Advancements in Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Breast Cancer Therapy


Cite item

Full Text

Abstract

:Solid Lipid Nanocarriers (SLNs) offer a promising avenue for breast cancer treatment, a disease that accounts for 12.5% of global cancer cases. Despite strides in combined therapies (surgery, chemotherapy, radiation, and endocrine therapy), challenges like systemic toxicity, drug resistance, and adverse effects persist. The manuscript offers several novel contributions to the field of breast cancer treatment through the use of SLNs, and these are innovative drug delivery systems, multifunctionality, and biocompatibility, the potential to overcome drug resistance, integration with emerging therapies, focus on personalized medicine, ongoing and future research directions and potential for reduced side effects. SLNs present a novel strategy due to their unique physicochemical properties. They can encapsulate both hydrophilic and hydrophobic drugs, ensuring controlled release and targeted delivery, thus enhancing solubility and bioavailability and reducing side effects. The multifunctional nature of SLNs improves drug delivery while their biocompatibility supports their potential in cancer therapy. Challenges for pharmacists include maintaining stability, effective drug loading, and timed delivery. Combining SLNs with emerging therapies like gene and immunotherapy holds promise for more effective breast cancer treatments. SLNs represent a significant advancement, providing precise drug delivery and fewer side effects, with the potential for overcoming drug resistance. Ongoing research will refine SLNs for breast cancer therapy, targeting cells with minimal side effects and integrating with other treatments for comprehensive approaches. Advances in nanotechnology and personalized medicine will tailor SLNs to specific breast cancer subtypes, enhancing effectiveness. Clinical trials and new treatment developments are crucial for realizing SLNs’ full potential in breast cancer care. In conclusion, SLNs offer a transformative approach to breast cancer treatment, addressing issues of drug delivery and side effects. Ongoing research aims to optimize SLNs for targeted therapy, potentially revolutionizing breast cancer care and providing hope for patients.

About the authors

Harneet Marwah

University Institute of Pharma Sciences (UIPS, Chandigarh University

Email: info@benthamscience.net

Hitesh Dewangan

University Institute of Pharma Sciences (UIPS), Chandigarh University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022; 66: 15-23. doi: 10.1016/j.breast.2022.08.010 PMID: 36084384
  2. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024; 74(1): 12-49. doi: 10.3322/caac.21820 PMID: 38230766
  3. Marwah H, Pant J, Yadav J, Shah K, Dewangan HK. Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights. Curr Pharm Des 2023; 29(43): 3442-57. doi: 10.2174/0113816128276948231204111531 PMID: 38270161
  4. Pant J, Mittal P, Singh L, Marwah H. Evolving strategies in NSCLC care: Targeted therapies, biomarkers, predictive models, and patient management. Curr Pharmacog Person Med 2023; 20(3): 146-64. doi: 10.2174/0118756921301200240427053840
  5. Allahqoli L, Mazidimoradi A, Momenimovahed Z, et al. The global incidence, mortality, and burden of breast cancer in 2019: Correlation with smoking, drinking, and drug use. Front Oncol 2022; 12: 921015. doi: 10.3389/fonc.2022.921015 PMID: 35965518
  6. Loud JT, Murphy J. Cancer screening and early detection in the 21st century. Semin Oncol Nurs 2017; 33(2): 121-8. doi: 10.1016/j.soncn.2017.02.002 PMID: 28343835
  7. Moo TA, Sanford R, Dang C, Morrow M. Overview of breast cancer therapy. PET Clin 2018; 13(3): 339-54. doi: 10.1016/j.cpet.2018.02.006 PMID: 30100074
  8. Al-Sayadi GMH, Verma A, Choudhary Y, et al. Solid Lipid Nanoparticles (SLNs): Advancements in modification strategies toward drug delivery vehicle. Pharm Nanotechnol 2023; 11(2): 138-54. doi: 10.2174/2211738511666221026163303 PMID: 36305142
  9. German-Cortés J, Vilar-Hernández M, Rafael D, Abasolo I, Andrade F. Solid lipid nanoparticles: Multitasking nano-carriers for cancer treatment. Pharmaceutics 2023; 15(3): 831. doi: 10.3390/pharmaceutics15030831 PMID: 36986692
  10. Yadav RK, Shah K, Dewangan HK. Intranasal drug delivery of sumatriptan succinate-loaded polymeric solid lipid nanoparticles for brain targeting. Drug Dev Ind Pharm 2022; 48(1): 21-8. doi: 10.1080/03639045.2022.2090575 PMID: 35703403
  11. Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22(1): 169. doi: 10.1186/s12943-023-01865-0 PMID: 37814270
  12. Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid lipid nanoparticles: Applications and prospects in cancer treatment. Int J Mol Sci 2023; 24(7): 6199. doi: 10.3390/ijms24076199 PMID: 37047172
  13. Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 2019; 9(3): 474. doi: 10.3390/nano9030474 PMID: 30909401
  14. Dewangan HK, Singh N, Megh SK, Singh S, Maurya L. Optimization and evaluation of Gymnema sylvestre (GYM) extract loaded polymeric nanoparticles for enhancement of in-vivo efficacy and reduction of toxicity. J Microencapsul 2022; 1: 1-22.
  15. Vanshita , Garg A, Dewangan HK. Recent advances in drug design and delivery across biological barriers using computational models. Lett Drug Des Discov 2022; 19(10): 865-76. doi: 10.2174/1570180819999220204110306
  16. Makki J. Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clin Med Insights Pathol 2015; 8: CPath.S31563. doi: 10.4137/CPath.S31563 PMID: 26740749
  17. Sharma AN, Dewangan HK, Upadhyay PK. Comprehensive review on herbal medicine: Emphasis on current therapy and role of phytoconstituents for cancer treatment. Chem Biodivers 2024; 21(3): e202301468. doi: 10.1002/cbdv.202301468 PMID: 38206170
  18. Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5(2): 77-106. doi: 10.1016/j.gendis.2018.05.001 PMID: 30258937
  19. Voutsadakis IA. Comparison of clinical subtypes of breast cancer within the claudin-low molecular cluster reveals distinct phenotypes. Cancers (Basel) 2023; 15(10): 2689. doi: 10.3390/cancers15102689 PMID: 37345027
  20. Bhushan A, Gonsalves A, Menon JU. Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics 2021; 13(5): 723. doi: 10.3390/pharmaceutics13050723 PMID: 34069059
  21. Lopez-Gonzalez L, Sanchez Cendra A, Sanchez Cendra C, et al. Exploring biomarkers in breast cancer: Hallmarks of diagnosis, treatment, and follow-up in clinical practice. Medicina (Kaunas) 2024; 60(1): 168. doi: 10.3390/medicina60010168 PMID: 38256428
  22. Mohanty SS, Sahoo CR, Padhy RN. Role of hormone receptors and HER2 as prospective molecular markers for breast cancer: An update. Genes Dis 2022; 9(3): 648-58. doi: 10.1016/j.gendis.2020.12.005 PMID: 35782984
  23. Gamrani S, Boukansa S, Benbrahim Z, et al. The prognosis and predictive value of estrogen negative/progesterone positive (ER−/PR+) phenotype: Experience of 1159 primary breast cancer from a single institute. Breast J 2022; 2022: 1-9. doi: 10.1155/2022/9238804 PMID: 35711896
  24. Gutierrez C, Schiff R. HER2: Biology, detection, and clinical implications. Arch Pathol Lab Med 2011; 135(1): 55-62. doi: 10.5858/2010-0454-RAR.1 PMID: 21204711
  25. Yadav D, Semwal BC, Dewangan HK. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell. J Biomater Sci Polym Ed 2022; 14: 1-14. PMID: 36469754
  26. Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran 2016; 30: 369. PMID: 27493913
  27. Inwald EC, Klinkhammer-Schalke M, Hofstädter F, et al. Ki-67 is a prognostic parameter in breast cancer patients: Results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat 2013; 139(2): 539-52. doi: 10.1007/s10549-013-2560-8 PMID: 23674192
  28. Zardavas D, Phillips WA, Loi S. PIK3CA mutations in breast cancer: Reconciling preclinical and clinical data findings. Breast Cancer Res 2014; 16(1): 201. doi: 10.1186/bcr3605 PMID: 25192370
  29. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2(1): a001008. doi: 10.1101/cshperspect.a001008 PMID: 20182602
  30. Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med 2020; 12(1): 8. doi: 10.1186/s13073-019-0703-1 PMID: 31937368
  31. Lakshmi SK, Singh S, Shah K, Dewangan HK. Dual Vinorelbine bitartrate and Resveratrol loaded polymeric aqueous core nanocapsules for synergistic efficacy in breast cancer. J Microencapsul 2022; 39(4): 299-313. doi: 10.1080/02652048.2022.2070679 PMID: 35470755
  32. Fajdic J, Djurovic D, Gotovac N, Hrgovic Z. Criteria and procedures for breast conserving surgery. Acta Inform Med 2013; 21(1): 16-9. doi: 10.5455/aim.2013.21.16-19 PMID: 23572855
  33. Zahoor S, Haji A, Battoo A, Qurieshi M, Mir W, Shah M. Sentinel lymph node biopsy in breast cancer: A clinical review and update. J Breast Cancer 2017; 20(3): 217-27. doi: 10.4048/jbc.2017.20.3.217 PMID: 28970846
  34. Koka K, Verma A, Dwarakanath BS, Papineni RVL. Technological advancements in external beam radiation therapy (EBRT): An indispensable tool for cancer treatment. Cancer Manag Res 2022; 14: 1421-9. doi: 10.2147/CMAR.S351744 PMID: 35431581
  35. Masood S. Neoadjuvant chemotherapy in breast cancers. Womens Health (Lond Engl) 2016; 12(5): 480-91. doi: 10.1177/1745505716677139 PMID: 27885165
  36. Johnson N, Bryant A, Miles T, Hogberg T, Cornes P. Adjuvant chemotherapy for endometrial cancer after hysterectomy. Cochrane Libr 2011; 2014(3): CD003175. doi: 10.1002/14651858.CD003175.pub2 PMID: 21975736
  37. An KC. Selective estrogen receptor modulators. Asian Spine J 2016; 10(4): 787-91. doi: 10.4184/asj.2016.10.4.787 PMID: 27559463
  38. Sadeghi M, Shahriari-Ahmadi A, Arabi M, Payandeh M. The recurrence frequency of breast cancer and its prognostic factors in Iranian patients. Int J Appl Basic Med Res 2017; 7(1): 40-3. doi: 10.4103/2229-516X.198521 PMID: 28251106
  39. Zakaria NH, Hashad D, Saied MH, Hegazy N, Elkayal A, Tayae E. Genetic mutations in HER2-positive breast cancer: Possible association with response to trastuzumab therapy. Hum Genomics 2023; 17(1): 43. doi: 10.1186/s40246-023-00493-5 PMID: 37202799
  40. Lakshmi , Singh S, Vijayakumar MR, Dewangan HK. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Curr Drug Deliv 2018; 15(9): 1284-93. doi: 10.2174/1567201815666180716112457 PMID: 30009708
  41. Conti M, Morciano F, Bufi E, et al. Surgical planning after neoadjuvant treatment in breast cancer: A multimodality imaging-based approach focused on MRI. Cancers (Basel) 2023; 15(5): 1439. doi: 10.3390/cancers15051439 PMID: 36900231
  42. Krzyszczyk P, Acevedo A, Davidoff EJ, et al. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap) 2018; 6(03n04): 79-100. doi: 10.1142/S2339547818300020 PMID: 30713991
  43. Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology 2024; 5: 109-22. doi: 10.1016/j.bmt.2023.09.001
  44. Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191. doi: 10.3390/pharmaceutics10040191 PMID: 30340327
  45. Mishra AK, Neha SL, Rani L, Jain A, Dewangan HK, Sahoo PK. Rationally designed nanoparticulate delivery approach for silymarin with natural bio-enhancer: In vitro characterization and in vivo evaluations of hepatoprotective effects in a mouse model. J Drug Deliv Sci Technol 2023; 86: 104580. doi: 10.1016/j.jddst.2023.104580
  46. Sharma AN, Upadhyay PK, Dewangan HK. Development, evaluation, pharmacokinetic and biodistribution estimation of resveratrol-loaded solid lipid nanoparticles for prostate cancer targeting. J Microencapsul 2022; 39(6): 563-74. doi: 10.1080/02652048.2022.2135785 PMID: 36222429
  47. Akanda M, Mithu MDSH, Douroumis D. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. J Drug Deliv Sci Technol 2023; 86: 104709. doi: 10.1016/j.jddst.2023.104709
  48. Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Front Chem 2021; 9: 580118. doi: 10.3389/fchem.2021.580118 PMID: 33981670
  49. Evans LM, Cowey SL, Siegal GP, Hardy RW. Stearate preferentially induces apoptosis in human breast cancer cells. Nutr Cancer 2009; 61(5): 746-53. doi: 10.1080/01635580902825597 PMID: 19838949
  50. Centonze G, Natalini D, Piccolantonio A, et al. Cholesterol and its derivatives: Multifaceted players in breast cancer progression. Front Oncol 2022; 12: 906670. doi: 10.3389/fonc.2022.906670 PMID: 35719918
  51. Tagde P, Najda A, Nagpal K, et al. Nanomedicine-based delivery strategies for breast cancer treatment and management. Int J Mol Sci 2022; 23(5): 2856. doi: 10.3390/ijms23052856 PMID: 35269998
  52. Subramanian P. Lipid-based nanocarrier system for the effective delivery of nutraceuticals. Molecules 2021; 26(18): 5510. doi: 10.3390/molecules26185510 PMID: 34576981
  53. Sahoo PK, Mishra AK, Pandey M, Dewangan HK, Sl N. A comprehensive review on liver targeting: Emphasis on nanotechnology-based molecular targets and receptors mediated approaches. Curr Drug Targets 2022; 23(15): 1381-405. doi: 10.2174/1389450123666220906091432 PMID: 36065923
  54. Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv 2016; 23(9): 3639-52. doi: 10.1080/10717544.2016.1214990 PMID: 27685505
  55. Oliveira MS, Aryasomayajula B, Pattni B, Mussi SV, Ferreira LAM, Torchilin VP. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int J Pharm 2016; 512(1): 292-300. doi: 10.1016/j.ijpharm.2016.08.049 PMID: 27568499
  56. Dewangan HK, Singh S, Maurya L, Srivastava A, Hepatitis B. Antigen loaded biodegradable polymeric nanoparticles: Formulation optimization and in-vivo immunization fin BALB/c mice. Curr Drug Deliv 2018; 15(8): 1204-15. doi: 10.2174/1567201815666180604110457 PMID: 29866006
  57. Eiermann W. Trastuzumab combined with chemotherapy for the treatment of HER2-positive metastatic breast cancer: Pivotal trial data. Ann Oncol 2001; 12 (Suppl. 1): S57-62. doi: 10.1093/annonc/12.suppl_1.S57 PMID: 11521723
  58. Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: Advances and future directions. Nat Rev Drug Discov 2023; 22(2): 101-26. doi: 10.1038/s41573-022-00579-0 PMID: 36344672
  59. Tapia M, Hernando C, Martínez MT, et al. Clinical impact of new treatment strategies for HER2-positive metastatic breast cancer patients with resistance to classical anti-HER therapies. Cancers (Basel) 2023; 15(18): 4522. doi: 10.3390/cancers15184522 PMID: 37760491
  60. Sharma V, Jami V, Setti MLV, et al. Optimization, evaluation and comparative IVPT study of micro and nano liposomal topical formulations of apremilast. Mater Today Proc 2022; 1: 1-11. doi: 10.1016/j.matpr.2022.11.250
  61. Wang Y, Minden A. Current molecular combination therapies used for the treatment of breast cancer. Int J Mol Sci 2022; 23(19): 11046. doi: 10.3390/ijms231911046 PMID: 36232349
  62. Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43. doi: 10.18632/oncotarget.16723 PMID: 28410237
  63. Yu S, Bi X, Yang L, et al. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J Biomed Nanotechnol 2019; 15(6): 1135-48. doi: 10.1166/jbn.2019.2751 PMID: 31072423
  64. Subhan MA, Filipczak N, Torchilin VP. Advances with lipid-based nanosystems for siRNA delivery to breast cancers. Pharmaceuticals (Basel) 2023; 16(7): 970. doi: 10.3390/ph16070970 PMID: 37513882
  65. Mitra AK, Agrahari V, Mandal A, et al. Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219: 248-68. doi: 10.1016/j.jconrel.2015.09.067 PMID: 26456750
  66. Qiao X, Guo D, Tao Z, Hu X. Effect of doxorubicin on efficacy of immune checkpoint inhibitors through increasing infiltration of CD8-positive T cells and activating STAT1-IRF1-CXCL10 axis. J Clin Oncol 2023; 41(16) (Suppl.): e13095-5.
  67. Kang W, Liu Y, Wang W. Light-responsive nanomedicine for cancer immunotherapy. Acta Pharm Sin B 2023; 13(6): 2346-68. doi: 10.1016/j.apsb.2023.05.016 PMID: 37425044
  68. Dewangan HK, Pandey T, Maurya L, Singh S. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers. Int J Biol Macromol 2018; 111: 804-12. doi: 10.1016/j.ijbiomac.2018.01.073 PMID: 29343454
  69. Barenholz YC. Doxil® - The first FDA-approved nano-drug: Lessons learned. J Control Release 2012; 160(2): 117-34. doi: 10.1016/j.jconrel.2012.03.020 PMID: 22484195
  70. Burade V, Bhowmick S, Maiti K, Zalawadia R, Ruan H, Thennati R. Lipodox® (generic doxorubicin hydrochloride liposome injection): In vivo efficacy and bioequivalence versus Caelyx® (doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) xenograft and syngeneic fibrosarcoma (WEHI 164) mouse models. BMC Cancer 2017; 17(1): 405. doi: 10.1186/s12885-017-3377-3 PMID: 28587612
  71. Lee HW, Kang SY, Kim IH, et al. Phase 2 study of weekly polymeric micelle-formulated paclitaxel plus gemcitabine in patients with recurrent and metastatic adenocarcinoma of the pancreas. J Clin Oncol 2023; 41(16_suppl): e16257-7. doi: 10.1200/JCO.2023.41.16_suppl.e16257
  72. Bang KH, Na YG, Huh HW, et al. The delivery strategy of paclitaxel nanostructured lipid carrier coated with platelet membrane. Cancers (Basel) 2019; 11(6): 807. doi: 10.3390/cancers11060807 PMID: 31212681
  73. Kamel AE, Fadel M, Louis D. Curcumin-loaded nanostructured lipid carriers prepared using Peceol™ and olive oil in photodynamic therapy: Development and application in breast cancer cell line. Int J Nanomedicine 2019; 14: 5073-85. doi: 10.2147/IJN.S210484 PMID: 31371948
  74. Tomar S, Yadav RK, Shah K, Dewangan HK. A comprehensive review on carrier mediated nose to brain targeting: Emphasis on molecular targets, current trends, future prospects, and challenges. Int J Polymeric Mat and Polymeric Biomat 2022; 1: 1-23.
  75. Vanshita GA, Shah K, Sharma R, Dewangan HK. Review: Recent advances of nanotechnology in brain targeting. Curr Nanosci 2022; 19: 350-61.
  76. Shiven A, Alam A, Dewangan HK, Shah K, Alam P, Kapoor DN. Optimisation and in-vivo evaluation of extracted Karanjin loaded liposomal topical formulation for treatment of psoriasis in tape-stripped mouse model. J Microencapsul 2024; 1: 1-15. doi: 10.1080/02652048.2024.2354249 PMID: 38780157
  77. Hu L, Xing Q, Meng J, Shang C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech 2010; 11(2): 582-7. doi: 10.1208/s12249-010-9410-3 PMID: 20352534
  78. Dubey RK, Shukla S, Shah K, Dewangan HK. A comprehensive review of self-assembly techniques used to fabricate as DNA origami, block copolymers, and colloidal nanostructures. Curr Nanosci 2024; 20: 20-34. doi: 10.2174/0115734137283662240129073747
  79. Neha SL, Mishra AK, Rani L, Paroha S, Dewangan HK, Sahoo PK. Design and evaluations of a nanostructured lipid carrier loaded with dopamine hydrochloride for intranasal bypass drug delivery in Parkinson’s disease. J Microencapsul 2023; 40(8): 599-612. doi: 10.1080/02652048.2023.2264386 PMID: 37787159
  80. Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7: 587997. doi: 10.3389/fmolb.2020.587997 PMID: 33195435
  81. Rajni SK, Shah K, Dewangan HK. Delivery of nano-emulgel carrier: Optimization, evaluation and in vivo anti-inflammation estimations for osteoarthritis. Ther Deliv 2024; 15(3): 181-92. doi: 10.4155/tde-2023-0109 PMID: 38356357
  82. Tan SLJ, Billa N. Improved bioavailability of poorly soluble drugs through gastrointestinal muco-adhesion of lipid nanoparticles. Pharmaceutics 2021; 13(11): 1817. doi: 10.3390/pharmaceutics13111817 PMID: 34834232
  83. Zoń A, Bednarek I. Cisplatin in ovarian cancer treatment-known limitations in therapy force new solutions. Int J Mol Sci 2023; 24(8): 7585. doi: 10.3390/ijms24087585 PMID: 37108749
  84. Kumar Dubey R, Shah K, Obaidullah AJ, Alanazi MM, Faris Alotaibi H, Kumar Dewangan H. Nanostructured lipid carriers of ivabradine hydrochloride: Optimization, characterization and in-vivo estimation for management of stable angina. Arab J Chem 2023; 16(10): 105177. doi: 10.1016/j.arabjc.2023.105177
  85. Yang F, He Q, Dai X, Zhang X, Song D. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Front Pharmacol 2023; 14: 1143102. doi: 10.3389/fphar.2023.1143102 PMID: 36909177
  86. Sun YL, Patel A, Kumar P, Chen ZS. Role of ABC transporters in cancer chemotherapy. Chin J Cancer 2012; 31(2): 51-7. doi: 10.5732/cjc.011.10466 PMID: 22257384
  87. Guney Eskiler G, Cecener G, Dikmen G, Egeli U, Tunca B. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur J Pharm Sci 2018; 120: 73-88. doi: 10.1016/j.ejps.2018.04.040 PMID: 29719240
  88. Lee J, Choi MK, Song IS. Recent advances in doxorubicin formulation to enhance pharmacokinetics and tumor targeting. Pharmaceuticals (Basel) 2023; 16(6): 802. doi: 10.3390/ph16060802 PMID: 37375753
  89. Kamarehei F. The effects of combination therapy by solid lipid nanoparticle and dental stem cells on different degenerative diseases. Am J Transl Res 2022; 14(5): 3327-43. PMID: 35702091
  90. Deepika D, Dewangan HK, Maurya L, Singh S. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting. J Pharm Sci 2019; 108(2): 851-9. doi: 10.1016/j.xphs.2018.07.013 PMID: 30053555
  91. Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy – Strategies and perspectives. J Control Release 2016; 240: 489-503. doi: 10.1016/j.jconrel.2016.06.012 PMID: 27287891
  92. Ghazal H, Waqar A, Yaseen F, et al. Role of nanoparticles in enhancing chemotherapy efficacy for cancer treatment. Next Materials 2024; 2: 100128. doi: 10.1016/j.nxmate.2024.100128
  93. Prasad P, Shuhendler A, Cai P, Rauth AM, Wu XY. Doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles inhibit growth of sensitive and multidrug resistant human mammary tumor xenografts. Cancer Lett 2013; 334(2): 263-73. doi: 10.1016/j.canlet.2012.08.008 PMID: 22902994
  94. Raghuvanshi A, Shah K, Dewangan HK. Ethosome as antigen delivery carrier: Optimisation, evaluation and induction of immunological response via nasal route against hepatitis B. J Microencapsul 2022; 39(4): 352-63. doi: 10.1080/02652048.2022.2084169 PMID: 35635238
  95. Zhang X, Liu J, Li X, et al. Trastuzumab-coated nanoparticles loaded with docetaxel for breast cancer therapy. Dose Response 2019; 17(3) doi: 10.1177/1559325819872583 PMID: 31523204
  96. Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol 2019; 7(1): 3-23. doi: 10.2174/2211738507666190122111224 PMID: 30666921
  97. Gonnelli S, Petrioli R. Aromatase inhibitors, efficacy and metabolic risk in the treatment of postmenopausal women with early breast cancer. Clin Interv Aging 2008; 3(4): 647-57. doi: 10.2147/CIA.S3466 PMID: 19281057
  98. Rethi L, Mutalik C, Anurogo D, et al. Lipid-based nanomaterials for drug delivery systems in breast cancer therapy. Nanomaterials (Basel) 2022; 12(17): 2948. doi: 10.3390/nano12172948 PMID: 36079985
  99. Mo K, Kim A, Choe S, Shin M, Yoon H. Overview of solid lipid nanoparticles in breast cancer therapy. Pharmaceutics 2023; 15(8): 2065. doi: 10.3390/pharmaceutics15082065 PMID: 37631279
  100. Mishra AK, Rani L, Singh R, Dewangan HK, Sahoo PK, Kumar V. Nanoinformatics and nanotechnology in anti-inflammatory therapy: A review. J Drug Deliv Sci Technol 2024; 93: 105446. doi: 10.1016/j.jddst.2024.105446
  101. Carlsen L, Zhang S, Tian X, et al. The role of p53 in anti-tumor immunity and response to immunotherapy. Front Mol Biosci 2023; 10: 1148389. doi: 10.3389/fmolb.2023.1148389 PMID: 37602328
  102. Sharma V, Dewangan HK, Maurya L, Vats K, Verma H, Singh S. Rational design and in-vivo estimation of Ivabradine hydrochloride loaded nanoparticles for management of stable angina. J Drug Deliv Sci Technol 2019; 54: 101337-46. doi: 10.1016/j.jddst.2019.101337

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers