Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics


如何引用文章

全文:

详细

:Over the period of the preceding decade, artificial intelligence (AI) has proved an outstanding performance in entire dimensions of science including pharmaceutical sciences. AI uses the concept of machine learning (ML), deep learning (DL), and neural networks (NNs) approaches for novel algorithm and hypothesis development by training the machines in multiple ways. AI-based drug development from molecule identification to clinical approval tremendously reduces the cost of development and the time over conventional methods. The COVID-19 vaccine development and approval by regulatory agencies within 1-2 years is the finest example of drug development. Hence, AI is fast becoming a boon for scientific researchers to streamline their advanced discoveries. AI-based FDA-approved nanomedicines perform well as target selective, synergistic therapies, recolonize the theragnostic pharmaceutical stream, and significantly improve drug research outcomes. This comprehensive review delves into the fundamental aspects of AI along with its applications in the realm of pharmaceutical life sciences. It explores AI's role in crucial areas such as drug designing, drug discovery and development, traditional Chinese medicine, integration of multi-omics data, as well as investigations into drug repurposing and polypharmacology studies.

作者简介

Priyanka Arora

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)

Email: info@benthamscience.net

Manaswini Behera

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)

Email: info@benthamscience.net

Shubhini Saraf

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)

Email: info@benthamscience.net

Rahul Shukla

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci 2015; 104(11): 3612-38. doi: 10.1002/jps.24594 PMID: 26280993
  2. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93. doi: 10.1016/j.drudis.2020.10.010 PMID: 33099022
  3. Parvatikar PP, Patil S, Khaparkhuntikar K, et al. Artificial intelligence: Machine learning approach for screening large database and drug discovery. Antiviral Res 2023; 220: 105740. doi: 10.1016/j.antiviral.2023.105740 PMID: 37935248
  4. Fortune business insights. Available from: https://www.fortunebusinessinsights.com/
  5. Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning: An artificial intelligence concept. J Vasc Interv Radiol 2018; 29(6): 850-857.e1. doi: 10.1016/j.jvir.2018.01.769 PMID: 29548875
  6. Rizzo A, Ricci AD, Brandi G. Systemic adjuvant treatment in hepatocellular carcinoma: Tempted to do something rather than nothing. Future Oncol 2020; 16(32): 2587-9. doi: 10.2217/fon-2020-0669 PMID: 32772560
  7. Rizzo A, Brandi G. Neoadjuvant therapy for cholangiocarcinoma: A comprehensive literature review. Cancer Treat Res Commun 2021; 27: 100354. doi: 10.1016/j.ctarc.2021.100354 PMID: 33756174
  8. Yang CM, Shu J. Cholangiocarcinoma evaluation via imaging and artificial intelligence. Oncology 2021; 99(2): 72-83. doi: 10.1159/000507449 PMID: 33147583
  9. Geevarghese R, Bodard S, Razakamanantsoa L, et al. Interventional oncology: 2024 update. Can Assoc Radiol J 2024; 08465371241236152. doi: 10.1177/08465371241236152 PMID: 38444144
  10. Prelaj A, Miskovic V, Zanitti M, et al. Artificial intelligence for predictive biomarker discovery in immuno-oncology: A systematic review. Ann Oncol 2024; 35(1): 29-65. doi: 10.1016/j.annonc.2023.10.125 PMID: 37879443
  11. Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov Today 2017; 22(11): 1680-5. doi: 10.1016/j.drudis.2017.08.010 PMID: 28881183
  12. Mak KK, Pichika MR. Artificial intelligence in drug development: Present status and future prospects. Drug Discov Today 2019; 24(3): 773-80. doi: 10.1016/j.drudis.2018.11.014 PMID: 30472429
  13. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today 2018; 23(6): 1241-50. doi: 10.1016/j.drudis.2018.01.039 PMID: 29366762
  14. Zhavoronkov A, Vanhaelen Q, Oprea TI. Will artificial intelligence for drug discovery impact clinical pharmacology? Clin Pharmacol Ther 2020; 107(4): 780-5. doi: 10.1002/cpt.1795 PMID: 31957003
  15. Raschka S, Kaufman B. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods 2020; 180: 89-110. doi: 10.1016/j.ymeth.2020.06.016 PMID: 32645448
  16. Grys BT, Lo DS, Sahin N, et al. Machine learning and computer vision approaches for phenotypic profiling. J Cell Biol 2017; 216(1): 65-71. doi: 10.1083/jcb.201610026 PMID: 27940887
  17. Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: General overview. Korean J Radiol 2017; 18(4): 570-84. doi: 10.3348/kjr.2017.18.4.570 PMID: 28670152
  18. Kiriiri GK, Njogu PM, Mwangi AN. Exploring different approaches to improve the success of drug discovery and development projects: A review. Fut J Pharmac Sci 2020; 6(1): 27. doi: 10.1186/s43094-020-00047-9
  19. Sinha S, Vohora D. Drug Discovery and Development. Pharmaceutical Medicine and Translational Clinical Research. Elsevier 2018; pp. 19-32. doi: 10.1016/B978-0-12-802103-3.00002-X
  20. Deng J, Yang Z, Ojima I, Samaras D, Wang F. Artificial intelligence in drug discovery: Applications and techniques. arXiv: 210600538 2021. Available from: http://arxiv.org/abs/2106.05386
  21. Yuan Y, Pei J, Lai L. LigBuilder 2: A practical de novo drug design approach. J Chem Inf Model 2011; 51(5): 1083-91. doi: 10.1021/ci100350u PMID: 21513346
  22. Kalyane D, Sanap G, Paul D, et al. Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. The Future of Pharmaceutical Product Development and Research. Elsevier 2020; pp. 73-107. doi: 10.1016/B978-0-12-814455-8.00003-7
  23. Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 2013; 53(7): 1563-75. doi: 10.1021/ci400187y PMID: 23795551
  24. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 2019; 119(18): 10520-94. doi: 10.1021/acs.chemrev.8b00728 PMID: 31294972
  25. Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Curr Drug Discov Technol 2017; 14(4): 244-54. doi: 10.2174/1570163814666170404160911 PMID: 28382857
  26. Chai S, Liu Q, Liang X, et al. A grand product design model for crystallization solvent design. Comput Chem Eng 2020; 135: 106764. doi: 10.1016/j.compchemeng.2020.106764
  27. Dara S, Dhamercherla S, Jadav SS, Babu CHM, Ahsan MJ. Machine learning in drug discovery: A review. Artif Intell Rev 2022; 55(3): 1947-99. doi: 10.1007/s10462-021-10058-4 PMID: 34393317
  28. Talevi A, Morales JF, Hather G, et al. Machine learning in drug discovery and development part 1: A primer. CPT Pharmacometrics Syst Pharmacol 2020; 9(3): 129-42. doi: 10.1002/psp4.12491 PMID: 31905263
  29. van Gerven M, Bohte S. Editorial: Artificial neural networks as models of neural information processing. Front Comput Neurosci 2017; 11: 114. doi: 10.3389/fncom.2017.00114 PMID: 29311884
  30. Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm 2016; 13(5): 1445-54. doi: 10.1021/acs.molpharmaceut.5b00982 PMID: 27007977
  31. El-Attar NE, Hassan MK, Alghamdi OA, Awad WA. Deep learning model for classification and bioactivity prediction of essential oil-producing plants from Egypt. Sci Rep 2020; 10(1): 21349. doi: 10.1038/s41598-020-78449-1 PMID: 33288845
  32. Maltarollo VG, Kronenberger T, Espinoza GZ, Oliveira PR, Honorio KM. Advances with support vector machines for novel drug discovery. Expert Opin Drug Discov 2019; 14(1): 23-33. doi: 10.1080/17460441.2019.1549033 PMID: 30488731
  33. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 2015; 55(2): 263-74. doi: 10.1021/ci500747n PMID: 25635324
  34. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018; 559(7715): 547-55. doi: 10.1038/s41586-018-0337-2 PMID: 30046072
  35. Putin E, Asadulaev A, Ivanenkov Y, et al. Reinforced adversarial neural computer for de novo molecular design. J Chem Inf Model 2018; 58(6): 1194-204. doi: 10.1021/acs.jcim.7b00690 PMID: 29762023
  36. Zhao L, Ciallella HL, Aleksunes LM, Zhu H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov Today 2020; 25(9): 1624-38. doi: 10.1016/j.drudis.2020.07.005 PMID: 32663517
  37. Shen M, Xiao Y, Golbraikh A, Gombar VK, Tropsha A. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J Med Chem 2003; 46(14): 3013-20. doi: 10.1021/jm020491t PMID: 12825940
  38. Lavecchia A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov Today 2015; 20(3): 318-31. doi: 10.1016/j.drudis.2014.10.012 PMID: 25448759
  39. Howe TJ, Mahieu G, Marichal P, Tabruyn T, Vugts P. Data reduction and representation in drug discovery. Drug Discov Today 2007; 12(1-2): 45-53. doi: 10.1016/j.drudis.2006.10.014 PMID: 17198972
  40. Madugula SS, John L, Nagamani S, Gaur AS, Poroikov VV, Sastry GN. Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing. Comput Biol Med 2021; 138: 104856. doi: 10.1016/j.compbiomed.2021.104856 PMID: 34555571
  41. Maniyar DM, Nabney IT, Williams BS, Sewing A. Data visualization during the early stages of drug discovery. J Chem Inf Model 2006; 46(4): 1806-18. doi: 10.1021/ci050471a PMID: 16859312
  42. Blanco-González A, Cabezón A, Seco-González A, et al. The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals 2023; 16(6): 891. doi: 10.3390/ph16060891
  43. Klein K, Koch O, Kriege N, Mutzel P, Schäfer T. Visual analysis of biological activity data with scaffold hunter. Mol Inform 2013; 32(11-12): 964-75. doi: 10.1002/minf.201300087 PMID: 27481142
  44. Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: Collection of open natural products database. J Cheminform 2021; 13(1): 2. doi: 10.1186/s13321-020-00478-9 PMID: 33423696
  45. Li X, Tang Q, Meng F, Du P, Chen W. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine. Comput Struct Biotechnol J 2022; 20: 1345-51. doi: 10.1016/j.csbj.2022.03.006 PMID: 35356545
  46. Mendez D, Gaulton A, Bento AP, et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res 2019; 47(D1): D930-40. doi: 10.1093/nar/gky1075 PMID: 30398643
  47. Bento AP, Hersey A, Félix E, et al. An open source chemical structure curation pipeline using RDKit. J Cheminform 2020; 12(1): 51. doi: 10.1186/s13321-020-00456-1 PMID: 33431044
  48. Cao Y, Charisi A, Cheng LC, Jiang T, Girke T. ChemmineR: A compound mining framework for R. Bioinformatics 2008; 24(15): 1733-4. doi: 10.1093/bioinformatics/btn307 PMID: 18596077
  49. Grisoni F, Ballabio D, Todeschini R, Consonni V. Molecular descriptors for structure-activity applications: A hands-on approach. Methods Mol Biol 2018; 1800: 3-53.
  50. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988; 28(1): 31-6. doi: 10.1021/ci00057a005
  51. Capecchi A, Probst D, Reymond JL. One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome. J Cheminform 2020; 12(1): 43. doi: 10.1186/s13321-020-00445-4 PMID: 33431010
  52. Matter H, Pötter T. Comparing 3D pharmacophore triplets and 2D fingerprints for selecting diverse compound subsets. J Chem Inf Comput Sci 1999; 39(6): 1211-25. doi: 10.1021/ci980185h
  53. Yin S, Proctor EA, Lugovskoy AA, Dokholyan NV. Fast screening of protein surfaces using geometric invariant fingerprints. Proc Natl Acad Sci 2009; 106(39): 16622-6. doi: 10.1073/pnas.0906146106 PMID: 19805347
  54. Chan HCS, Wang J, Palczewski K, et al. Exploring a new ligand binding site of G protein-coupled receptors. Chem Sci 2018; 9(31): 6480-9. doi: 10.1039/C8SC01680A PMID: 30310578
  55. Yang Z, Lasker K, Schneidman-Duhovny D, et al. UCSF Chimera, MODELLER, and IMP: An integrated modeling system. J Struct Biol 2012; 179(3): 269-78. doi: 10.1016/j.jsb.2011.09.006 PMID: 21963794
  56. Cavasotto CN, Phatak SS. Homology modeling in drug discovery: Current trends and applications. Drug Discov Today 2009; 14(13-14): 676-83. doi: 10.1016/j.drudis.2009.04.006 PMID: 19422931
  57. Hayik SA, Dunbrack R Jr, Merz KM Jr. Mixed quantum mechanics/molecular mechanics scoring function to predict protein−ligand binding affinity. J Chem Theory Comput 2010; 6(10): 3079-91. doi: 10.1021/ct100315g PMID: 21221417
  58. Wang M, Mei Y, Ryde U. Predicting relative binding affinity using nonequilibrium QM/MM simulations. J Chem Theory Comput 2018; 14(12): 6613-22. doi: 10.1021/acs.jctc.8b00685 PMID: 30362750
  59. Smith JS, Isayev O, Roitberg AE. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci 2017; 8(4): 3192-203. doi: 10.1039/C6SC05720A PMID: 28507695
  60. Ryde U. QM/MM calculations on proteins. Methods Enzymol 2016; 577: 119-58.
  61. Zhang YJ, Khorshidi A, Kastlunger G, Peterson AA. The potential for machine learning in hybrid QM/MM calculations. J Chem Phys 2018; 148(24): 241740. doi: 10.1063/1.5029879 PMID: 29960374
  62. Faber FA, Lindmaa A, von Lilienfeld OA, Armiento R. Machine learning energies of 2 million elpasolite (ABC2D6) Crystals. Phys Rev Lett 2016; 117(13): 135502. doi: 10.1103/PhysRevLett.117.135502 PMID: 27715098
  63. Mouchlis VD, Afantitis A, Serra A, et al. Advances in de novo drug design: From conventional to machine learning methods. Int J Mol Sci 2021; 22(4): 1676. doi: 10.3390/ijms22041676 PMID: 33562347
  64. Keserű GM, Makara GM. Hit discovery and hit-to-lead approaches. Drug Discov Today 2006; 11(15-16): 741-8. doi: 10.1016/j.drudis.2006.06.016 PMID: 16846802
  65. Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv 2018; 4(7): eaap7885. doi: 10.1126/sciadv.aap7885 PMID: 30050984
  66. Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 2018; 4(2): 268-76. doi: 10.1021/acscentsci.7b00572 PMID: 29532027
  67. Li Y, Zhang J, Zhao R, et al. Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy. Opt Mater 2018; 79: 33-7. doi: 10.1016/j.optmat.2018.03.022
  68. Mercado R, Rastemo T, Lindelöf E, et al. Graph networks for molecular design. Mach Learn Sci Technol 2021; 2(2): 025023. doi: 10.1088/2632-2153/abcf91
  69. Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: Important considerations when developing novel drug delivery platforms. Expert Opin Drug Deliv 2019; 16(11): 1259-75. doi: 10.1080/17425247.2019.1676228 PMID: 31580731
  70. Luo M, Feng Y, Wang T, Guan J. Micro/nanorobots at work in active drug delivery. Adv Funct Mater 2018; 28(25): 1706100. doi: 10.1002/adfm.201706100
  71. Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev 2019; 151-152: 169-90. doi: 10.1016/j.addr.2019.05.001 PMID: 31071378
  72. Fletcher M, Biglarbegian M, Neethirajan S. Intelligent system design for bionanorobots in drug delivery. Cancer Nanotechnol 2013; 4(4-5): 117-25. doi: 10.1007/s12645-013-0044-5 PMID: 26069507
  73. Fu J, Yan H. Controlled drug release by a nanorobot. Nat Biotechnol 2012; 30(5): 407-8. doi: 10.1038/nbt.2206 PMID: 22565965
  74. Singh I, Kaur J, Kaur S, Barik BR, Pahwa R. Artificial neural networks and neuro-fuzzy models: Applications in pharmaceutical product development. Braz Arch Biol Technol 2023; 66: e23210769. doi: 10.1590/1678-4324-2023210769
  75. Patel S, Shah S. Artificial intelligence: Comprehensive overview and its pharma application. Asian J Pharma Technol 2022; 337-48.
  76. Wilson B, Km G. Artificial intelligence and related technologies enabled nanomedicine for advanced cancer treatment. Nanomedicine 2020; 15(5): 433-5. doi: 10.2217/nnm-2019-0366 PMID: 31997697
  77. Sacha GM, Varona P. Artificial intelligence in nanotechnology. Nanotechnology 2013; 24(45): 452002. doi: 10.1088/0957-4484/24/45/452002 PMID: 24121558
  78. Li Y, Abbaspour MR, Grootendorst PV, Rauth AM, Wu XY. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology. Eur J Pharm Biopharm 2015; 94: 170-9. doi: 10.1016/j.ejpb.2015.04.028 PMID: 25986587
  79. Muñiz Castro B, Elbadawi M, Ong JJ, et al. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 2021; 337: 530-45. doi: 10.1016/j.jconrel.2021.07.046 PMID: 34339755
  80. Chen W, Liu X, Zhang S, Chen S. Artificial intelligence for drug discovery: Resources, methods, and applications. Mol Ther Nucleic Acids 2023; 31: 691-702. doi: 10.1016/j.omtn.2023.02.019 PMID: 36923950
  81. Mehta CH, Narayan R, Nayak UY. Computational modeling for formulation design. Drug Discov Today 2019; 24(3): 781-8. doi: 10.1016/j.drudis.2018.11.018 PMID: 30502513
  82. Tsigelny IF. Artificial intelligence in drug combination therapy. Brief Bioinform 2019; 20(4): 1434-48. doi: 10.1093/bib/bby004 PMID: 29438494
  83. Calzolari D, Bruschi S, Coquin L, et al. Search algorithms as a framework for the optimization of drug combinations. PLOS Comput Biol 2008; 4(12): e1000249. doi: 10.1371/journal.pcbi.1000249 PMID: 19112483
  84. Moumné L, Marie AC, Crouvezier N. Oligonucleotide therapeutics: From discovery and development to patentability. Pharmaceutics 2022; 14(2): 260. doi: 10.3390/pharmaceutics14020260 PMID: 35213992
  85. Dar SA, Gupta AK, Thakur A, Kumar M. SMEpred workbench: A web server for predicting efficacy of chemicallymodified siRNAs. RNA Biol 2016; 13(11): 1144-51. doi: 10.1080/15476286.2016.1229733 PMID: 27603513
  86. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol Divers 2021; 25(3): 1315-60. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
  87. Álvarez-Machancoses Ó, Fernández-Martínez JL. Using artificial intelligence methods to speed up drug discovery. Expert Opin Drug Discov 2019; 14(8): 769-77. doi: 10.1080/17460441.2019.1621284 PMID: 31140873
  88. Huang Z, Juarez JM, Li X. Data mining for biomedicine and healthcare. J Healthc Eng 2017; 2017: 1-2. doi: 10.1155/2017/7107629 PMID: 29065638
  89. Zhang Y, Zhang G, Shang Q. Computer-aided clinical trial recruitment based on domain-specific language translation: A case study of retinopathy of prematurity. J Healthcare Eng 2017; 2017: 1-9. doi: 10.1155/2017/7862672 PMID: 29065644
  90. Seddon G, Lounnas V, McGuire R, et al. Drug design for ever, from hype to hope. J Comput Aided Mol Des 2012; 26(1): 137-50. doi: 10.1007/s10822-011-9519-9 PMID: 22252446
  91. Wang Q, Feng Y, Huang J, Wang T, Cheng G. A novel framework for the identification of drug target proteins: Combining stacked auto-encoders with a biased support vector machine. PLoS One 2017; 12(4): e0176486. doi: 10.1371/journal.pone.0176486 PMID: 28453576
  92. Ferrero E, Dunham I, Sanseau P. In silico prediction of novel therapeutic targets using gene–disease association data. J Transl Med 2017; 15(1): 182. doi: 10.1186/s12967-017-1285-6 PMID: 28851378
  93. Bakkar N, Kovalik T, Lorenzini I, et al. Artificial intelligence in neurodegenerative disease research: Use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 2018; 135(2): 227-47. doi: 10.1007/s00401-017-1785-8 PMID: 29134320
  94. Ho CWL, Soon D, Caals K, Kapur J. Governance of automated image analysis and artificial intelligence analytics in healthcare. Clin Radiol 2019; 74(5): 329-37. doi: 10.1016/j.crad.2019.02.005 PMID: 30898383
  95. Zhou LQ, Wang JY, Yu SY, et al. Artificial intelligence in medical imaging of the liver. World J Gastroenterol 2019; 25(6): 672-82. doi: 10.3748/wjg.v25.i6.672 PMID: 30783371
  96. Nitta N, Sugimura T, Isozaki A, et al. Intelligent image activated cell sorting. Cell 2018; 175(1): 266-276.e13. doi: 10.1016/j.cell.2018.08.028 PMID: 30166209
  97. Tripathy RK, Mahanta S, Paul S. Artificial intelligence based classification of breast cancer using cellular images. RSC Advances 2014; 4(18): 9349. doi: 10.1039/c3ra47489e
  98. Samui P, Kothari DP. Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Sci Iran 2011; 18(1): 53-8. doi: 10.1016/j.scient.2011.03.007
  99. Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 2019; 40(8): 592-604. doi: 10.1016/j.tips.2019.06.004 PMID: 31320117
  100. Reymond JL, van Deursen R, Blum LC, Ruddigkeit L. Chemical space as a source for new drugs. MedChemComm 2010; 1(1): 30. doi: 10.1039/c0md00020e
  101. Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018; 555(7698): 604-10. doi: 10.1038/nature25978 PMID: 29595767
  102. Panapitiya G, Girard M, Hollas A, et al. Evaluation of deep learning architectures for aqueous solubility prediction. ACS Omega 2022; 7(18): 15695-710. doi: 10.1021/acsomega.2c00642 PMID: 35571767
  103. Ye Z, Ouyang D. Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms. J Cheminform 2021; 13(1): 98. doi: 10.1186/s13321-021-00575-3 PMID: 34895323
  104. Lovrić M, Pavlović K, Žuvela P, et al. Machine learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity, or predictive ability? J Chemometr 2021; 35(7-8): e3349. doi: 10.1002/cem.3349
  105. He Y, Liew CY, Sharma N, Woo SK, Chau YT, Yap CW. PaDEL-DDPredictor: Open-source software for PD-PK-T prediction. J Comput Chem 2013; 34(7): 604-10. doi: 10.1002/jcc.23173 PMID: 23114987
  106. Agüero-Chapin G, Galpert-Cañizares D, Domínguez-Pérez D, et al. Emerging computational approaches for antimicrobial peptide discovery. Antibiotics 2022; 11(7): 936. doi: 10.3390/antibiotics11070936 PMID: 35884190
  107. Dossetter AG. A statistical analysis of in vitro human microsomal metabolic stability of small phenyl group substituents, leading to improved design sets for parallel SAR exploration of a chemical series. Bioorg Med Chem 2010; 18(12): 4405-14. doi: 10.1016/j.bmc.2010.04.077 PMID: 20510621
  108. Karimi M, Wu D, Wang Z, Shen Y. DeepAffinity: Interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 2019; 35(18): 3329-38. doi: 10.1093/bioinformatics/btz111 PMID: 30768156
  109. Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell 2020; 181(2): 475-83. doi: 10.1016/j.cell.2020.04.001 PMID: 32302574
  110. Lysenko A, Sharma A, Boroevich KA, Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci Alliance 2018; 1(6): e201800098. doi: 10.26508/lsa.201800098 PMID: 30515477
  111. Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: Toxicity prediction using deep learning. Front Environ Sci 2016; 3: 5.
  112. Tian G, Harrison PJ, Sreenivasan AP, Carreras-Puigvert J, Spjuth O. Combining molecular and cell painting image data for mechanism of action prediction. Artif Intellig Life Sci 2023; 3: 100060. doi: 10.1016/j.ailsci.2023.100060
  113. Rodrigues T, Werner M, Roth J, et al. Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor. Chem Sci 2018; 9(34): 6899-903. doi: 10.1039/C8SC02634C PMID: 30310622
  114. Perez-Gracia JL, Sanmamed MF, Bosch A, et al. Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat Rev 2017; 53: 79-97. doi: 10.1016/j.ctrv.2016.12.005 PMID: 28088073
  115. Deliberato RO, Celi LA, Stone DJ. Clinical note creation, binning, and artificial intelligence. JMIR Med Inform 2017; 5(3): e24. doi: 10.2196/medinform.7627 PMID: 28778845
  116. Reddy AS, Zhang S. Polypharmacology: Drug discovery for the future. Expert Rev Clin Pharmacol 2013; 6(1): 41-7. doi: 10.1586/ecp.12.74 PMID: 23272792
  117. How is Artificial Intelligence Used in Drug Discovery & Development? Available from: https://www.delveinsight.com/blog/artificial-intelligence-in-drug-discovery
  118. Ryu JY, Kim HU, Lee SY. Deep learning improves prediction of drug–drug and drug–food interactions. Proc Natl Acad Sci 2018; 115(18): E4304-11. doi: 10.1073/pnas.1803294115 PMID: 29666228
  119. Bajpai S, Shreyash N, Sonker M, Gupta V, Tiwary SK, Biswas S. Concept of artificial intelligence in discovering and re-purposing of drugs. 2021. doi: 10.20944/preprints202105.0726.v1 PMID: 2021050726
  120. Lenz HJ, Richardson P, Stebbing J. The emergence of baricitinib: A story of tortoises versus hares. Clin Infect Dis 2021; 72(7): 1251-2. doi: 10.1093/cid/ciaa940 PMID: 32901809
  121. Stebbing J, Krishnan V, de Bono S, et al. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol Med 2020; 12(8): e12697. doi: 10.15252/emmm.202012697 PMID: 32473600
  122. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1. doi: 10.1016/S0140-6736(20)30304-4 PMID: 32032529
  123. Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020; 583(7816): 459-68. doi: 10.1038/s41586-020-2286-9 PMID: 32353859
  124. Bocci G, Bradfute SB, Ye C, et al. Virtual and in vitro antiviral screening revive therapeutic drugs for COVID-19. ACS Pharmacol Transl Sci 2020; 3(6): 1278-92. doi: 10.1021/acsptsci.0c00131 PMID: 33330842
  125. Liu X, Li Z, Liu S, et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm Sin B 2020; 10(7): 1205-15. doi: 10.1016/j.apsb.2020.04.008 PMID: 32318327
  126. Feng S, Luan X, Wang Y, et al. Eltrombopag is a potential target for drug intervention in SARS-CoV-2 spike protein. Infect Genet Evol 2020; 85: 104419. doi: 10.1016/j.meegid.2020.104419 PMID: 32540428
  127. Rodriguez S, Hug C, Todorov P, et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat Commun 2021; 12(1): 1033. doi: 10.1038/s41467-021-21330-0 PMID: 33589615
  128. Leroy K, Yilmaz Z, Brion JP. Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 2007; 33(1): 43-55. doi: 10.1111/j.1365-2990.2006.00795.x PMID: 17239007
  129. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 1997; 56(1): 70-8. doi: 10.1097/00005072-199701000-00007 PMID: 8990130
  130. Ly PTT, Wu Y, Zou H, et al. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 2013; 123(1): 224-35. doi: 10.1172/JCI64516 PMID: 23202730
  131. Vignaux PA, Minerali E, Foil DH, Puhl AC, Ekins S. Machine learning for discovery of GSK3β inhibitors. ACS Omega 2020; 5(41): 26551-61. doi: 10.1021/acsomega.0c03302 PMID: 33110983
  132. Urbina F, Puhl AC, Ekins S. Recent advances in drug repurposing using machine learning. Curr Opin Chem Biol 2021; 65: 74-84. doi: 10.1016/j.cbpa.2021.06.001 PMID: 34274565
  133. Jin Y, Ren X, Yu L, et al. TMR modern herbal medicine artificial intelligence for the development and implementation guidelines for traditional Chinese medicine and integrated traditional Chinese and western medicine. 2021.
  134. Yu T, Li J, Yu Q, et al. Knowledge graph for TCM health preservation: Design, construction, and applications. Artif Intell Med 2017; 77: 48-52. doi: 10.1016/j.artmed.2017.04.001 PMID: 28545611
  135. Flores JE, Claborne DM, Weller ZD, Webb-Robertson B-JM, Waters KM, Bramer LM. Missing data in multi-omics integration: Recent advances through artificial intelligence. Front Artif Intell 2023; 6: 1098308.
  136. Tong L, Shi W, Isgut M, et al. Integrating multi-omics data with EHR for precision medicine using advanced artificial intelligence. IEEE Rev Biomed Eng 2024; 17: 80-97. doi: 10.1109/RBME.2023.3324264 PMID: 37824325
  137. How Artificial Intelligence is Revolutionizing Drug Discovery. Available from: https://blog.petrieflom.law.harvard.edu/ 2023/03/20/how-artificial-intelligence-is-revolutionizing-drug-discovery/
  138. Tripathi N, Goshisht MK, Sahu SK, Arora C. Applications of artificial intelligence to drug design and discovery in the big data era: A comprehensive review. Mol Divers 2021; 25(3): 1643-64. doi: 10.1007/s11030-021-10237-z PMID: 34110579
  139. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017; 60(6): 84-90. doi: 10.1145/3065386
  140. Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019; 18(6): 463-77. doi: 10.1038/s41573-019-0024-5 PMID: 30976107
  141. Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries. Mol Divers 2022; 26(3): 1893-913. doi: 10.1007/s11030-021-10326-z PMID: 34686947
  142. Dwivedi YK, Hughes L, Ismagilova E, et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int J Inf Manage 2021; 57: 101994. doi: 10.1016/j.ijinfomgt.2019.08.002

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024