Pharmacological Mechanism of Herbal Interventions for Bipolar Disorder


Cite item

Full Text

Abstract

:Bipolar disorder is a neuropsychiatric disease characterized by an abundance of undesired ideas and thoughts associated with recurrent episodes of mania or hypomania and depression. Alterations in the circuits, including the prefrontal cortex, striatum, and limbic system, regulate mood and cause variation in several crucial neurotransmitters, including serotonin, dopamine, GABA, and glutamate. Imbalances in dopamine levels have been implicated in the manic phase, while variance in serotonin is linked to depressive episodes. The precise pathophysiology of bipolar disorder is still unknown. Though different treatments are available, like lithium, risperidone, valproic acid, etc., which are widely used, they come with certain limitations, including narrow therapeutic index, hypothyroidism, weight gain, extrapyramidal symptoms, etc. The interest in herbal- based treatments for bipolar disorder arises from the desire for alternative, potentially more natural, and holistic approaches with fewer side effects. The current review focuses on the potential effects of herbal drugs and their derivatives to alleviate the symptoms of bipolar disorder.

About the authors

Abhinav Singh

Amity Institute of Pharmacy,, Amity University

Email: info@benthamscience.net

Maryam Sarwat

Amity Institute of Pharmacy, Amity University

Author for correspondence.
Email: info@benthamscience.net

Sangeetha Gupta

Amity Institute of Pharmacy, Amity University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Vieta E, Berk M, Schulze TG, et al. Bipolar disorders. Nat Rev Dis Primers 2018; 4(1): 18008. doi: 10.1038/nrdp.2018.8 PMID: 29516993
  2. Wartchow KM, Scaini G, Quevedo J. Glial-neuronal interaction in synapses: A possible mechanism of the pathophysiology of bipolar disorder. Adv Exp Med Biol 2023; 1411: 191-208. doi: 10.1007/978-981-19-7376-5_9 PMID: 36949311
  3. Carvalho AF, Firth J, Vieta E. Bipolar disorder. N Engl J Med 2020; 383(1): 58-66. doi: 10.1056/NEJMra1906193 PMID: 32609982
  4. Schiweck C, Henriquez AG, Aichholzer M, et al. Comorbidity of ADHD and adult bipolar disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 124: 100-23. doi: 10.1016/j.neubiorev.2021.01.017 PMID: 33515607
  5. Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull 2018; 44(1): 75-83. doi: 10.1093/schbul/sbx035 PMID: 28338954
  6. Benedetti F, Poletti S, Hoogenboezem TA, et al. Inflammatory cytokines influence measures of white matter integrity in bipolar disorder. J Affect Disord 2016; 202: 1-9. doi: 10.1016/j.jad.2016.05.047 PMID: 27253210
  7. Giridharan VV, Sayana P, Pinjari OF, et al. Postmortem evidence of brain inflammatory markers in bipolar disorder: A systematic review. Mol Psychiatry 2020; 25(1): 94-113. doi: 10.1038/s41380-019-0448-7 PMID: 31249382
  8. McGrath JJ, Hamzawi AA, Alonso J, et al. Age of onset and cumulative risk of mental disorders: A cross-national analysis of population surveys from 29 countries. Lancet Psychiatry 2023; 10(9): 668-81. doi: 10.1016/S2215-0366(23)00193-1 PMID: 37531964
  9. Nierenberg AA, Agustini B, Forsberg KO, et al. Diagnosis and treatment of bipolar disorder. JAMA 2023; 330(14): 1370-80. doi: 10.1001/jama.2023.18588 PMID: 37815563
  10. Nowrouzi B, McIntyre RS, MacQueen G, et al. Admixture analysis of age at onset in first episode bipolar disorder. J Affect Disord 2016; 201: 88-94. doi: 10.1016/j.jad.2016.04.006 PMID: 27182964
  11. National Institute of Mental Health. Bipolar disorder. 2023. Available from: https://www. nimh.nih.gov/health/statistics/bipolar-disorder
  12. Madireddy S, Madireddy S. Therapeutic interventions to mitigate mitochondrial dysfunction and oxidative stress–induced damage in patients with bipolar disorder. Int J Mol Sci 2022; 23(3): 1844. doi: 10.3390/ijms23031844 PMID: 35163764
  13. Jain A. Bipolar disorder: Diagnosis, pathophysiology and therapy. E C Neurology 2020; 12: 136-49.
  14. Tu EN, Manley H, Saunders KEA, Creswell C. Systematic review and meta-analysis: Risks of anxiety disorders in offspring of parents with mood disorders. J Am Acad Child Adolesc Psychiatry 2023; 63(4): 407-21. PMID: 37453607
  15. Axelson D, Goldstein B, Goldstein T, et al. Diagnostic precursors to bipolar disorder in offspring of parents with bipolar disorder: A longitudinal study. Am J Psychiatry 2015; 172(7): 638-46. doi: 10.1176/appi.ajp.2014.14010035 PMID: 25734353
  16. Ayano G. Bipolar disorder: A concise overview of etiology, epidemiology diagnosis and management: Review of Literatures. SOJ Psychol 2016; 3(1): 1-8. doi: 10.15226/2374-6874/3/2/00131
  17. O’Connell KS, Coombes BJ. Genetic contributions to bipolar disorder: Current status and future directions. Psychol Med 2021; 51(13): 2156-67. doi: 10.1017/S0033291721001252 PMID: 33879273
  18. Lee JG, Woo YS, Park SW, Seog DH, Seo MK, Bahk WM. Neuromolecular etiology of bipolar disorder: Possible therapeutic targets of mood stabilizers. Clin Psychopharmacol Neurosci 2022; 20(2): 228-39. doi: 10.9758/cpn.2022.20.2.228 PMID: 35466094
  19. Illesca-Matus R, Ardiles NM, Munoz F, Moya PR. Implications of physical exercise on episodic memory and anxiety: The role of the serotonergic system. Int J Mol Sci 2023; 24(14): 11372. doi: 10.3390/ijms241411372 PMID: 37511128
  20. Onyeka IN, Høegh CM, Eien NEM, Nwaru BI, Melle I. Comorbidity of physical disorders among patients with severe mental illness with and without substance use disorders: A systematic review and meta-analysis. J Dual Diagn 2019; 15(3): 192-206. doi: 10.1080/15504263.2019.1619007 PMID: 31164045
  21. McElroy SL, Winham SJ, Barboza CAB, et al. Bipolar disorder with binge eating behavior: A genome-wide association study implicates PRR5-ARHGAP8. Transl Psychiatry 2018; 8(1): 40. doi: 10.1038/s41398-017-0085-3 PMID: 29391396
  22. Jayamohananan H, Kumar MMK, T P A. 5-HIAA as a potential biological marker for neurological and psychiatric disorders. Adv Pharm Bull 2019; 9(3): 374-81. doi: 10.15171/apb.2019.044 PMID: 31592064
  23. Berk M, Dodd S, Sant’Anna KM, et al. Dopamine dysregulation syndrome: Implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand 2007; 116(s434): 41-9. doi: 10.1111/j.1600-0447.2007.01058.x PMID: 17688462
  24. Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 2018; 235(8): 2195-220. doi: 10.1007/s00213-018-4950-4 PMID: 29961124
  25. Hsueh YS, Lin CY, Chiu NT, Yang YK, Chen PS, Chang HH. Changes in striatal dopamine transporters in bipolar disorder and valproate treatment. Eur Psychiatry 2021; 64(1): e9. doi: 10.1192/j.eurpsy.2021.1 PMID: 33413711
  26. Ashok AH, Marques TR, Jauhar S, et al. The dopamine hypothesis of bipolar affective disorder: The state of the art and implications for treatment. Mol Psychiatry 2017; 22(5): 666-79. doi: 10.1038/mp.2017.16 PMID: 28289283
  27. Cousins DA, Butts K, Young AH. The role of dopamine in bipolar disorder. Bipolar Disord 2009; 11(8): 787-806. doi: 10.1111/j.1399-5618.2009.00760.x PMID: 19922550
  28. Kotzaeroglou A, Tsamesidis I. The role of equilibrium between free radicals and antioxidants in depression and bipolar disorder. Medicines 2022; 9(11): 57. doi: 10.3390/medicines9110057 PMID: 36422118
  29. Pålsson E, Sellgren C, Pelanis A, Zetterberg H, Blennow K, Landén M. Altered brain dopamine metabolism is a trait marker for bipolar disorder. Biomark Neuropsychiatr 2023; 9: 100078. doi: 10.1016/j.bionps.2023.100078
  30. D’Cruz M, Andrade C. Potential clinical applications of Ashwagandha (Withania somnifera) in medicine and neuropsychiatry. Expert Rev Clin Pharmacol 2022; 15(9): 1067-80. doi: 10.1080/17512433.2022.2121699 PMID: 36062480
  31. Zahiruddin S, Basist P, Parveen A, et al. Ashwagandha in brain disorders: A review of recent developments. J Ethnopharmacol 2020; 257: 112876. doi: 10.1016/j.jep.2020.112876 PMID: 32305638
  32. Chengappa RKN, Gannon JM, Acharya L, Rai A. The potential utility of Ashwagandha for improving cognitive dysfunction in persons with bipolar or other neurocognitive disorders. Science of Ashwagandha: Preventive and Therapeutic Potentials. Cham: Springer 2017. doi: 10.1007/978-3-319-59192-6_17
  33. Gupta M, Kaur G. Withania somnifera as a potential anxiolytic and anti-inflammatory candidate against systemic lipopolysaccharide-induced neuroinflammation. Neuromolecular Med 2018; 20(3): 343-62. doi: 10.1007/s12017-018-8497-7 PMID: 29846872
  34. Khattak ZF, Ansari B, Jamal M, Awan AA, Sherkheli MA, ul Haq R. Anticonvulsant activity of methanolic extract of Withania cogulans in mice. Metab Brain Dis 2021; 36(8): 2437-43. doi: 10.1007/s11011-021-00850-0 PMID: 34618296
  35. Rai M, Jogee PS, Agarkar G, Santos CA. Anticancer activities of Withania somnifera: Current research, formulations, and future perspectives. Pharm Biol 2016; 54(2): 189-97. doi: 10.3109/13880209.2015.1027778 PMID: 25845640
  36. Nile SH, Nile A, Gansukh E, Baskar V, Kai G. Subcritical water extraction of withanosides and withanolides from ashwagandha (Withania somnifera L.) and their biological activities. Food Chem Toxicol 2019; 132: 110659. doi: 10.1016/j.fct.2019.110659 PMID: 31276745
  37. Tiwari R, Chakrabort S, Saminathan M, Dhama K, Singh SV. Ashwagandha (Withania somnifera): Role in safeguarding health, immunomodulatory effects, combating infections and therapeutic applications: A review. J Biol Sci 2014; 14(2): 77-94. doi: 10.3923/jbs.2014.77.94
  38. Paul S, Chakraborty S, Anand U, et al. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021; 143: 112175. doi: 10.1016/j.biopha.2021.112175 PMID: 34649336
  39. Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SNA. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran J Basic Med Sci 2020; 23(12): 1501-26. PMID: 33489024
  40. Iqbal RM, Sharma SK. Anti-manic and antipsychotic effects of Withania somnifera extract in rodent model of bipolar disorder. Int J Pharm Investig 2022; 13(1): 122-8. doi: 10.5530/223097131721
  41. EghbaliFeriz S, Taleghani A, Najaran TZ. Central nervous system diseases and Scutellaria: A review of current mechanism studies. Biomed Pharmacother 2018; 102: 185-95. doi: 10.1016/j.biopha.2018.03.021 PMID: 29554597
  42. Brimson JM, Brimson S, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: Analysis of the available clinical data. Sci Rep 2021; 11(1): 596. doi: 10.1038/s41598-020-80045-2 PMID: 33436817
  43. Das TK, Javadzadeh A, Dey A, et al. Antioxidant defense in schizophrenia and bipolar disorder: A meta-analysis of MRS studies of anterior cingulate glutathione. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91: 94-102. doi: 10.1016/j.pnpbp.2018.08.006 PMID: 30125624
  44. Simpson T, Pase M, Stough C. Bacopa monnieri as an antioxidant therapy to reduce oxidative stress in the aging brain. Evid Based Complement Alternat Med 2015; 2015: 1-9. doi: 10.1155/2015/615384 PMID: 26413126
  45. Nandy S, Mukherjee A, Pandey DK, Dey A. Bacopa monnieri: The neuroprotective elixir from the East-phytochemistry, pharmacology, and biotechnological improvement. Singh J, Meshram V, Gupta M. Bioactive Natural products in Drug Discovery. Singapore: Springer 2020; pp. 97-126.
  46. Rajan KE, Preethi J, Singh HK. Molecular and functional characterization of Bacopa monniera: A retrospective review. Evid Based Complement Alternat Med 2015; 2015: 945217.
  47. Mankar SS, Turan SP, Mankar SS, Shelke PA. Antidepressant in animal models of depression and study of cognitive property. GSC Biol Pharm Sci 2019; 07(03): 064-76. doi: 10.30574/gscbps.2019.7.3.0069
  48. Nishanth BJ, Vijayababu P, Kurian NK. Bacopa monnieri extract as a neuroprotective and cognitive enhancement agent. Int J Drug Discov Pharmacol 2023; 2(4): 44-56.
  49. Bhatt S, Devadoss T, Manjula SN, Rajangam J. 5-HT3 receptor antagonism a potential therapeutic approach for the treatment of depression and other disorders. Curr Neuropharmacol 2021; 19(9): 1545-59. doi: 10.2174/1570159X18666201015155816 PMID: 33059577
  50. Singh D, Gupta S, Verma I, Morsy MA, Nair AB, Ahmed ASF. Hidden pharmacological activities of valproic acid: A new insight. Biomed Pharmacother 2021; 142: 112021. doi: 10.1016/j.biopha.2021.112021 PMID: 34463268
  51. Shinjyo N, Waddell G, Green J. Valerian root in treating sleep problems and associated disorders-A systematic review and meta-analysis. J Evid Based Integr Med 2020; 25: 2515690X2096732. doi: 10.1177/2515690X20967323 PMID: 33086877
  52. Saecker L, Häberlein H, Franken S. Investigation of adenosine A1 receptor-mediated β-arrestin 2 recruitment using a split-luciferase assay. Front Pharmacol 2023; 14: 1172551. doi: 10.3389/fphar.2023.1172551 PMID: 37324481
  53. Gavzan H, Araghi A, Abbasabadi MB, Talebpour N, Golshahi H. Antidepressant effects of a Persian herbal formula on mice with chronic unpredictable mild stress. Avicenna J Phytomed 2023; 13(5): 562-74. PMID: 38089415
  54. Esmaeili S, Rezaei-Tavirani M, Razzaghi M, Okhovatian F. Efficacy of Valerian root extract on anxiety via bioinformatics. Res J Pharmacogn 2022; 9(4): 13-20.
  55. Porcelli S, Drago A, Fabbri C, Serretti A. Mechanisms of antidepressant action: An integrated dopaminergic perspective. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(7): 1532-43. doi: 10.1016/j.pnpbp.2011.03.005 PMID: 21402119
  56. Holzmann I, Cechinel Filho V, Cáceres A, Martínez V, Cruz SM, De Souza MM. Antidepressant-like effect of hydroalcoholic extract of Valeriana prionophylla Standl. from Guatemala: Evidence for the involvement of the monoaminergic systems. Int J Phytopharm 2016; 6(1): 14-26.
  57. Lalehgani H, Rafii Z, Shirvani H, Karimi M, Saki M. Valeriana officinalis as a natural drug in treatment of bipolar mood patients. Avicenna J Phytomed 2015; 5: 121-2.
  58. Butnariu M, Quispe C, Herrera-Bravo J, et al. The pharmacological activities of Crocus sativus L.: A review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxid Med Cell Longev 2022; 2022: 1-29. doi: 10.1155/2022/8214821 PMID: 35198096
  59. Rahaiee S, Moini S, Hashemi M, Shojaosadati SA. Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): A review. J Food Sci Technol 2015; 52(4): 1881-8. doi: 10.1007/s13197-013-1238-x PMID: 25829569
  60. Ebrahimzadeh A, Moghadam SY, Rahimi H, et al. Crocin acts as a neuroprotective mediator against methylphenidate-induced neurobehavioral and neurochemical sequelae: Possible role of the CREB-BDNF signaling pathway. Acta Neurobiol Exp 2020; 79(4): 352-66. doi: 10.21307/ane-2019-033 PMID: 31885392
  61. Shafiee M, Arekhi S, Omranzadeh A, Sahebkar A. Saffron in the treatment of depression, anxiety and other mental disorders: Current evidence and potential mechanisms of action. J Affect Disord 2018; 227: 330-7. doi: 10.1016/j.jad.2017.11.020 PMID: 29136602
  62. Wang JQ, Mao L. The ERK pathway: Molecular mechanisms and treatment of depression. Mol Neurobiol 2019; 56(9): 6197-205. doi: 10.1007/s12035-019-1524-3 PMID: 30737641
  63. Siddiqui SA, Ali Redha A, Snoeck ER, et al. Anti-depressant properties of crocin molecules in saffron. Molecules 2022; 27(7): 2076. doi: 10.3390/molecules27072076 PMID: 35408474
  64. Wauquier F, Boutin-Wittrant L, Pourtau L, et al. Circulating human serum metabolites derived from the intake of a saffron extract (Safr’InsideTM) protect neurons from oxidative stress: Consideration for depressive disorders. Nutrients 2022; 14(7): 1511. doi: 10.3390/nu14071511 PMID: 35406124
  65. Mohajeri SA, Sepahi S, Azam GAG. Antidepressant and antianxiety properties of saffron. Saffron Science, Technology and Health Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing 2020; pp. 431-44. doi: 10.1016/B978-0-12-818638-1.00028-9
  66. Ettehadi H, Mojabi SN, Ranjbaran M, et al. Aqueous extract of saffron (Crocus sativus) increases brain dopamine and glutamate concentrations in rats. J Behav Brain Sci 2013; 3(3): 315-9. doi: 10.4236/jbbs.2013.33031
  67. Kiashemshaki B, Safakhah HA, Ghanbari A, Khaleghian A, Miladi-Gorji H. Saffron (Crocus sativus L.) stigma reduces symptoms of morphine-induced dependence and spontaneous withdrawal in rats. Am J Drug Alcohol Abuse 2021; 47(2): 170-81. doi: 10.1080/00952990.2020.1865995 PMID: 33497577
  68. Safakhah HA, Vafaei AA, Tavasoli A, Jafari S, Ghanbari A. Role of muscarinic receptors in hypoalgesia induced by crocin in neuropathic pain rats. Sci World J 2020; 2020: 1-7. doi: 10.1155/2020/4046256 PMID: 33299384
  69. Sealy EA. Sleep, sleep deprivation, sleeplessness and their effect on society. Sch J Appl Med Sci 2022; 10(10): 1647-63. doi: 10.36347/sjams.2022.v10i10.011
  70. Smruthi R, Divya M, Archana K, Ravi M. The active compounds of Passiflora spp. and their potential medicinal uses from both in vitro and in vivo evidences. Int J Adv Biomed Pharm Res 2021; 4(1): 45-55.
  71. Al-kuraishy HM, Al-windy S, Al-Gareeb AI. Beneficial neuro-pharmacological effect of passionflower (Passiflora incarnata L). ARC. J Neurosci 2020; 4(1): 22-6. PMID: 31896561
  72. Fonseca LR, Rodrigues RA, Ramos AS, et al. Herbal medicinal products from Passiflora for anxiety: An unexploited potential. Sci World J 2020; 2020: 1-18. doi: 10.1155/2020/6598434 PMID: 32765195
  73. Landa RJF, Ponciano GLJ, Olguín PA, Vázquez OOJ. Pharmacological, neurochemical, and behavioral mechanisms underlying the anxiolytic-and antidepressant-like effects of flavonoid chrysin. Molecules 2022; 27(11): 3551. doi: 10.3390/molecules27113551 PMID: 35684488
  74. Filho CB, Jesse CR, Donato F, et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin. Neuroscience 2015; 289: 367-80. doi: 10.1016/j.neuroscience.2014.12.048 PMID: 25592430
  75. Babaei N, Saliminia A, Azimaraghi O, Aghajani Y, Khazaei N, Movafegh A. Preoperative oral valiflore reduces anxiety in laparoscopic cholecystectomy: A double blind, placebo-controlled study. J Cell Mol Anesth 2017; 2(3): 103-11.
  76. Souza LC, Antunes MS, Filho CB, et al. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol Biochem Behav 2015; 134: 22-30. doi: 10.1016/j.pbb.2015.04.010 PMID: 25931267
  77. Kondža M, Bojić M, Tomić I, Maleš Ž, Rezić V, Ćavar I. Characterization of the CYP3A4 enzyme inhibition potential of selected flavonoids. Molecules 2021; 26(10): 3018. doi: 10.3390/molecules26103018 PMID: 34069400
  78. Liaqat H, Parveen A, Kim SY. Antidepressive effect of natural products and their derivatives targeting BDNF-TrkB in gut-brain axis. Int J Mol Sci 2022; 23(23): 14968. doi: 10.3390/ijms232314968 PMID: 36499295
  79. Selvaraj LK, Jeyabalan S, Wong LS, et al. Baicalein prevents stress-induced anxiety behaviors in zebrafish model. Front Pharmacol 2022; 13: 990799. doi: 10.3389/fphar.2022.990799 PMID: 36386131
  80. Sarris J. Herbal medicines in the treatment of psychiatric disorders: 10-year updated review. Phytother Res 2018; 32(7): 1147-62. doi: 10.1002/ptr.6055 PMID: 29575228
  81. Khani S, Khalaj A. Spasmolytic effects of hydroalcoholic extract of Melissa officinalis on isolated rat ileum. J Rep Pharmaceut Sci 2018; 7(3): 260-9. doi: 10.4103/2322-1232.254803
  82. Petrisor G, Motelica L, Craciun LN, Oprea OC, Ficai D, Ficai A. Melissa officinalis: Composition, pharmacological effects and derived release systems-a review. Int J Mol Sci 2022; 23(7): 3591. doi: 10.3390/ijms23073591 PMID: 35408950
  83. Soodi M, Dashti A, Hajimehdipoor H, Akbari S, Ataei N. Melissa officinalis acidic fraction protects cultured cerebellar granule neurons against beta amyloid-induced apoptosis and oxidative stress. Cell J 2017; 18(4): 556-64. PMID: 28042540
  84. Noguchi-Shinohara M, Ono K, Hamaguchi T, et al. Pharmacokinetics, safety and tolerability of Melissa officinalis extract which contained rosmarinic acid in healthy individuals: A randomized controlled trial. PLoS One 2015; 10(5): e0126422. doi: 10.1371/journal.pone.0126422 PMID: 25978046
  85. Shakeri A, Sahebkar A, Javadi B. Melissa officinalis L. – A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2016; 188: 204-28. doi: 10.1016/j.jep.2016.05.010 PMID: 27167460
  86. Nikolaichuk H, Typek R, Gnat S, Studziński M, Choma IM. Effect-directed analysis as a method for quality and authenticity estimation of Rhodiola rosea L. preparations. J Chromatogr A 2021; 1649: 462217. doi: 10.1016/j.chroma.2021.462217 PMID: 34034112
  87. Harfouche A, Alata W, Leblanc K, Heslaut G, Figadère B, Maciuk A. Label-free LC-HRMS-based enzymatic activity assay for the detection of DDC, MAO and COMT inhibitors. J Pharm Biomed Anal 2022; 212: 114598. doi: 10.1016/j.jpba.2022.114598 PMID: 35152005
  88. Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: The role of antioxidants in prevention and treatment. Antioxidants 2021; 10(9): 1439. doi: 10.3390/antiox10091439 PMID: 34573069
  89. Bansal Y, Singh R, Saroj P, Sodhi RK, Kuhad A. Naringenin protects against oxido-inflammatory aberrations and altered tryptophan metabolism in olfactory bulbectomized-mice model of depression. Toxicol Appl Pharmacol 2018; 355: 257-68. doi: 10.1016/j.taap.2018.07.010 PMID: 30017640
  90. Siddiqui PJA, Khan A, Uddin N, et al. Antidepressant-like deliverables from the sea: Evidence on the efficacy of three different brown seaweeds via involvement of monoaminergic system. Biosci Biotechnol Biochem 2017; 81(7): 1369-78. doi: 10.1080/09168451.2017.1313697 PMID: 28406051
  91. Moragrega I, Ríos JL. Medicinal plants in the treatment of depression: Evidence from preclinical studies. Planta Med 2021; 87(9): 656-85. doi: 10.1055/a-1338-1011 PMID: 33434941
  92. Yarnell E. Herbal medicine for insomnia. Altern Complement Ther 2015; 21(4): 173-9. doi: 10.1089/act.2015.29011.eya
  93. Ayumi RR, Mossadeq SWM, Zakaria ZA, et al. Antinociceptive activity of asiaticoside in mouse models of induced nociception. Planta Med 2020; 86(8): 548-55. doi: 10.1055/a-1144-3663 PMID: 32294786
  94. Golla P, Tirupathi H. To evaluate and compare antidepressant activity of Centella asiatica in mice by using forced swimming test. Int J Basic Clin Pharmacol 2016; 5(5): 2017-20. doi: 10.18203/2319-2003.ijbcp20163229
  95. Ceremuga TE, Valdivieso D, Kenner C, et al. Evaluation of the anxiolytic and antidepressant effects of asiatic acid, a compound from Gotu kola or Centella asiatica, in the male Sprague Dawley rat. AANA J 2015; 83(2): 91-8. PMID: 26016167
  96. Gaiardo RB, Abreu TF, Tashima AK, Telles MM, Cerutti SM. Target proteins in the dorsal hippocampal formation sustain the memory-enhancing and neuroprotective effects of Ginkgo biloba. Front Pharmacol 2019; 9: 1533. doi: 10.3389/fphar.2018.01533 PMID: 30666208
  97. Savage K, Firth J, Stough C, Sarris J. GABA-modulating phytomedicines for anxiety: A systematic review of preclinical and clinical evidence. Phytother Res 2018; 32(1): 3-18. doi: 10.1002/ptr.5940 PMID: 29168225
  98. Mustafa G, Ansari SH, Bhat ZA, Abdulkareim AS. Antianxiety activities associated with herbal drugs: A review. Plant Human Health Pharmacol Therapeut Uses 2019; 3: 87-100. doi: 10.1007/978-3-030-04408-4_5
  99. Ruiz-Sánchez E, Pedraza-Chaverri J, Medina-Campos ON, Maldonado PD, Rojas P. S-allyl cysteine, a garlic compound, produces an antidepressant-like effect and exhibits antioxidant properties in mice. Brain Sci 2020; 10(9): 592. doi: 10.3390/brainsci10090592 PMID: 32859119
  100. Ayatollahi SA, Khoshsirat S, Peyvandi AA, et al. Ginkgo biloba modulates hippocampal BDNF expression in a rat model of chronic restraint stress-induced depression. Physiol Pharmacol 2020; 24(4): 285-97. doi: 10.32598/ppj.24.4.20
  101. Zhang J, Yao W, Hashimoto K. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 2016; 14(7): 721-31. doi: 10.2174/1570159X14666160119094646 PMID: 26786147
  102. Zheleznyakova GY, Cao H, Schiöth HB. BDNF DNA methylation changes as a biomarker of psychiatric disorders: Literature review and open access database analysis. Behav Brain Funct 2016; 12(1): 17. doi: 10.1186/s12993-016-0101-4 PMID: 27267954
  103. Baek JH, Nierenberg AA, Kinrys G. Clinical applications of herbal medicines for anxiety and insomnia; Targeting patients with bipolar disorder. Aust N Z J Psychiatry 2014; 48(8): 705-15. doi: 10.1177/0004867414539198 PMID: 24947278
  104. Bonthu AK, Boosani V, Bugulu SG, et al. Evaluation of sedative and hypnotic activity of Valeriana wallichii roots on animal models. Sch Acad J Pharm 2020; 2020
  105. Goldberg JF. Complex combination pharmacotherapy for bipolar disorder: Knowing when less is more or more is better. Focus Am Psychiatr Publ 2019; 17(3): 218-31. doi: 10.1176/appi.focus.20190008 PMID: 32047367

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers