamide adenine dinucleotide, and Niacinamide. In preventing kidney IRI, our comprehensive analysis emphasizes the significance of eplerenone due to its strong binding affinity to key targets involved in the pathogenesis of IRI.

Results:This finding positions eplerenone as a promising candidate for further clinical investigation and consideration for future clinical practice.

Conclusion:The insights provided in this analysis will assist clinicians and researchers in selecting effective preventive approaches for renal IRI in surgical settings, potentially improving patient outcomes.

About the authors

Myltykbay Rysmakhanov

Department of Surgery and Urology No. 2,, West Kazakhstan Marat Ospanov State Medical University

Author for correspondence.
Email: info@benthamscience.net

Afshin Zare

, PerciaVista R&D Co.

Email: info@benthamscience.net

Aibolat Smagulov

Department of Surgery and Urology No. 2,, West Kazakhstan Marat Ospanov State Medical University

Email: info@benthamscience.net

Nurgul Abenova

Department of General Medical Practice No. 1, West Kazakhstan Medical University

Email: info@benthamscience.net

Nadiar Mussin

Department of Surgery and Urology No. 2, West Kazakhstan Medical University

Email: info@benthamscience.net

Yerlan Sultangereyev

Department of Surgery and Urology No. 2, West Kazakhstan Medical University

Email: info@benthamscience.net

Bazylbek Zhakiyev

Department of Surgery and Urology No. 2, West Kazakhstan Medical University

Email: info@benthamscience.net

Gani Kuttymuratov

Department of Surgery and Transplantation,, Aktobe Medical Center

Email: info@benthamscience.net

Mehmet Haberal

Department of General Surgery, Division of Transplantation,, Başkent University

Email: info@benthamscience.net

Nazanin Jafari

, PerciaVista R&D Co.

Email: info@benthamscience.net

Hanieh Baneshi

, PerciaVista R&D Co.

Email: info@benthamscience.net

Shabnam Bakhshalizadeh

Reproductive Development, Murdoch Children's Research Institute

Email: info@benthamscience.net

Mahdi Mahdipour

Stem Cell Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Farhad Rahmanifar

Department of Basic Sciences, School of Veterinary Medicine,, Shiraz University

Email: info@benthamscience.net

Amin Tamadon

Department of Surgery and Transplantation, Aktobe Medical Center

Email: info@benthamscience.net

References

  1. Łabuś A, Niemczyk M, Czyżewski Ł, et al. Costs of long-term post-transplantation care in kidney transplant recipients. Ann Transplant 2019; 24: 252-9. doi: 10.12659/AOT.914661 PMID: 31061380
  2. Axelrod DA, Schnitzler MA, Xiao H, et al. An economic assessment of contemporary kidney transplant practice. Am J Transplant 2018; 18(5): 1168-76. doi: 10.1111/ajt.14702 PMID: 29451350
  3. Jensen CE, Sørensen P, Petersen KD. In Denmark kidney transplantation is more cost-effective than dialysis. Dan Med J 2014; 61(3): A4796. PMID: 24814915
  4. Qiu L, Zhang ZJ. Therapeutic strategies of kidney transplant ischemia reperfusion injury: Insight from mouse models. Biomed J Sci Tech Res 2019; 14(5): 002617. PMID: 31093605
  5. Eleftheriadis T, Pissas G, Filippidis G, Liakopoulos V, Stefanidis I. Reoxygenation induces reactive oxygen species production and ferroptosis in renal tubular epithelial cells by activating aryl hydrocarbon receptor. Mol Med Rep 2020; 23(1): 1. doi: 10.3892/mmr.2020.11679 PMID: 33179104
  6. Vatazin AV, Nesterenko IV, Zulkarnaev AB, Shakhov NL. Pathogenetic mechanisms of the development of ischemic and reperfusion damage the kidneys as a promising target specific therapy. Russian J Transplantol Artif Organs 2015; 17(1): 147-56. doi: 10.15825/1995-1191-2015-1-147-156
  7. Menke J, Sollinger D, Schamberger B, Heemann U, Lutz J. The effect of ischemia/reperfusion on the kidney graft. Curr Opin Organ Transplant 2014; 19(4): 395-400. doi: 10.1097/MOT.0000000000000090 PMID: 24905021
  8. Garg JP, Vucic D. Targeting cell death pathways for therapeutic intervention in kidney diseases. Semin Nephrol 2016; 36(3): 153-61. doi: 10.1016/j.semnephrol.2016.03.003 PMID: 27339381
  9. Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant 2015; 5(2): 52-67. doi: 10.5500/wjt.v5.i2.52 PMID: 26131407
  10. Su M, Hu X, Lin J, et al. Identification of candidate genes involved in renal ischemia/reperfusion injury. DNA Cell Biol 2019; 38(3): 256-62. doi: 10.1089/dna.2018.4551 PMID: 30668132
  11. Wu J, Zhang F, Zheng X, et al. Identification of renal ischemia reperfusion injury subtypes and predictive strategies for delayed graft function and graft survival based on neutrophil extracellular trap-related genes. Front Immunol 2022; 13: 1047367. doi: 10.3389/fimmu.2022.1047367 PMID: 36532016
  12. He S, He L, Yan F, et al. Identification of hub genes associated with acute kidney injury induced by renal ischemia–reperfusion injury in mice. Front Physiol 2022; 13: 951855. doi: 10.3389/fphys.2022.951855 PMID: 36246123
  13. Yoshida T, Kurella M, Beato F, et al. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int 2002; 61(5): 1646-54. doi: 10.1046/j.1523-1755.2002.00341.x PMID: 11967014
  14. Zhang D, Wang Y, Zeng S, et al. Integrated analysis of prognostic genes associated with ischemia–reperfusion injury in renal transplantation. Front Immunol 2021; 12: 747020. doi: 10.3389/fimmu.2021.747020 PMID: 34557203
  15. Summers DM, Watson CJE, Pettigrew GJ, et al. Kidney donation after circulatory death (DCD): State of the art. Kidney Int 2015; 88(2): 241-9. doi: 10.1038/ki.2015.88 PMID: 25786101
  16. Cardinal H, Dieudé M, Hébert MJ. Endothelial dysfunction in kidney transplantation. Front Immunol 2018; 9: 1130. doi: 10.3389/fimmu.2018.01130 PMID: 29875776
  17. Zhao H, Alam A, Soo AP, George AJT, Ma D. Ischemia-reperfusion injury reduces long term renal graft survival: Mechanism and beyond. EBioMedicine 2018; 28: 31-42. doi: 10.1016/j.ebiom.2018.01.025 PMID: 29398595
  18. Han F, Lin MZ, Zhou HL, et al. Delayed graft function is correlated with graft loss in recipients of expanded-criteria rather than standard-criteria donor kidneys: A retrospective, multicenter, observation cohort study. Chin Med J 2020; 133(5): 561-70. doi: 10.1097/CM9.0000000000000666 PMID: 32053570
  19. Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: A systematic review and meta-analysis. Nephrol Dial Transplant 2008; 24(3): 1039-47. doi: 10.1093/ndt/gfn667 PMID: 19103734
  20. Barba J, Zudaire JJ, Robles JE, et al. Is there a safe cold ischemia time interval for kidney graft? Actas Urol Esp 2011; 35(8): 475-80. doi: 10.1016/j.acuro.2011.03.005 PMID: 21550140
  21. Schopp I, Reissberg E, Lüer B, Efferz P, Minor T. Controlled rewarming after hypothermia: Adding a new principle to renal preservation. Clin Transl Sci 2015; 8(5): 475-8. doi: 10.1111/cts.12295 PMID: 26053383
  22. Hameed AM, Yuen L, Pang T, Rogers N, Hawthorne WJ, Pleass HC. Techniques to ameliorate the impact of second warm ischemic time on kidney transplantation outcomes. Transplant Proc 2018; 50(10): 3144-51. doi: 10.1016/j.transproceed.2018.09.003 PMID: 30577180
  23. Tennankore KK, Kim SJ, Alwayn IPJ, Kiberd BA. Prolonged warm ischemia time is associated with graft failure and mortality after kidney transplantation. Kidney Int 2016; 89(3): 648-58. doi: 10.1016/j.kint.2015.09.002 PMID: 26880458
  24. Heylen L, Pirenne J, Samuel U, et al. The impact of anastomosis time during kidney transplantation on graft loss: A eurotransplant cohort study. Am J Transplant 2017; 17(3): 726-34. doi: 10.1111/ajt.14031 PMID: 27593738
  25. Patel AR, Eggener SE. Warm ischemia less than 30 minutes is not necessarily safe during partial nephrectomy: Every minute matters. Urol Oncol 2011; 29(6): 826-8. doi: 10.1016/j.urolonc.2011.02.015 PMID: 22078406
  26. Tasoulis MK, Douzinas EE. Hypoxemic reperfusion of ischemic states: An alternative approach for the attenuation of oxidative stress mediated reperfusion injury. J Biomed Sci 2016; 23(1): 7. doi: 10.1186/s12929-016-0220-0 PMID: 26786360
  27. Kamińska D, Kościelska-Kasprzak K, Chudoba P, et al. The influence of warm ischemia elimination on kidney injury during transplantation – clinical and molecular study. Sci Rep 2016; 6(1): 36118. doi: 10.1038/srep36118 PMID: 27808277
  28. Van Eck NJ, Waltman L. VOSviewer: Visualizing scientific landscapes. Leiden University in the Netherlands 2010.
  29. Trott O, Olson AJ. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61. doi: 10.1002/jcc.21334 PMID: 19499576
  30. Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Res 2023; 51(D1): D1373-80. doi: 10.1093/nar/gkac956 PMID: 36305812
  31. Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 2018; 46(W1): W296-303. doi: 10.1093/nar/gky427 PMID: 29788355
  32. Gameiro J, Fonseca JA, Outerelo C, Lopes JA. Acute kidney injury: From diagnosis to prevention and treatment strategies. J Clin Med 2020; 9(6): 1704. doi: 10.3390/jcm9061704 PMID: 32498340
  33. Vormann MK, Tool LM, Ohbuchi M, et al. Modelling and prevention of acute kidney injury through ischemia and reperfusion in a combined human renal proximal tubule/blood vessel-on-a-chip. Kidney360 2022; 3(2): 217-31. doi: 10.34067/KID.0003622021 PMID: 35373131
  34. Zheng H, Lan J, Li J, Lv L. Therapeutic effect of berberine on renal ischemia-reperfusion injury in rats and its effect on Bax and Bcl-2. Exp Ther Med 2018; 16(3): 2008-12. doi: 10.3892/etm.2018.6408 PMID: 30186432
  35. Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256: 117860. doi: 10.1016/j.lfs.2020.117860 PMID: 32534037
  36. Li X, Ma N, Xu J, Zhang Y, Yang P, Su X. Targeting ferroptosis: Pathological mechanism and treatment of ischemia-reperfusion injury. Oxid Med Cell Longev 2021; 1587922. doi: 10.1155/2021/1587922
  37. Panisello-Roselló A, Lopez A, Folch-Puy E, et al. Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J Gastroenterol 2018; 24(27): 2984-94. doi: 10.3748/wjg.v24.i27.2984 PMID: 30038465
  38. Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail 2021; 43(1): 619-42. doi: 10.1080/0886022X.2021.1901739 PMID: 33784950
  39. Barati A, Rahbar Saadat Y, Meybodi SM, et al. Eplerenone reduces renal ischaemia/reperfusion injury by modulating Klotho, NF-κB and SIRT1/SIRT3/PGC-1α signalling pathways. J Pharm Pharmacol 2023; 75(6): 819-27. doi: 10.1093/jpp/rgac054 PMID: 35866843
  40. Hu MC, Moe OW. Klotho as a potential biomarker and therapy for acute kidney injury. Nat Rev Nephrol 2012; 8(7): 423-9. doi: 10.1038/nrneph.2012.92 PMID: 22664739
  41. Khader A, Yang WL, Kuncewitch M, et al. Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplantation 2014; 98(2): 148-56. doi: 10.1097/TP.0000000000000194 PMID: 24918615
  42. Mejía-Vilet JM, Ramírez V, Cruz C, Uribe N, Gamba G, Bobadilla NA. Renal ischemia-reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone. Am J Physiol Renal Physiol 2007; 293(1): F78-86. doi: 10.1152/ajprenal.00077.2007 PMID: 17376767
  43. Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 2007; 117(10): 2847-59. doi: 10.1172/JCI31008 PMID: 17853945
  44. Hosseini L, Vafaee MS, Mahmoudi J, Badalzadeh R. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology 2019; 20(4): 381-95. doi: 10.1007/s10522-019-09805-6 PMID: 30838484
  45. Panesso MC, Shi M, Cho HJ, et al. Klotho has dual protective effects on cisplatin-induced acute kidney injury. Kidney Int 2014; 85(4): 855-70. doi: 10.1038/ki.2013.489 PMID: 24304882
  46. Hu X, Ding C, Ding X, et al. Inhibition of myeloid differentiation protein 2 attenuates renal ischemia/reperfusion-induced oxidative stress and inflammation via suppressing TLR4/TRAF6/NF-kB pathway. Life Sci 2020; 256: 117864. doi: 10.1016/j.lfs.2020.117864 PMID: 32474021
  47. Donnahoo KK, Shames BD, Harken AH, Meldrum DR. Review article: The role of tumor necrosis factor in renal ischemia-reperfusion injury. J Urol 1999; 162(1): 196-203. doi: 10.1097/00005392-199907000-00068 PMID: 10379787
  48. Abe T, Sazawa A, Harabayashi T, et al. Renal hypothermia with ice slush in laparoscopic partial nephrectomy: The outcome of renal function. J Endourol 2012; 26(11): 1483-8. doi: 10.1089/end.2012.0122 PMID: 22984848
  49. Ramirez D, Caputo PA, Krishnan J, Zargar H, Kaouk JH. Robot-assisted partial nephrectomy with intracorporeal renal hypothermia using ice slush: Step-by-step technique and matched comparison with warm ischaemia. BJU Int 2016; 117(3): 531-6. doi: 10.1111/bju.13346 PMID: 26435486
  50. Menon M, Abaza R, Sood A, et al. Robotic kidney transplantation with regional hypothermia: Evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1). Eur Urol 2014; 65(5): 1001-9. doi: 10.1016/j.eururo.2013.11.011 PMID: 24287316
  51. Hruby S, Lusuardi L, Jeschke S, Janetschek G. Cooling mechanisms in laparoscopic partial nephrectomy: Are really necessary? Arch Esp Urol 2013; 66(1): 139-45. PMID: 23406809
  52. Arai Y, Kaiho Y, Saito H, et al. Renal hypothermia using ice-cold saline for retroperitoneal laparoscopic partial nephrectomy: Evaluation of split renal function with technetium-99m-dimercaptosuccinic acid renal scintigraphy. Urology 2011; 77(4): 814-8. doi: 10.1016/j.urology.2010.12.007 PMID: 21333332
  53. Li Y, Han X, Dagvadorj BU, et al. An effective cooling device for minimal-incision kidney transplantation. Ann Transplant 2020; 25: e928773. doi: 10.12659/AOT.928773 PMID: 33243968
  54. Longchamp A, Meier RPH, Colucci N, et al. Impact of an intra-abdominal cooling device during open kidney transplantation in pigs. Swiss Med Wkly 2019; 149: w20143. doi: 10.4414/smw.2019.20143 PMID: 31869427
  55. Meier RPH, Piller V, Hagen ME, et al. Intra-abdominal cooling system limits ischemia–reperfusion injury during robot-assisted renal transplantation. Am J Transplant 2018; 18(1): 53-62. doi: 10.1111/ajt.14399 PMID: 28637093
  56. Territo A, Piana A, Fontana M, et al. Step-by-step development of a cold ischemia device for open and robotic-assisted renal transplantation. Eur Urol 2021; 80(6): 738-45. doi: 10.1016/j.eururo.2021.05.026 PMID: 34059396
  57. Zhang P, Han X, Zhang X, et al. A controllable double-cycle cryogenic device inducing hypothermia for laparoscopic orthotopic kidney transplantation in swine. Transl Androl Urol 2021; 10(7): 3046-55. doi: 10.21037/tau-21-544 PMID: 34430407
  58. Khan T, Kwarcinski J, Pang T, et al. Protection from the second warm ischemic injury in kidney transplantation using an ex vivo porcine model and thermally insulating jackets. Transplant Proc 2021; 53(2): 750-4. doi: 10.1016/j.transproceed.2021.01.037 PMID: 33581848
  59. Karipineni F, Campos S, Parsikia A, et al. Elimination of warm ischemia using the ice bag technique does not decrease delayed graft function. Int J Surg 2014; 12(6): 551-6. doi: 10.1016/j.ijsu.2014.04.002 PMID: 24735894
  60. Liu F, Yuan H, Li X, Ma X, Wang M. Application of hypothermic perfusion via a renal artery balloon catheter during robot-assisted partial nephrectomy and effect on renal function. Acad Radiol 2019; 26(8): e196-201. doi: 10.1016/j.acra.2018.09.024 PMID: 31284936
  61. Colli JL, Dorsey P, Grossman L, Lee BR. Retrograde renal cooling to minimize ischemia. Int Braz J Urol 2013; 39(1): 37-45. doi: 10.1590/S1677-5538.IBJU.2013.01.06 PMID: 23489498
  62. Saitz TR, Dorsey PJ, Colli J, Lee BR. Induction of cold ischemia in patients with solitary kidney using retrograde intrarenal cooling: 2-year functional outcomes. Int Urol Nephrol 2013; 45(2): 313-20. doi: 10.1007/s11255-013-0391-5 PMID: 23386246
  63. Collett JA, Corridon PR, Mehrotra P, et al. Hydrodynamic isotonic fluid delivery ameliorates moderate-to-severe ischemia-reperfusion injury in rat kidneys. J Am Soc Nephrol 2017; 28(7): 2081-92. doi: 10.1681/ASN.2016040404 PMID: 28122967
  64. Herrler T, Tischer A, Meyer A, et al. The intrinsic renal compartment syndrome: New perspectives in kidney transplantation. Transplantation 2010; 89(1): 40-6. doi: 10.1097/TP.0b013e3181c40aba PMID: 20061917
  65. Herrler T, Wang H, Tischer A, et al. Decompression of inflammatory edema along with endothelial cell therapy expedites regeneration after renal ischemia-reperfusion injury. Cell Transplant 2013; 22(11): 2091-103. doi: 10.3727/096368912X658700 PMID: 23128032
  66. van Smaalen TC, Mestrom MGAM, Kox JJHFM, Winkens B, van Heurn LWE. Capsulotomy of ischemically damaged donor kidneys: A pig study. Eur Surg Res 2016; 57(1-2): 89-99. doi: 10.1159/000445432 PMID: 27160678
  67. Kinoshita K, Yamanaga S, Kaba A, et al. Optimizing intraoperative blood pressure to improve outcomes in living donor renal transplantation. Transplant Proc 2020; 52(6): 1687-94. doi: 10.1016/j.transproceed.2020.01.166 PMID: 32448661
  68. Costa FLS, Teixeira RKC, Yamaki VN, et al. Remote ischemic conditioning temporarily improves antioxidant defense. J Surg Res 2016; 200(1): 105-9. doi: 10.1016/j.jss.2015.07.031 PMID: 26316445
  69. Plotnikov EY. Ischemic preconditioning of the kidney. Bull Exp Biol Med 2021; 171(5): 567-71. doi: 10.1007/s10517-021-05270-9 PMID: 34617172
  70. Veighey KV, Nicholas JM, Clayton T, et al. Early remote ischaemic preconditioning leads to sustained improvement in allograft function after live donor kidney transplantation: Long-term outcomes in the renal protection against ischaemia–reperfusion in transplantation (REPAIR) randomised trial. Br J Anaesth 2019; 123(5): 584-91. doi: 10.1016/j.bja.2019.07.019 PMID: 31521337
  71. Shen Y, Qiu T, Liu XH, Zhang L, Wang ZS, Zhou JQ. Renal ischemia-reperfusion injury attenuated by splenic ischemic preconditioning. Eur Rev Med Pharmacol Sci 2018; 22(7): 2134-42. doi: 10.26355/eurrev_201804_14747 PMID: 29687873
  72. Menting TP, Wever KE, Ozdemir-van Brunschot DMD, Van der Vliet DJA, Rovers MM, Warle MC. Ischaemic preconditioning for the reduction of renal ischaemia reperfusion injury. Cochrane Libr 2017; 2017(3): CD010777. doi: 10.1002/14651858.CD010777.pub2 PMID: 28258686
  73. Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11(17): 5706-26. doi: 10.1039/D3BM00255A PMID: 37401545
  74. Mirmoghtadaei M, Khaboushan AS, Mohammadi B, et al. Kidney tissue engineering in preclinical models of renal failure: A systematic review and meta-analysis. Regen Med 2022; 17(12): 941-55. doi: 10.2217/rme-2022-0084 PMID: 36154467
  75. Zamorano M, Castillo RL, Beltran JF, et al. Tackling ischemic reperfusion injury with the aid of stem cells and tissue engineering. Front Physiol 2021; 12: 705256. doi: 10.3389/fphys.2021.705256 PMID: 34603075
  76. Chen F, Chen N, Xia C, et al. Mesenchymal stem cell therapy in kidney diseases: Potential and challenges. Cell Transplant 2023; 32: 9636897231164251. doi: 10.1177/09636897231164251 PMID: 37013255
  77. Fu Z, Zhang Y, Geng X, et al. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther 2023; 14(1): 116. doi: 10.1186/s13287-023-03351-2 PMID: 37122024
  78. Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7(1): 92. doi: 10.1038/s41392-022-00932-0 PMID: 35314676
  79. Kouchakian MR, Baghban N, Moniri SF, Baghban M, Bakhshalizadeh S, Najafzadeh V. The clinical trials of mesenchymal stromal cells therapy. Stem Cells Int 2021; 1634782. doi: 10.1155/2021/1634782
  80. Rodrigues CE, Capcha JMC, de Bragança AC, et al. Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury. Stem Cell Res Ther 2017; 8(1): 19. doi: 10.1186/s13287-017-0475-8 PMID: 28129785
  81. Yamada Y, Nakashima A, Doi S, et al. Localization and maintenance of engrafted mesenchymal stem cells administered via renal artery in kidneys with ischemia-reperfusion injury. Int J Mol Sci 2021; 22(8): 4178. doi: 10.3390/ijms22084178 PMID: 33920714
  82. Keshvari MA, Afshar A, Daneshi S, et al. Decellularization of kidney tissue: Comparison of sodium lauryl ether sulfate and sodium dodecyl sulfate for allotransplantation in rat. Cell Tissue Res 2021; 386(2): 365-78. doi: 10.1007/s00441-021-03517-5 PMID: 34424397
  83. Bombelli S, Meregalli C, Scalia C, et al. Nephrosphere-derived cells are induced to multilineage differentiation when cultured on human decellularized kidney scaffolds. Am J Pathol 2018; 188(1): 184-95. doi: 10.1016/j.ajpath.2017.09.012 PMID: 29037855
  84. Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in tissue engineering and regenerative medicine: Evaluation, modification, and application methods. Front Bioeng Biotechnol 2022; 10: 805299. doi: 10.3389/fbioe.2022.805299 PMID: 35547166
  85. Tian H, Wu L, Qin H, et al. Composite materials combined with stem cells promote kidney repair and regeneration. Compos, Part B Eng 2024; 275: 111278. doi: 10.1016/j.compositesb.2024.111278
  86. Katari R, Edgar L, Wong T, et al. Tissue-engineering approaches to restore kidney function. Curr Diab Rep 2015; 15(10): 69. doi: 10.1007/s11892-015-0643-0 PMID: 26275443
  87. Cetin N, Suleyman H, Sener E, Demirci E, Gundogdu C, Akcay F. The prevention of ischemia/reperfusion induced oxidative damage by venous blood in rabbit kidneys monitored with biochemical, histopatological and immunohistochemical analysis. J Physiol Pharmacol 2014; 65(3): 383-92. PMID: 24930510
  88. Rysmakhanov M, Smagulov A, Mussin N, et al. Retrograde reperfusion of renal grafts to reduce ischemic-reperfusion injury. Korean J Transplant 2022; 36(4): 253-8. doi: 10.4285/kjt.22.0053 PMID: 36704809
  89. Wang Y, Wen J, Almoiliqy M, Wang Y, Liu Z, Yang X. Sesamin protects against and ameliorates rat intestinal ischemia/reperfusion injury with involvement of activating Nrf2/HO-1/NQO1 signaling pathway. Oxid Med Cell Longev 2021; 2021: 5147069. doi: 10.1155/2021/5147069
  90. Azari O, Kheirandish R, Azizi S, Farajli Abbasi M, Ghahramani Gareh Chaman S, Bidi M. Protective effects of hydrocortisone, vitamin C and E alone or in combination against renal ischemia-reperfusion injury in rat. Iran J Pathol 2015; 10(4): 272-80. PMID: 26351497
  91. Papi S, Ahmadvand H, Sotoodehnejadnematalahi F, Yaghmaei P. The protective effects of indole-acetic acid on the renal ischemia-reperfusion injury via antioxidant and antiapoptotic properties in a rat model. Iran J Kidney Dis 2022; 16(2): 125-34. PMID: 35489081
  92. Fontecha-Barriuso M, Lopez-Diaz AM, Carriazo S, Ortiz A, Sanz AB. Nicotinamide and acute kidney injury. Clin Kidney J 2021; 14(12): 2453-62. doi: 10.1093/ckj/sfab173 PMID: 34950458

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers