CRISPR/Cas9 Technology: A Novel Approach to Obesity Research
- Authors: Khademi Z.1, Mahmoudi Z.2, Sukhorukov V.3, Jamialahmadi T.4, Sahebkar A.5
-
Affiliations:
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran
- Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
- Biotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences
- Issue: Vol 30, No 23 (2024)
- Pages: 1791-1803
- Section: Immunology, Inflammation & Allergy
- URL: https://kld-journal.fedlab.ru/1381-6128/article/view/645815
- DOI: https://doi.org/10.2174/0113816128301465240517065848
- ID: 645815
Cite item
Full Text
Abstract
:Gene editing technology, particularly Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has transformed medical research. As a newly developed genome editing technique, CRISPR technology has strongly assisted scientists in enriching their comprehension of the roles of individual genes and their influences on a vast spectrum of human malignancies. Despite considerable progress in elucidating obesity's molecular pathways, current anti-obesity medications fall short in effectiveness. A thorough understanding of the genetic foundations underlying various neurobiological pathways related to obesity, as well as the neuro-molecular mechanisms involved, is crucial for developing effective obesity treatments. Utilizing CRISPR-based technologies enables precise determination of the roles of genes that encode transcription factors or enzymes involved in processes, such as lipogenesis, lipolysis, glucose metabolism, and lipid storage within adipose tissue. This innovative approach allows for the targeted suppression or activation of genes regulating obesity, potentially leading to effective weight management strategies. In this review, we have provided a detailed overview of obesity's molecular genetics, the fundamentals of CRISPR/Cas9 technology, and how this technology contributes to the discovery and therapeutic targeting of new genes associated with obesity.
About the authors
Zahra Khademi
Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences
Email: info@benthamscience.net
Zahra Mahmoudi
Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran
Email: info@benthamscience.net
Vasily Sukhorukov
Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences
Email: info@benthamscience.net
Tannaz Jamialahmadi
Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Amirhossein Sahebkar
Biotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Haslam D, James W. Obesity. Lancet 2005; 366: 67483.
- Hruby A, Hu FB. The epidemiology of obesity: A big picture. PharmacoEconomics 2015; 33(7): 673-89. doi: 10.1007/s40273-014-0243-x PMID: 25471927
- Hayden J, Strawn T, Zink B, Bostick BP. Targeted treatment of hfpef in a mouse model of western diet-induced obesity via viral gene therapy of antioxidant NRF2. J Am Coll Cardiol 2022; 79(9) (Suppl.): 322-2. doi: 10.1016/S0735-1097(22)01313-4
- Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity. J Am Coll Cardiol 2018; 71(1): 69-84. doi: 10.1016/j.jacc.2017.11.011 PMID: 29301630
- Jakab J, Mikić B, Mikić , et al. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products. Diabetes Metab Syndr Obes 2021; 14: 67-83. doi: 10.2147/DMSO.S281186 PMID: 33447066
- Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci 2016; 130(12): 943-86. doi: 10.1042/CS20160136 PMID: 27154742
- Romieu I, Dossus L, Barquera S, et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017; 28(3): 247-58. doi: 10.1007/s10552-017-0869-z PMID: 28210884
- Jayachandran M, Fei Z, Qu S. Genetic advancements in obesity management and CRISPR-Cas9-based gene editing system. Mol Cell Biochem 2022; 1-11. PMID: 35909208
- Kunej T, Skok DJ, Zorc M, et al. Obesity gene atlas in mammals. J Genomics 2013; 1: 45-55. doi: 10.7150/jgen.3996 PMID: 25031655
- Li X, Qi L. Gene-environment interactions on body fat distribution. Int J Mol Sci 2019; 20(15): 3690. doi: 10.3390/ijms20153690 PMID: 31357654
- Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation 2012; 126(1): 126-32. doi: 10.1161/CIRCULATIONAHA.111.087213 PMID: 22753534
- Coughlin JW, Brantley PJ, Champagne CM, et al. The impact of continued intervention on weight: Five-year results from the weight loss maintenance trial. Obesity 2016; 24(5): 1046-53. doi: 10.1002/oby.21454 PMID: 26991814
- Gadde KM, Apolzan JW, Berthoud HR. Pharmacotherapy for patients with obesity. Clin Chem 2018; 64(1): 118-29. doi: 10.1373/clinchem.2017.272815 PMID: 29054924
- Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: A systematic and clinical review. JAMA 2014; 311(1): 74-86. doi: 10.1001/jama.2013.281361 PMID: 24231879
- Franco-Tormo MJ, Salas-Crisostomo M, Rocha NB, Budde H, Machado S, Murillo-Rodríguez E. CRISPR/Cas9, the powerful new genome-editing tool for putative therapeutics in obesity. J Mol Neurosci 2018; 65(1): 10-6. doi: 10.1007/s12031-018-1076-4 PMID: 29732484
- Loos RJF, Yeo GSH. The bigger picture of FTO-the first GWAS-identified obesity gene. Nat Rev Endocrinol 2014; 10(1): 51-61. doi: 10.1038/nrendo.2013.227 PMID: 24247219
- Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921. doi: 10.1038/35057062 PMID: 11237011
- Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs. Science 2011; 333(6040): 307-7. doi: 10.1126/science.1207773 PMID: 21700836
- Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6. doi: 10.1126/science.1232033 PMID: 23287722
- Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435(7042): 646-51. doi: 10.1038/nature03556 PMID: 15806097
- Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011; 188(4): 773-82. doi: 10.1534/genetics.111.131433 PMID: 21828278
- Ho B, Loh S, Chan W, Soh B. In vivo genome editing as a therapeutic approach. Int J Mol Sci 2018; 19(9): 2721. doi: 10.3390/ijms19092721 PMID: 30213032
- Kim YG, Chandrasegaran S. Chimeric restriction endonuclease. Proc Natl Acad Sci USA 1994; 91(3): 883-7. doi: 10.1073/pnas.91.3.883 PMID: 7905633
- Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11(9): 636-46. doi: 10.1038/nrg2842 PMID: 20717154
- Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011; 29(2): 143-8. doi: 10.1038/nbt.1755 PMID: 21179091
- Sung YH, Baek IJ, Kim DH, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 2013; 31(1): 23-4. doi: 10.1038/nbt.2477 PMID: 23302927
- Bogdanove AJ, Voytas DF. TAL effectors: Customizable proteins for DNA targeting. Science 2011; 333(6051): 1843-6. doi: 10.1126/science.1204094 PMID: 21960622
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21. doi: 10.1126/science.1225829 PMID: 22745249
- Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321(5891): 960-4. doi: 10.1126/science.1159689 PMID: 18703739
- Fonfara I, Le Rhun A, Chylinski K, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 2014; 42(4): 2577-90. doi: 10.1093/nar/gkt1074 PMID: 24270795
- Yuan M, Webb E, Lemoine N, Wang Y. CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses. Viruses 2016; 8(3): 72. doi: 10.3390/v8030072 PMID: 26959050
- Lander ES. The heroes of CRISPR. Cell 2016; 164(1-2): 18-28. doi: 10.1016/j.cell.2015.12.041 PMID: 26771483
- Sorek R, Kunin V, Hugenholtz P. CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 2008; 6(3): 181-6. doi: 10.1038/nrmicro1793 PMID: 18157154
- Chandrasekaran M, Boopathi T, Paramasivan M. A status-quo review on CRISPR-Cas9 gene editing applications in tomato. Int J Biol Macromol 2021; 190: 120-9. doi: 10.1016/j.ijbiomac.2021.08.169 PMID: 34474054
- Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327(5962): 167-70. doi: 10.1126/science.1179555 PMID: 20056882
- Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie 2015; 117: 119-28. doi: 10.1016/j.biochi.2015.03.025 PMID: 25868999
- Zhu S, Zhou Y, Wei W. Genome-wide CRISPR/Cas9 screening for high-throughput functional genomics in human cells. Innate Antiviral Immunity. Springer 2017; pp. 175-81.
- Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23. doi: 10.1126/science.1231143 PMID: 23287718
- Khademi Z, Ramezani M, Alibolandi M, et al. A novel dual-targeting delivery system for specific delivery of CRISPR/Cas9 using hyaluronic acid, chitosan and AS1411. Carbohydr Polym 2022; 292: 119691. doi: 10.1016/j.carbpol.2022.119691 PMID: 35725215
- Kang X, Wang Y, Liu P, et al. Progresses, challenges, and prospects of CRISPR/Cas9 gene-editing in glioma studies. Cancers 2023; 15(2): 396. doi: 10.3390/cancers15020396 PMID: 36672345
- Gaj T, Sirk SJ, Shui S, Liu J. Genome-editing technologies: Principles and applications. Cold Spring Harb Perspect Biol 2016; 8(12): a023754. doi: 10.1101/cshperspect.a023754 PMID: 27908936
- Xu Z, Li Y, Li M, Xiang H, Yan A. Harnessing the type I CRISPR-CAS systems for genome editing in prokaryotes. Environ Microbiol 2021; 23(2): 542-58. doi: 10.1111/1462-2920.15116 PMID: 32510745
- Pu Y, Wu W, Xiang H, Chen Y, Xu H. CRISPR/Cas9-based genome editing for multimodal synergistic cancer nanotherapy. Nano Today 2023; 48: 101734. doi: 10.1016/j.nantod.2022.101734
- Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32(3): 279-84. doi: 10.1038/nbt.2808 PMID: 24463574
- Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096. doi: 10.1126/science.1258096 PMID: 25430774
- Wang HX, Li M, Lee CM, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem Rev 2017; 117(15): 9874-906. doi: 10.1021/acs.chemrev.6b00799 PMID: 28640612
- Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov 2017; 16(6): 387-99. doi: 10.1038/nrd.2016.280 PMID: 28337020
- Kopelman PG. Obesity as a medical problem. Nature 2000; 404(6778): 635-43. doi: 10.1038/35007508 PMID: 10766250
- Manco M, Dallapiccola B. Genetics of pediatric obesity. Pediatrics 2012; 130(1): 123-33. doi: 10.1542/peds.2011-2717 PMID: 22665408
- Chung WK. An overview of mongenic and syndromic obesities in humans. Pediatr Blood Cancer 2012; 58(1): 122-8. doi: 10.1002/pbc.23372 PMID: 21994130
- Ng MCY, Bowden DW. Is genetic testing of value in predicting and treating obesity? N C Med J 2013; 74(6): 530-3. doi: 10.18043/ncm.74.6.530 PMID: 24316784
- Li S, Zhao JH, Luan J, et al. Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am J Clin Nutr 2010; 91(1): 184-90. doi: 10.3945/ajcn.2009.28403 PMID: 19812171
- den Hoed M, Ekelund U, Brage S, et al. Genetic susceptibility to obesity and related traits in childhood and adolescence: Influence of loci identified by genome-wide association studies. Diabetes 2010; 59(11): 2980-8. doi: 10.2337/db10-0370 PMID: 20724581
- Mahmoud R, Kimonis V, Butler MG. Genetics of obesity in humans: A clinical review. Int J Mol Sci 2022; 23(19): 11005. doi: 10.3390/ijms231911005 PMID: 36232301
- Münzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism 2015; 64(1): 13-23. doi: 10.1016/j.metabol.2014.09.010 PMID: 25305050
- Coleman DL. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 1973; 9(4): 294-8. doi: 10.1007/BF01221857 PMID: 4767369
- Coleman DL. Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 1978; 14(3): 141-8. doi: 10.1007/BF00429772 PMID: 350680
- Friedman JM, Leibel RL. Tackling a weighty problem. Cell 1992; 69(2): 217-20. doi: 10.1016/0092-8674(92)90402-X PMID: 1568242
- Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395(6704): 763-70. doi: 10.1038/27376 PMID: 9796811
- Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372(6505): 425-32. doi: 10.1038/372425a0 PMID: 7984236
- Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269(5223): 540-3. doi: 10.1126/science.7624776 PMID: 7624776
- Sadaf Farooqi I. Genetic and hereditary aspects of childhood obesity. Best Pract Res Clin Endocrinol Metab 2005; 19(3): 359-74. doi: 10.1016/j.beem.2005.04.004 PMID: 16150380
- Franks PW, Brage S, Luan JA, et al. Leptin predicts a worsening of the features of the metabolic syndrome independently of obesity. Obes Res 2005; 13(8): 1476-84. doi: 10.1038/oby.2005.178 PMID: 16129731
- Paracchini V, Pedotti P, Taioli E. Genetics of leptin and obesity: A huge review. Am J Epidemiol 2005; 162(2): 101-14. doi: 10.1093/aje/kwi174 PMID: 15972940
- Wasim M, Awan FR, Najam SS, Khan AR, Khan HN. Role of leptin deficiency, inefficiency, and leptin receptors in obesity. Biochem Genet 2016; 54(5): 565-72. doi: 10.1007/s10528-016-9751-z PMID: 27313173
- Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: Role and clinical implication. Front Endocrinol 2021; 12: 585887. doi: 10.3389/fendo.2021.585887 PMID: 34084149
- Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996; 84(3): 491-5. doi: 10.1016/S0092-8674(00)81294-5 PMID: 8608603
- Roh J, Lee J, Park SU, et al. CRISPR-Cas9-mediated generation of obese and diabetic mouse models. Exp Anim 2018; 67(2): 229-37. doi: 10.1538/expanim.17-0123 PMID: 29343656
- Kamble PG, Hetty S, Vranic M, et al. Proof-of-concept for CRISPR/Cas9 gene editing in human preadipocytes: Deletion of FKBP5 and PPARG and effects on adipocyte differentiation and metabolism. Sci Rep 2020; 10(1): 10565. doi: 10.1038/s41598-020-67293-y PMID: 32601291
- Liu J, Liu J, Zeng D, et al. miR-143-null is against diet-induced obesity by promoting BAT thermogenesis and inhibiting WAT adipogenesis. Int J Mol Sci 2022; 23(21): 13058. doi: 10.3390/ijms232113058 PMID: 36361843
- Wang CH, Lundh M, Fu A, et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med 2020; 12(558): eaaz8664. doi: 10.1126/scitranslmed.aaz8664 PMID: 32848096
- Qiu J, Bosch MA, Stincic TL, et al. CRISPR/SaCas9 mutagenesis of stromal interaction molecule 1 in proopiomelanocortin neurons increases glutamatergic excitability and protects against diet-induced obesity. Mol Metab 2022; 66: 101645. doi: 10.1016/j.molmet.2022.101645 PMID: 36442744
- Yang Z, Li P, Shang Q, et al. CRISPR-mediated BMP9 ablation promotes liver steatosis via the down-regulation of PPARα expression. Sci Adv 2020; 6(48): eabc5022. doi: 10.1126/sciadv.abc5022 PMID: 33246954
- Leuillier M, Duflot T, Ménoret S, et al. CRISPR/Cas9-mediated inactivation of the phosphatase activity of soluble epoxide hydrolase prevents obesity and cardiac ischemic injury. J Adv Res 2023; 43: 163-74. doi: 10.1016/j.jare.2022.03.004 PMID: 36585106
- Zhu L, Yang X, Li J, et al. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system. J Genet Genomics 2021; 48(2): 134-46. doi: 10.1016/j.jgg.2021.01.008 PMID: 33931338
- Tian H, Niu H, Luo J, et al. Effects of CRISPR/Cas9-mediated stearoyl-Coenzyme A desaturase 1 knockout on mouse embryo development and lipid synthesis. PeerJ 2022; 10: e13945. doi: 10.7717/peerj.13945 PMID: 36124130
- Tsagkaraki E, Nicoloro SM, DeSouza T, et al. CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease. Nat Commun 2021; 12(1): 6931. doi: 10.1038/s41467-021-27190-y PMID: 34836963
- Yuan H, Ruan Y, Tan Y, et al. Regenerating Urethral Striated muscle by CRISPRi/dCas9-KRAB-mediated myostatin silencing for obesity-associated stress urinary incontinence. CRISPR J 2020; 3(6): 562-72. doi: 10.1089/crispr.2020.0077 PMID: 33346712
- Lin X, Liou YH, Li Y, et al. FAM13A represses AMPK activity and regulates hepatic glucose and lipid metabolism. iScience 2020; 23(3): 100928. doi: 10.1016/j.isci.2020.100928 PMID: 32151973
- Lundbäck V, Kulyte A, Strawbridge RJ, et al. FAM13A and POM121C are candidate genes for fasting insulin: Functional follow-up analysis of a genome-wide association study. Diabetologia 2018; 61(5): 1112-23. doi: 10.1007/s00125-018-4572-8 PMID: 29487953
- Le Magueresse-Battistoni B. Adipose tissue and endocrine-disrupting chemicals: Does sex matter? Int J Environ Res Public Health 2020; 17(24): 9403. doi: 10.3390/ijerph17249403 PMID: 33333918
- Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89(6): 2548-56. doi: 10.1210/jc.2004-0395 PMID: 15181022
- Guerreiro VA, Carvalho D, Freitas P. Obesity, adipose tissue, and inflammation answered in questions. J Obes 2022; 2022: 1-11. doi: 10.1155/2022/2252516 PMID: 35321537
- Gupta A, Efthymiou V, Kodani SD, et al. Mapping the transcriptional landscape of human white and brown adipogenesis using single-nuclei RNA-seq. Mol Metab 2023; 74: 101746. doi: 10.1016/j.molmet.2023.101746 PMID: 37286033
- Gezginci-Oktayoglu S, Sancar S, Karatug-Kacar A, Bolkent S. miR-375 induces adipogenesis through targeting Erk1 in pancreatic duct cells under the influence of sodium palmitate. J Cell Physiol 2021; 236(5): 3881-95. doi: 10.1002/jcp.30129 PMID: 33107061
- Chen C, Zhang X, Deng Y, et al. Regulatory roles of circRNAs in adipogenesis and lipid metabolism: Emerging insights into lipid-related diseases. FEBS J 2021; 288(12): 3663-82. doi: 10.1111/febs.15525 PMID: 32798313
- Becher T, Palanisamy S, Kramer DJ, et al. Brown adipose tissue is associated with cardiometabolic health. Nat Med 2021; 27(1): 58-65. doi: 10.1038/s41591-020-1126-7 PMID: 33398160
- Nedergaard J, Cannon B. The changed metabolic world with human brown adipose tissue: Therapeutic visions. Cell Metab 2010; 11(4): 268-72. doi: 10.1016/j.cmet.2010.03.007 PMID: 20374959
- Carpentier AC, Blondin DP, Haman F, Richard D. Brown adipose tissue-a translational perspective. Endocr Rev 2023; 44(2): 143-92. doi: 10.1210/endrev/bnac015 PMID: 35640259
- Chen Z, Wang GX, Ma SL, et al. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Mol Metab 2017; 6(8): 863-72. doi: 10.1016/j.molmet.2017.03.016 PMID: 28752050
- Wang GX, Zhao XY, Meng ZX, et al. The brown fatenriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med 2014; 20(12): 1436-43. doi: 10.1038/nm.3713 PMID: 25401691
- Harb E, Kheder O, Poopalasingam G, Rashid R, Srinivasan A, Izzi-Engbeaya C. Brown adipose tissue and regulation of human body weight. Diabetes Metab Res Rev 2023; 39(1): e3594. doi: 10.1002/dmrr.3594 PMID: 36398906
- Cannon B, de Jong JMA, Fischer AW, Nedergaard J, Petrovic N. Human brown adipose tissue: Classical brown rather than brite/beige? Exp Physiol 2020; 105(8): 1191-200. doi: 10.1113/EP087875 PMID: 32378255
- Townsend KL, Tseng YH. Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab 2014; 25(4): 168-77. doi: 10.1016/j.tem.2013.12.004 PMID: 24389130
- Zhang Y, Yin C, Zhang T, et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 2015; 5(1): 16277. doi: 10.1038/srep16277 PMID: 26538064
- Vora S, Tuttle M, Cheng J, Church G. Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J 2016; 283(17): 3181-93. doi: 10.1111/febs.13768 PMID: 27248712
- Xiong K, Zhou Y, Hyttel P, Bolund L, Freude KK, Luo Y. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM). Stem Cell Res 2016; 17(3): 665-9. doi: 10.1016/j.scr.2016.10.011 PMID: 27934604
- Chen X, Ranjan VD, Liu S, et al. In situ formation of 3D conductive and cell-laden graphene hydrogel for electrically regulating cellular behavior. Macromol Biosci 2021; 21(4): 2000374. doi: 10.1002/mabi.202000374 PMID: 33620138
- Tozzi A, Bengtson CP, Longone P, et al. Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 2003; 18(8): 2133-45. doi: 10.1046/j.1460-9568.2003.02936.x PMID: 14622174
- Clapham DE. TRP channels as cellular sensors. Nature 2003; 426(6966): 517-24. doi: 10.1038/nature02196 PMID: 14654832
- Salido GM, Jardín I, Rosado JA. The TRPC ion channels: Association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. Transient Recep Potential Channels 2011; pp. 413-33.
- Ling M, Lai X, Quan L, et al. Knockdown of VEGFB/VEGFR1 signaling promotes white adipose tissue browning and skeletal muscle development. Int J Mol Sci 2022; 23(14): 7524. doi: 10.3390/ijms23147524 PMID: 35886871
- Chen L, Dai YM, Ji CB, et al. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Mol Cell Endocrinol 2014; 393(1-2): 65-74. doi: 10.1016/j.mce.2014.05.022 PMID: 24931160
- Kawamura Y, Tanaka Y, Kawamori R, Maeda S. Overexpression of Kruppel-like factor 7 regulates adipocytokine gene expressions in human adipocytes and inhibits glucose-induced insulin secretion in pancreatic β-cell line. Mol Endocrinol 2006; 20(4): 844-56. doi: 10.1210/me.2005-0138 PMID: 16339272
- Sun Y, Xu H, Li J, et al. Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4. Biochim Biophys Acta Gene Regul Mech 2023; 1866(1): 194899. doi: 10.1016/j.bbagrm.2022.194899 PMID: 36410687
- Zhang Z, Wang H, Sun Y, Li H, Wang N. Klf7 modulates the differentiation and proliferation of chicken preadipocyte. Acta Biochim Biophys Sin 2013; 45(4): 280-8. doi: 10.1093/abbs/gmt010 PMID: 23439665
- Jia Z. KLF7 promotes preadipocyte proliferation via activation of the akt signaling pathway by cis-regulating CDKN3. bioRxiv 2022; 2022.06. doi: 10.1101/2022.06.16.496506
- Newman JW, Morisseau C, Harris TR, Hammock BD. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci USA 2003; 100(4): 1558-63. doi: 10.1073/pnas.0437724100 PMID: 12574510
- Cronin A, Mowbray S, Dürk H, et al. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc Natl Acad Sci USA 2003; 100(4): 1552-7. doi: 10.1073/pnas.0437829100 PMID: 12574508
- Gonçalves GAR, Paiva RMA. Gene therapy: Advances, challenges and perspectives. Einstein 2017; 15(3): 369-75. doi: 10.1590/s1679-45082017rb4024 PMID: 29091160
- Gao M, Liu D. Gene therapy for obesity: Progress and prospects. Discov Med 2014; 17(96): 319-28. PMID: 24979252
- Song Z, Xiaoli A, Yang F. Regulation and metabolic significance of de novo lipogenesis in adipose tissues. Nutrients 2018; 10(10): 1383. doi: 10.3390/nu10101383 PMID: 30274245
- Akalestou E, Genser L, Rutter GA. Glucocorticoid metabolism in obesity and following weight loss. Front Endocrinol 2020; 11: 59. doi: 10.3389/fendo.2020.00059 PMID: 32153504
- Wei X, Zhang J, Tang M, Wang X, Fan N, Peng Y. Fat mass and obesityassociated protein promotes liver steatosis by targeting PPARα. Lipids Health Dis 2022; 21(1): 29. doi: 10.1186/s12944-022-01640-y PMID: 35282837
- Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 2016; 12(4): 203-21. doi: 10.1038/nrendo.2016.12 PMID: 26893264
- Miller AF, Harvey SAK, Thies RS, Olson MS. Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J Biol Chem 2000; 275(24): 17937-45. doi: 10.1074/jbc.275.24.17937 PMID: 10849432
- Bidart M, Ricard N, Levet S, et al. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci 2012; 69(2): 313-24. doi: 10.1007/s00018-011-0751-1 PMID: 21710321
- Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis 2023; 10(6): 2351-65. doi: 10.1016/j.gendis.2022.04.014 PMID: 37554175
- Claussnitzer M, Dankel SN, Kim KH, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 2015; 373(10): 895-907. doi: 10.1056/NEJMoa1502214 PMID: 26287746
- Chung JY, Hong J, Kim HJ, et al. White adipocyte-targeted dual gene silencing of FABP4/5 for anti-obesity, anti-inflammation and reversal of insulin resistance: Efficacy and comparison of administration routes. Biomaterials 2021; 279: 121209. doi: 10.1016/j.biomaterials.2021.121209 PMID: 34700224
- Chen MT, Huang JS, Gao DD, Li YX, Wang HY. Combined treatment with FABP4 inhibitor ameliorates rosiglitazone-induced liver steatosis in obese diabetic db/db mice. Basic Clin Pharmacol Toxicol 2021; 129(3): 173-82. doi: 10.1111/bcpt.13621 PMID: 34128319
- Furuhashi M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J Atheroscler Thromb 2019; 26(3): 216-32. doi: 10.5551/jat.48710 PMID: 30726793
- Chung JY, Ain QU, Song Y, Yong SB, Kim YH. Targeted delivery of CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Res 2019; 29(9): 1442-52. doi: 10.1101/gr.246900.118 PMID: 31467027
- Lu Y, Day FR, Gustafsson S, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun 2016; 7(1): 10495. doi: 10.1038/ncomms10495 PMID: 26833246
- Kilpeläinen TO, Zillikens MC, Stančákova A, et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 2011; 43(8): 753-60. doi: 10.1038/ng.866 PMID: 21706003
- Cook NL, Pjanic M, Emmerich AG, et al. CRISPR-Cas9-mediated knockout of SPRY2 in human hepatocytes leads to increased glucose uptake and lipid droplet accumulation. BMC Endocr Disord 2019; 19(1): 115. doi: 10.1186/s12902-019-0442-8 PMID: 31664995
- He Y, Brouwers B, Liu H, et al. Human loss-of-function variants in the serotonin 2C receptor associated with obesity and maladaptive behavior. Nat Med 2022; 28(12): 2537-46. doi: 10.1038/s41591-022-02106-5 PMID: 36536256
Supplementary files
