Discovery of an EP300 Inhibitor using Structure-based Virtual Screening and Bioactivity Evaluation
- Authors: Pan D.1, Huang Y.1, Jiang D.1, Zhang Y.1, Wu M.1, Han M.2, Jin X.3
-
Affiliations:
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University,
- College of Pharmacy, Gansu University of Chinese Medicine
- Issue: Vol 30, No 25 (2024)
- Pages: 1985-1994
- Section: Immunology, Inflammation & Allergy
- URL: https://kld-journal.fedlab.ru/1381-6128/article/view/645838
- DOI: https://doi.org/10.2174/0113816128298051240529113313
- ID: 645838
Cite item
Full Text
Abstract
Background:EP300 (E1A binding protein p300) played a significant role in serial diseases such as cancer, neurodegenerative disease. Therefore, it became a significant target.
Methods:Targeting EP300 discovery of a novel drug to alleviate these diseases. In this paper, 17 candidate compounds were obtained using a structure-based virtual screening approach, 4449-0460, with an IC50 of 5.89 ± 2.08 uM, which was identified by the EP300 bioactivity test. 4449-0460 consisted of three rings. The middle benzene ring connected the 5-ethylideneimidazolidine-2,4-dione group and the 3-F-Phenylmethoxy group.
Results:Furthermore, the interaction mechanism between 4449-0460 and EP300 was explored by combining molecular dynamics (MD) simulations and binding free energy calculation methods.
Conclusion:The binding free energy of EP300 with 4449-0460 was -10.93 kcal/mol, and mainly came from the nonpolar energy term (ΔGnonpolar). Pro1074, Phe1075, Val1079, Leu1084, and Val1138 were the key residues in EP300/4449-0460 binding with more -1 kcal/mol energy contribution. 4449-0460 was a promising inhibitor targeting EP300, which had implications for the development of drugs for EP300-related diseases.
About the authors
Dabo Pan
Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities
Author for correspondence.
Email: info@benthamscience.net
Yaxuan Huang
Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities
Email: info@benthamscience.net
Dewen Jiang
Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities
Email: info@benthamscience.net
Yonghao Zhang
Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities
Email: info@benthamscience.net
Mingkai Wu
Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities
Email: info@benthamscience.net
Minzhen Han
Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University,
Author for correspondence.
Email: info@benthamscience.net
Xiaojie Jin
College of Pharmacy, Gansu University of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: Structural and functional versatility in target recognition. Cell Mol Life Sci 2013; 70(21): 3989-4008. doi: 10.1007/s00018-012-1254-4 PMID: 23307074
- Breen ME, Mapp AK. Modulating the masters: Chemical tools to dissect CBP and p300 function. Curr Opin Chem Biol 2018; 45: 195-203. doi: 10.1016/j.cbpa.2018.06.005 PMID: 30025258
- Chen G, Bao B, Cheng Y, et al. Acetyl-CoA metabolism as a therapeutic target for cancer. Biomed Pharmacother 2023; 168: 115741. doi: 10.1016/j.biopha.2023.115741 PMID: 37864899
- Welti J, Sharp A, Brooks N, et al. Targeting the p300/CBP axis in lethal prostate cancer. Cancer Discov 2021; 11(5): 1118-37. doi: 10.1158/2159-8290.CD-20-0751 PMID: 33431496
- Jin L, Garcia J, Chan E, et al. Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Res 2017; 77(20): 5564-75. doi: 10.1158/0008-5472.CAN-17-0314 PMID: 28819026
- Denny RA, Flick AC, Coe J, et al. Structure-based design of highly selective inhibitors of the CREB binding protein bromodomain. J Med Chem 2017; 60(13): 5349-63. doi: 10.1021/acs.jmedchem.6b01839 PMID: 28375629
- Zhu G, Pei L, Li Y. EP300 mutation is associated with tumor mutation burden and promotes antitumor immunity in bladder cancer patients. Int J Appl Mech 2020; 12: 2132-41.
- Ring A, Kaur P, Lang JE. EP300 knockdown reduces cancer stem cell phenotype, tumor growth and metastasis in triple negative breast cancer. BMC Cancer 2020; 20(1): 1076. doi: 10.1186/s12885-020-07573-y PMID: 33167919
- Kim KB, Kabra A, Kim DW, et al. KIX domain determines a selective tumor-promoting role for EP300 and its vulnerability in small cell lung cancer. Sci Adv 2022; 8(7): eabl4618. doi: 10.1126/sciadv.abl4618 PMID: 35171684
- Wimalasena VK, Wang T, Sigua LH, Durbin AD, Qi J. Using chemical epigenetics to target cancer. Mol Cell 2020; 78(6): 1086-95. doi: 10.1016/j.molcel.2020.04.023 PMID: 32407673
- Ghosh S, Taylor A, Chin M, et al. Regulatory T cell modulation by CBP/EP300 bromodomain inhibition. J Biol Chem 2016; 291(25): 13014-27. doi: 10.1074/jbc.M115.708560 PMID: 27056325
- Dancy BM, Cole PA. Protein lysine acetylation by p300/CBP. Chem Rev 2015; 115(6): 2419-52. doi: 10.1021/cr500452k PMID: 25594381
- Plotnikov AN, Yang S, Zhou TJ, Rusinova E, Frasca A, Zhou MM. Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD finger module of human transcriptional coactivator CBP. Structure 2014; 22(2): 353-60. doi: 10.1016/j.str.2013.10.021 PMID: 24361270
- Muthengi A, Wimalasena VK, Yosief HO, et al. Development of dimethylisoxazole-attached imidazo1,2-apyridines as potent and selective CBP/P300 inhibitors. J Med Chem 2021; 64(9): 5787-801. doi: 10.1021/acs.jmedchem.0c02232 PMID: 33872011
- Ebrahimi A, Sevinç K, Gürhan Sevinç G, et al. Bromodomain inhibition of the coactivators CBP/EP300 facilitate cellular reprogramming. Nat Chem Biol 2019; 15(5): 519-28. doi: 10.1038/s41589-019-0264-z PMID: 30962627
- Kandagalla S, Shekarappa SB, Rimac H, Grishina MA, Potemkin VA, Hanumanthappa M. Computational insights into the binding mode of curcumin analogues against EP300 HAT domain as potent acetyltransferase inhibitors. J Mol Graph Model 2020; 101: 107756. doi: 10.1016/j.jmgm.2020.107756 PMID: 32979659
- Kanada R, Suzuki T, Murata T, et al. 4-Pyridone-3-carboxylic acid as a benzoic acid bioisostere: Design, synthesis, and evaluation of EP300/CBP histone acetyltransferase inhibitors. Bioorg Med Chem Lett 2021; 51: 128358. doi: 10.1016/j.bmcl.2021.128358 PMID: 34534674
- Ibrahim Z, Wang T, Destaing O, et al. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat Commun 2022; 13(1): 7759. doi: 10.1038/s41467-022-35375-2 PMID: 36522330
- Wilson JE, Patel G, Patel C, et al. Discovery of CPI-1612: A potent, selective, and orally bioavailable EP300/CBP histone acetyltransferase inhibitor. ACS Med Chem Lett 2020; 11(6): 1324-9. doi: 10.1021/acsmedchemlett.0c00155 PMID: 32551019
- Kanada R, Kagoshima Y, Suzuki T, et al. Discovery of DS-9300: A highly potent, selective, and once-daily oral EP300/CBP histone acetyltransferase inhibitor. J Med Chem 2023; 66(1): 695-715. doi: 10.1021/acs.jmedchem.2c01641 PMID: 36572866
- Romero FA, Murray J, Lai KW, et al. GNE-781, A highly advanced potent and selective bromodomain inhibitor of cyclic adenosine monophosphate response element binding protein, binding protein (CBP). J Med Chem 2017; 60(22): 9162-83. doi: 10.1021/acs.jmedchem.7b00796 PMID: 28892380
- Hay DA, Fedorov O, Martin S, et al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J Am Chem Soc 2014; 136(26): 9308-19. doi: 10.1021/ja412434f PMID: 24946055
- Rooney TPC, Filippakopoulos P, Fedorov O, et al. A series of potent CREBBP bromodomain ligands reveals an induced-fit pocket stabilized by a cation-π interaction. Angew Chem Int Ed 2014; 53(24): 6126-30. doi: 10.1002/anie.201402750 PMID: 24821300
- Chekler ELP, Pellegrino JA, Lanz TA, et al. Transcriptional profiling of a selective CREB binding protein bromodomain inhibitor highlights therapeutic opportunities. Chem Biol 2015; 22(12): 1588-96. doi: 10.1016/j.chembiol.2015.10.013 PMID: 26670081
- Popp TA, Tallant C, Rogers C, et al. Development of selective CBP/P300 benzoxazepine bromodomain inhibitors. J Med Chem 2016; 59(19): 8889-912. doi: 10.1021/acs.jmedchem.6b00774 PMID: 27673482
- Taylor AM, Côté A, Hewitt MC, et al. Fragment-based discovery of a selective and cell-active benzodiazepinone CBP/EP300 bromodomain inhibitor (CPI-637). ACS Med Chem Lett 2016; 7(5): 531-6. doi: 10.1021/acsmedchemlett.6b00075 PMID: 27190605
- Zou L, Xiang Q, Xue X, et al. Y08197 is a novel and selective CBP/EP300 bromodomain inhibitor for the treatment of prostate cancer. Acta Pharmacol Sin 2019; 40(11): 1436-47. doi: 10.1038/s41401-019-0237-5 PMID: 31097763
- Crawford TD, Romero FA, Lai KW, et al. Discovery of a potent and selective in vivo probe (GNE-272) for the bromodomains of CBP/EP300. J Med Chem 2016; 59(23): 10549-63. doi: 10.1021/acs.jmedchem.6b01022 PMID: 27682507
- Crawford MC, Tripu DR, Barritt SA, et al. Comparative analysis of drug-like EP300/CREBBP acetyltransferase inhibitors. ACS Chem Biol 2023; 18(10): 2249-58. doi: 10.1021/acschembio.3c00293 PMID: 37737090
- Cheng-Sánchez I, Gosselé KA, Palaferri L, Kirillova MS, Nevado C. Discovery and characterization of active CBP/EP300 degraders targeting the HAT domain. ACS Med Chem Lett 2024; 15(3): 355-61. doi: 10.1021/acsmedchemlett.3c00490 PMID: 38505842
- Chang Q, Li J, Deng Y, et al. Discovery of novel PROTAC degraders of p300/CBP as potential therapeutics for hepatocellular carcinoma. J Med Chem 2024; 67(4): 2466-86. doi: 10.1021/acs.jmedchem.3c01468 PMID: 38316017
- Hu J, Xu H, Wu T, et al. Discovery of highly potent and efficient CBP/p300 degraders with strong in vivo antitumor activity. J Med Chem 2024; 67(9): 6952-86. doi: 10.1021/acs.jmedchem.3c02195 PMID: 38649304
- Thomas JE II, Wang M, Jiang W, et al. Discovery of exceptionally potent, selective, and efficacious PROTAC degraders of CBP and p300 proteins. J Med Chem 2023; 66(12): 8178-99. doi: 10.1021/acs.jmedchem.3c00492 PMID: 37276143
- Chen Z, Wang M, Wu D, et al. Discovery of CBPD-268 as an exceptionally potent and orally efficacious CBP/p300 PROTAC degrader capable of achieving tumor regression. J Med Chem 2024; 67(7): 5275-304. doi: 10.1021/acs.jmedchem.3c02124 PMID: 38477974
- Tian X, Suarez D, Thomson D, et al. Discovery of proline-based p300/CBP inhibitors using DNA-encoded library technology in combination with high-throughput screening. J Med Chem 2022; 65(21): 14391-408. doi: 10.1021/acs.jmedchem.2c00670 PMID: 36302181
- Huang L, Li H, Li L, et al. Discovery of pyrrolo3,2-dpyrimidin-4-one derivatives as a new class of potent and cell-active inhibitors of P300/CBP-associated factor bromodomain. J Med Chem 2019; 62(9): 4526-42. doi: 10.1021/acs.jmedchem.9b00096 PMID: 30998845
- Chen Z, Wang M, Wu D, et al. Discovery of CBPD-409 as a highly potent, selective, and orally efficacious CBP/p300 PROTAC degrader for the treatment of advanced prostate cancer. J Med Chem 2024; 67(7): 5351-72. doi: 10.1021/acs.jmedchem.3c01789 PMID: 38530938
- Hu J, Xu Y. CBP/p300 degrader: A promising therapeutic strategy for treatment of prostate cancer and beyond. J Med Chem 2024; 67(7): 5272-4. doi: 10.1021/acs.jmedchem.4c00502 PMID: 38517344
- Ejalonibu MA, Ogundare SA, Elrashedy AA, et al. Drug discovery for Mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int J Mol Sci 2021; 22(24): 13259. doi: 10.3390/ijms222413259 PMID: 34948055
- Ece A. Computer-aided drug design. BMC Chem 2023; 17(1): 26. doi: 10.1186/s13065-023-00939-w PMID: 36964610
- Manathunga M, Götz AW, Merz KM Jr. Computer-aided drug design, quantum-mechanical methods for biological problems. Curr Opin Struct Biol 2022; 75: 102417. doi: 10.1016/j.sbi.2022.102417 PMID: 35779437
- Li P, Niu Y, Li S, et al. Identification of an AXL kinase inhibitor in triple-negative breast cancer by structure-based virtual screening and bioactivity test. Chem Biol Drug Des 2022; 99(2): 222-32. doi: 10.1111/cbdd.13977 PMID: 34679238
- Zhu J, Dong J, Batiste L, et al. Binding motifs in the CBP bromodomain: An analysis of 20 crystal structures of complexes with small molecules. ACS Med Chem Lett 2018; 9(9): 929-34. doi: 10.1021/acsmedchemlett.8b00286 PMID: 30258543
- Kumari N, Dalal V, Kumar P, Rath SN. Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. J Biomol Struct Dyn 2022; 40(6): 2395-406. doi: 10.1080/07391102.2020.1839558 PMID: 33103598
- Zhang J, Zou L, Tang P, Pan D, He Z, Yao D. Design, synthesis and biological evaluation of 1H-pyrazolo 3,4-dpyrimidine derivatives as PAK1 inhibitors that trigger apoptosis, ER stress and anti-migration effect in MDA-MB-231 cells. Eur J Med Chem 2020; 194: 112220. doi: 10.1016/j.ejmech.2020.112220 PMID: 32222676
- Yao D, Zhang J, Wang J, Pan D, He Z. Discovery of novel ATAD2 bromodomain inhibitors that trigger apoptosis and autophagy in breast cells by structure-based virtual screening. J Enzyme Inhib Med Chem 2020; 35(1): 713-25. doi: 10.1080/14756366.2020.1740924 PMID: 32174193
- Xiang H, Chen Y, Zhang J, et al. Discovery of a novel sodium taurocholate cotransporting polypeptide (NTCP) inhibitor: Design, synthesis, and anti-proliferative activities. Chin Chem Lett 2020; 31(6): 1422-6. doi: 10.1016/j.cclet.2020.03.017
- Han JT, Zhu Y, Pan DB, et al. Discovery of pentapeptide-inhibitor hits targeting FKBP51 by combining computational modeling and X-ray crystallography. Comput Struct Biotechnol J 2021; 19: 4079-91. doi: 10.1016/j.csbj.2021.07.015 PMID: 34401048
- Eid AM, Natsheh H, Issa L, et al. Capsicum annuum oleoresin nanoemulgel - design characterization and in vitro investigation of anticancer and antimicrobial activities. Curr Pharm Des 2024; 30(2): 151-60. doi: 10.2174/0113816128283684231220062019 PMID: 38532324
- Garaev TM, Grebennikova TV, Lebedeva VV, Avdeeva VV, Larichev VF. Compounds based on adamantyl-substituted amino acids and peptides as potential antiviral drugs acting as viroporin inhibitors. Curr Pharm Des 2024; 30(12): 912-20. doi: 10.2174/0113816128286111240229074810 PMID: 38482627
- Çomaklı V, Aygül İ, Sağlamtaş R, et al. Assessment of anticholinergic and antidiabetic properties of some natural and synthetic molecules: An in vitro and in silico approach. Curr Computeraided Drug Des 2024; 20(5): 441-51. doi: 10.2174/1573409919666230518151414
- Tan S, Gong X, Liu H, Yao X. Virtual screening and biological activity evaluation of new potent inhibitors targeting LRRK2 kinase domain. ACS Chem Neurosci 2021; 12(17): 3214-24. doi: 10.1021/acschemneuro.1c00399 PMID: 34387082
- Shahab M, Zheng G, Alshabrmi FM, Bourhia M, Wondmie GF, Mohammad Salamatullah A. Exploring potent aldose reductase inhibitors for anti-diabetic (anti-hyperglycemic) therapy: Integrating structure-based drug design, and MMGBSA approaches. Front Mol Biosci 2023; 10: 1271569. doi: 10.3389/fmolb.2023.1271569 PMID: 38053577
- Schrödinger Release 2017-4: LigPrep. New York: Schrödinger 2020.
- Hügle M, Lucas X, Ostrovskyi D, et al. Beyond the BET family: Targeting CBP/p300 with 4-acyl pyrroles. Angew Chem Int Ed 2017; 56(41): 12476-80. doi: 10.1002/anie.201705516 PMID: 28766825
- Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 2001; 105(28): 6474-87. doi: 10.1021/jp003919d
- Zhong H, Wang Z, Wang X, et al. Importance of a crystalline water network in docking-based virtual screening: A case study of BRD4. Phys Chem Chem Phys 2019; 21(45): 25276-89. doi: 10.1039/C9CP04290C PMID: 31701109
- Zhong H, Wang X, Chen S, et al. Discovery of novel inhibitors of BRD4 for treating prostate cancer: A comprehensive case study for considering water networks in virtual screening and drug design. J Med Chem 2024; 67(1): 138-51. doi: 10.1021/acs.jmedchem.3c00996 PMID: 38153295
- Epik, version 20. New York, NY: Schrödinger, LLC 2017.
- Kumari R, Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J Biomol Struct Dyn 2022; 40(20): 9833-47. doi: 10.1080/07391102.2021.1936179 PMID: 34096457
- Kumari R, Rathi R, Pathak SR, Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J Mol Struct 2022; 1255: 132476. doi: 10.1016/j.molstruc.2022.132476
- Release S. 2017-3: Canvas, S, LLC, New York, NY, 2020 Schrödinger Release 2017-3. New York, NY: Canvas, Schrödinger, LLC 2020.
- Bayly CI, Cieplak P, Cornell W, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J Phys Chem 1993; 97(40): 10269-80. doi: 10.1021/j100142a004
- Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem 2004; 25(9): 1157-74. doi: 10.1002/jcc.20035 PMID: 15116359
- Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 2015; 11(8): 3696-713. doi: 10.1021/acs.jctc.5b00255 PMID: 26574453
- Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 2013; 3(2): 198-210. doi: 10.1002/wcms.1121
- Dalal V, Kumar P, Rakhaminov G, et al. Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of Staphylococcus aureus. J Mol Biol 2019; 431(17): 3107-23. doi: 10.1016/j.jmb.2019.06.019 PMID: 31260692
- Dalal V, Golemi-Kotra D, Kumar P. Quantum mechanics/molecular mechanics studies on the catalytic mechanism of a novel esterase (FmtA) of Staphylococcus aureus. J Chem Inf Model 2022; 62(10): 2409-20. doi: 10.1021/acs.jcim.2c00057 PMID: 35475370
- Wang J, Hou T. Correction to application of molecular dynamics simulations in molecular property prediction. 1. Density and heat of vaporization. J Chem Theory Comput 2011; 7(7): 2333-33. doi: 10.1021/ct2004287 PMID: 26606501
- Pan D, Sun H, Shen Y, Liu H, Yao X. Exploring the molecular basis of dsRNA recognition by NS1 protein of influenza A virus using molecular dynamics simulation and free energy calculation. Antiviral Res 2011; 92(3): 424-33. doi: 10.1016/j.antiviral.2011.09.009 PMID: 22001595
- Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: An efficient program for end-state free energy calculations. J Chem Theory Comput 2012; 8(9): 3314-21. doi: 10.1021/ct300418h PMID: 26605738
- Hou T, Yu R. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: Mechanism for binding and drug resistance. J Med Chem 2007; 50(6): 1177-88. doi: 10.1021/jm0609162 PMID: 17300185
- Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 2011; 51(1): 69-82. doi: 10.1021/ci100275a PMID: 21117705
- Fu L, Shi S, Yi J, et al. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res 2024; gkae236. doi: 10.1093/nar/gkae236 PMID: 38572755
- Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 2021; 49(W1): W5-W14. doi: 10.1093/nar/gkab255 PMID: 33893803
- Hou T, Wang J, Zhang W, Xu X. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model 2007; 47(1): 208-18. doi: 10.1021/ci600343x PMID: 17238266
Supplementary files
