Computational Screening of Some Phytochemicals to Identify Best Modulators for Ligand Binding Domain of Estrogen Receptor Alpha


Cite item

Full Text

Abstract

Objective:The peculiar aim of this study is to discover and identify the most effective and potential inhibitors against the most influential target ERα receptor by in silico studies of 45 phytochemicals from six diverse ayurvedic medicinal plants.

Methods:The molecular docking investigation was carried out by the genetic algorithm program of AutoDock Vina. The molecular dynamic (MD) simulation investigations were conducted using the Desmond tool of Schrödinger molecular modelling. This study identified the top ten highest binding energy phytochemicals that were taken for drug-likeness test and ADMET profile prediction with the help of the web-based server QikpropADME.

Results:Molecular docking study revealed that ellagic acid (-9.3 kcal/mol), emodin (-9.1 kcal/mol), rhein (-9.1 kcal/mol), andquercetin (-9.0 kcal/mol) phytochemicals showed similar binding affinity as standard tamoxifen towards the target protein ERα. MD studies showed that all four compounds possess comparatively stable ligand-protein complexes with ERα target compared to the tamoxifen-ERα complex. Among the four compounds, phytochemical rhein formed a more stable complex than standard tamoxifen. ADMET studies for the top ten highest binding energy phytochemicals showed a better safety profile.

Conclusion:Additionally, these compounds are being reported for the first time in this study as possible inhibitors of ERα for treating breast cancer, according to the notion of drug repurposing. Hence, these phytochemicals can be further studied and used as a parent core molecule to develop innovative lead molecules for breast cancer therapy.

About the authors

Veerachamy Alagarsamy

Medicinal Chemistry Research Laboratory, MNR College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Pottabathula Sundar

Department of Pharmaceutical Chemistry, Vasantidevi Patil Institute of Pharmacy

Email: info@benthamscience.net

Viswas Solomon

Medicinal Chemistry Research Laboratory, MNR College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Sankaranarayanan Murugesan

Department of Pharmacy, BITS Pilani

Email: info@benthamscience.net

Mohammed Muzaffar-Ur-Rehman

Department of Pharmacy, Birla Institute of Technology and Science, Pilani

Email: info@benthamscience.net

Vishaka Kulkarni

Medicinal Chemistry Research Laboratory, MNR College of Pharmacy

Email: info@benthamscience.net

Mohaideen Sulthana

Medicinal Chemistry Research Laboratory, MNR College of Pharmacy

Email: info@benthamscience.net

Bandi Narendhar

Medicinal Chemistry Research Laboratory, MNR College of Pharmacy

Email: info@benthamscience.net

Govindraj Sabarees

Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology,

Email: info@benthamscience.net

References

  1. American Cancer Society. Cancer Facts and Figures 2023. Atlanta, Ga: American Cancer Society 2023.
  2. Cancer Statistics Center. Available from: https://cancerstatisticscenter.cancer.org/
  3. Current and future burden of breast cancer. 2020. Available from: https://www.iarc.who.int/news-events/current-and-future-burden-of-breast-cancer-global-statistics-for-2020-and-2040/
  4. Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol 2022; 13: 839005. doi: 10.3389/fendo.2022.839005 PMID: 36060947
  5. Faltas CL, LeBron KA, Holz MK. Unconventional estrogen signaling in health and disease. Endocrinology 2020; 161(4): bqaa030. doi: 10.1210/endocr/bqaa030 PMID: 32128594
  6. Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 2019; 116: 135-70. doi: 10.1016/bs.apcsb.2019.01.001
  7. Shang Y. Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nat Rev Cancer 2006; 6(5): 360-8. doi: 10.1038/nrc1879 PMID: 16633364
  8. Bolger R, Wiese TE, Ervin K, Nestich S, Checovich W. Rapid screening of environmental chemicals for estrogen receptor binding capacity. Environ Health Perspect 1998; 106(9): 551-7. doi: 10.1289/ehp.98106551 PMID: 9721254
  9. Delfosse V, Maire A, Balaguer P, Bourguet W. A structural perspective on nuclear receptors as targets of environmental compounds. Acta Pharmacol Sin 2015; 36(1): 88-101. doi: 10.1038/aps.2014.133 PMID: 25500867
  10. Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022; 66: 15-23. doi: 10.1016/j.breast.2022.08.010 PMID: 36084384
  11. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354(3): 270-82. doi: 10.1056/NEJMra050776 PMID: 16421368
  12. Helguero LA, Faulds MH, Gustafsson JÅ, Haldosén LA. Estrogen receptors alfa (ERα) and beta (ERβ) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 2005; 24(44): 6605-16. doi: 10.1038/sj.onc.1208807 PMID: 16007178
  13. Murphy LC, Peng B, Lewis A, et al. Inducible upregulation of oestrogen receptor-β1 affects oestrogen and tamoxifen responsiveness in MCF7 human breast cancer cells. J Mol Endocrinol 2005; 34(2): 553-66. doi: 10.1677/jme.1.01688 PMID: 15821116
  14. Treeck O, Lattrich C, Springwald A, Ortmann O. Estrogen receptor beta exerts growth-inhibitory effects on human mammary epithelial cells. Breast Cancer Res Treat 2010; 120(3): 557-65. doi: 10.1007/s10549-009-0413-2 PMID: 19434490
  15. Sun J, Chu YF, Wu X, Liu RH. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 2002; 50(25): 7449-54. doi: 10.1021/jf0207530 PMID: 12452674
  16. Taraphdar AK, Roy M, Bhattacharya R. Natural products as inducers of apoptosis: Implication for cancer therapy and prevention. Curr Sci 2001; 1387-96.
  17. Pal SK, Shukla Y. Herbal medicine: Current status and the future. Asian Pac J Cancer Prev 2003; 4(4): 281-8. PMID: 14728584
  18. Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005; 4(3): 206-20. doi: 10.1038/nrd1657 PMID: 15729362
  19. Saklani A, Kutty SK. Plant-derived compounds in clinical trials. Drug Discov Today 2008; 13: 161-71. doi: 10.1016/j.drudis.2007.10.010
  20. Hartman J, Lindberg K, Morani A, Inzunza J, Ström A, Gustafsson JÅ. Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res 2006; 66(23): 11207-13. doi: 10.1158/0008-5472.CAN-06-0017 PMID: 17145865
  21. Swaby RF, Sharma CGN, Jordan VC. SERMs for the treatment and prevention of breast cancer. Rev Endocr Metab Disord 2007; 8(3): 229-39. doi: 10.1007/s11154-007-9034-4 PMID: 17440819
  22. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 2009; 9(9): 631-43. doi: 10.1038/nrc2713 PMID: 19701242
  23. Suetsugi M. Flavone and isoflavone phytoestrogens are agonists of estrogen related receptors. Mol Can Res 2009; 981-91.
  24. Zand RSR, Jenkins DJA, Diamandis EP. Steroid hormone activity of flavonoids and related compounds. Breast Cancer Res Treat 2000; 62(1): 35-49. doi: 10.1023/A:1006422302173 PMID: 10989984
  25. Grande F, Rizzuti B, Occhiuzzi MA, et al. Identification by molecular docking ofhomoisoflavones from leopoldia comosa as ligands of estrogen receptors. Molecules 2018; 23(4): 894. doi: 10.3390/molecules23040894 PMID: 29649162
  26. Jameera Begam A, Jubie S, Nanjan MJ. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorg Chem 2017; 71: 257-74. doi: 10.1016/j.bioorg.2017.02.011 PMID: 28274582
  27. Ng HW, Zhang W, Shu M, et al. Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists. BMC Bioinf 2014; 15(S11): S4. doi: 10.1186/1471-2105-15-S11-S4 PMID: 25349983
  28. Chakraborty S, Levenson AS, Biswas PK. Structural insights into Resveratrol’s antagonist and partial agonist actions on estrogen receptor α. BMC Struct Biol 2013; 13(1): 27. doi: 10.1186/1472-6807-13-27 PMID: 24160181
  29. Surjushe A, Vasani R, Saple DG. Aloe vera: A short review. Indian J Dermatol 2008; 53(4): 163-6. doi: 10.4103/0019-5154.44785 PMID: 19882025
  30. Hu Y, Yang L, Lai Y. Recent findings regarding the synergistic effects of emodin and its analogs with other bioactive compounds: Insights into new mechanisms. Biomed Pharmacother 2023; 162: 114585. doi: 10.1016/j.biopha.2023.114585 PMID: 36989724
  31. Baliga MS, Dsouza JJ. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev 2011; 20(3): 225-39. doi: 10.1097/CEJ.0b013e32834473f4 PMID: 21317655
  32. Bonte J. Chemoprevention of breast cancer. Eur J Cancer Prev 1993; 2(3): 141-6. doi: 10.1097/00008469-199311000-00021 PMID: 8298444
  33. Ahmad N, Basri AM, Taha H. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacogn Rev 2017; 11(21): 43-56. doi: 10.4103/phrev.phrev_55_16 PMID: 28503054
  34. Van HT, Thang TD, Luu TN, Doan VD. An overview of the chemical composition and biological activities of essential oils from Alpinia genus (Zingiberaceae). RSC Advances 2021; 11(60): 37767-83. doi: 10.1039/D1RA07370B PMID: 35498079
  35. Prakash NS, Sundaram R, Mitra SK. Shatavarins (containing Shatavarin IV) with anticancer activity from the roots of Asparagus racemosus. Indian J Pharmacol 2012; 44(6): 732-6. doi: 10.4103/0253-7613.103273 PMID: 23248403
  36. Joshi GP, Rawat MS, Bisht VK, Negi JS, Singh P. Chemical constituents of Asparagus. Pharmacogn Rev 2010; 4(8): 215-20. doi: 10.4103/0973-7847.70921 PMID: 22228964
  37. Park SH, Kim M, Lee S. Therapeutic potential of natural products in treatment of cervical cancer: A review. Nutrients 2021; 13(1): 1-154. doi: 10.3390/nu13010154
  38. Henamayee S, Banik K, Sailo BL, et al. Therapeutic emergence of rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules 2020; 25(10): 2278. doi: 10.3390/molecules25102278 PMID: 32408623
  39. Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An update on the therapeutic anticancer potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28(3): 1193. doi: 10.3390/molecules28031193 PMID: 36770859
  40. Pattanayak P, Behera P, Das D, Panda S. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn Rev 2010; 4(7): 95-105. doi: 10.4103/0973-7847.65323 PMID: 22228948
  41. Baliga MS, Jimmy R, Thilakchand KR, et al. Ocimum sanctum L. (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer 2013; 65(sup1): 26-35. doi: 10.1080/01635581.2013.785010 PMID: 23682780
  42. Krieger E. New ways to boost molecular dynamics simulations. J Comput Chem 2015; 36(13): 996-1007.
  43. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61. doi: 10.1002/jcc.21334 PMID: 19499576
  44. Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron 2018; 99(6): 1129-43. doi: 10.1016/j.neuron.2018.08.011 PMID: 30236283
  45. Trond I, Ole JH. Time reversible molecular dynamics algorithms with holonomic bond constraints in the NPH and NPT ensembles using molecular scaling. J Chem Phys 2010; 132(15): 154106. doi: 10.1063/1.3363609

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers