Molecular Mechanism and Structure-activity Relationship of the Inhibition Effect between Monoamine Oxidase and Selegiline Analogues
- Авторы: Yang C.1, Wang X.2, Gao C.3, Liu Y.4, Ma Z.1, Zang J.1, Wang H.1, Liu L.1, Liu Y.1, Sun H.1, Wang W.1
-
Учреждения:
- School of Environmental and Municipal Engineering, Qingdao University of Technology
- School of Mechanical Engineering and Automation, Northeastern University
- , Qingdao Jiaming Measurement and Control Technology Co., Ltd
- , Environmental Monitoring Station of Yuncheng County Environmental Protection Bureau
- Выпуск: Том 20, № 5 (2024)
- Страницы: 474-485
- Раздел: Chemistry
- URL: https://kld-journal.fedlab.ru/1573-4099/article/view/644102
- DOI: https://doi.org/10.2174/1573409919666230503143055
- ID: 644102
Цитировать
Полный текст
Аннотация
Introduction:To investigate the inhibition properties and structure-activity relationship between monoamine oxidase (MAO) and selected monoamine oxidase inhibitors (MAOIs, including selegiline, rasagiline and clorgiline).
Methods:The inhibition effect and molecular mechanism between MAO and MAOIs were identified via the half maximal inhibitory concentration (IC50) and molecular docking technology.
Results:It was indicated that selegiline and rasagiline were MAO B inhibitors, but clorgiline was MAO-A inhibitor based on the selectivity index (SI) of MAOIs (0.000264, 0.0197 and 14607.143 for selegiline, rasagiline and clorgiline, respectively). The high-frequency amino acid residues of the MAOIs and MAO were Ser24, Arg51, Tyr69 and Tyr407 for MAO-A and Arg42 and Tyr435 for MAO B. The MAOIs and MAO A/B pharmacophores included the aromatic core, hydrogen bond acceptor, hydrogen bond donor-acceptor and hydrophobic core.
Conclusion:This study shows the inhibition effect and molecular mechanism between MAO and MAOIs and provides valuable findings on the design and treatment of Alzheimer's and Parkinson's diseases.
Ключевые слова
Об авторах
Chuanxi Yang
School of Environmental and Municipal Engineering, Qingdao University of Technology
Email: info@benthamscience.net
Xiaoning Wang
School of Mechanical Engineering and Automation, Northeastern University
Email: info@benthamscience.net
Chang Gao
, Qingdao Jiaming Measurement and Control Technology Co., Ltd
Email: info@benthamscience.net
Yunxiang Liu
, Environmental Monitoring Station of Yuncheng County Environmental Protection Bureau
Email: info@benthamscience.net
Ziyi Ma
School of Environmental and Municipal Engineering, Qingdao University of Technology
Email: info@benthamscience.net
Jinqiu Zang
School of Environmental and Municipal Engineering, Qingdao University of Technology
Email: info@benthamscience.net
Haoce Wang
School of Environmental and Municipal Engineering, Qingdao University of Technology
Email: info@benthamscience.net
Lin Liu
School of Environmental and Municipal Engineering, Qingdao University of Technology
Email: info@benthamscience.net
Yonglin Liu
School of Environmental and Municipal Engineering, Qingdao University of Technology
Email: info@benthamscience.net
Haofen Sun
School of Environmental and Municipal Engineering, Qingdao University of Technology
Email: info@benthamscience.net
Weiliang Wang
School of Environmental and Municipal Engineering, Qingdao University of Technology
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Finberg, J.P.M. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther., 2014, 143(2), 133-152. doi: 10.1016/j.pharmthera.2014.02.010 PMID: 24607445
- Ramsay, R.R.; Dunford, C.; Gillman, P.K. Methylene blue and serotonin toxicity: Inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. Br. J. Pharmacol., 2007, 152(6), 946-951. doi: 10.1038/sj.bjp.0707430 PMID: 17721552
- Saura, J.; Luque, J.M.; Cesura, A.M.; Prada, M.D.; Chan-Palay, V.; Huber, G.; Löffler, J.; Richards, J.G. Increased monoamine oxidase b activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience, 1994, 62(1), 15-30. doi: 10.1016/0306-4522(94)90311-5 PMID: 7816197
- Lu, C.; Zhou, Q.; Yan, J.; Du, Z.; Huang, L.; Li, X. A novel series of tacrineselegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimers disease. Eur. J. Med. Chem., 2013, 62, 745-753. doi: 10.1016/j.ejmech.2013.01.039 PMID: 23454517
- Albreht, A.; Vovk, I.; Mavri, J.; Marco-Contelles, J.; Ramsay, R.R. Evidence for a cyanine link between propargylamine drugs and monoamine oxidase clarifies the inactivation mechanism. Front Chem., 2018, 6, 169. doi: 10.3389/fchem.2018.00169 PMID: 29892597
- Ramsay, R.R.; Basile, L.; Maniquet, A.; Hagenow, S.; Pappalardo, M.; Saija, M.C.; Bryant, S.D.; Albreht, A.; Guccione, S. Parameters for irreversible inactivation of monoamine oxidase. Molecules, 2020, 25(24), 5908. doi: 10.3390/molecules25245908 PMID: 33322203
- Ramsay, R.R.; Albreht, A. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural Transm., 2018, 125(11), 1659-1683. doi: 10.1007/s00702-018-1861-9 PMID: 29516165
- Krátký, M.; Vu, Q.A.; těpánková, .; Maruca, A.; Silva, T.B.; Ambro, M.; Pflégr, V.; Rocca, R.; Svrčková, K.; Alcaro, S.; Borges, F.; Vinová, J. Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorg. Chem., 2021, 116, 105301. doi: 10.1016/j.bioorg.2021.105301 PMID: 34492558
- Tandarić, T.; Vianello, R. Computational insight into the mechanism of the irreversible inhibition of monoamine oxidase enzymes by the antiparkinsonian propargylamine inhibitors rasagiline and selegiline. ACS Chem. Neurosci., 2019, 10(8), 3532-3542. doi: 10.1021/acschemneuro.9b00147 PMID: 31264403
- Xie, S.; Chen, J.; Li, X.; Su, T.; Wang, Y.; Wang, Z.; Huang, L.; Li, X. Synthesis and evaluation of selegiline derivatives as monoamine oxidase inhibitor, antioxidant and metal chelator against Alzheimers disease. Bioorg. Med. Chem., 2015, 23(13), 3722-3729. doi: 10.1016/j.bmc.2015.04.009 PMID: 25934229
- Pisani, L.; Muncipinto, G.; Miscioscia, T.F.; Nicolotti, O.; Leonetti, F.; Catto, M.; Caccia, C.; Salvati, P.; Soto-Otero, R.; Mendez-Alvarez, E.; Passeleu, C.; Carotti, A. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: Development and biopharmacological profiling of 7-(3-chlorobenzyl)oxy-4-(methylamino)methyl-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor. J. Med. Chem., 2009, 52(21), 6685-6706. doi: 10.1021/jm9010127 PMID: 19810674
- Pisani, L.; Farina, R.; Nicolotti, O.; Gadaleta, D.; Soto-Otero, R.; Catto, M.; Di Braccio, M.; Mendez-Alvarez, E.; Carotti, A. In silico design of novel 2H-chromen-2-one derivatives as potent and selective MAO-B inhibitors. Eur. J. Med. Chem., 2015, 89(7), 98-105. doi: 10.1016/j.ejmech.2014.10.029 PMID: 25462230
- Musa, M.A.; Badisa, V.L.D.; Aghimien, M.O.; Eyunni, S.V.K.; Latinwo, L.M. Identification of 7,8‐dihydroxy‐3‐phenylcoumarin as a reversible monoamine oxidase enzyme inhibitor. J. Biochem. Mol. Toxicol., 2021, 35(2), e22651. doi: 10.1002/jbt.22651 PMID: 33085988
- Youdim, M.B.H.; Gross, A.; Finberg, J.P.M. Rasagiline N-propargyl-1R(+)-aminoindan, a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br. J. Pharmacol., 2001, 132(2), 500-506. doi: 10.1038/sj.bjp.0703826 PMID: 11159700
- Park, S.E.; Paudel, P.; Wagle, A.; Seong, S.H.; Kim, H.R.; Fauzi, F.M.; Jung, H.A.; Choi, J.S. Luteolin, a potent human monoamine oxidase A inhibitor and dopamine D4 and vasopressin V1A receptor antagonist. J. Agric. Food Chem., 2020, 68(39), 10719-10729. doi: 10.1021/acs.jafc.0c04502 PMID: 32869630
- Delport, A.; Harvey, B.H.; Petzer, A.; Petzer, J.P. Methylene blue analogues with marginal monoamine oxidase inhibition retain antidepressant-like activity. ACS Chem. Neurosci., 2018, 9(12), 2917-2928. doi: 10.1021/acschemneuro.8b00042 PMID: 29976053
- Delport, A.; Harvey, B.H.; Petzer, A.; Petzer, J.P. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicol. Appl. Pharmacol., 2017, 325, 1-8. doi: 10.1016/j.taap.2017.03.026 PMID: 28377303
- El-Azab, A.S.; Abdel-Aziz, A.A.M.; Abou-Zeid, L.A.; El-Husseiny, W.M.; El Morsy, A.M.; El-Gendy, M.A.; El-Sayed, M.A.A. Synthesis, antitumour activities and molecular docking of thiocarboxylic acid ester-based NSAID scaffolds: COX-2 inhibition and mechanistic studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 989-998. doi: 10.1080/14756366.2018.1474878 PMID: 29806488
- Liu, Z.; Liu, Y.; Zeng, G.; Shao, B.; Chen, M.; Li, Z.; Jiang, Y.; Liu, Y.; Zhang, Y.; Zhong, H. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere, 2018, 203, 139-150. doi: 10.1016/j.chemosphere.2018.03.179 PMID: 29614407
- Ming, Y.; Jiachen, L.; Tao, G.; Zhihui, W. Exploration of the mechanism of tripterygium wilfordii in the treatment of myocardial fibrosis based on network pharmacology and molecular docking. Curr. Computeraided Drug Des., 2023, 19(1), 68-79. PMID: 36306461
- Zong, W.; Wang, X.; Du, Y.; Zhang, S.; Zhang, Y.; Teng, Y. Molecular mechanism for the regulation of microcystin toxicity to protein phosphatase 1 by glutathione conjugation pathway. BioMed Res. Int., 2017, 2017, 1-10. doi: 10.1155/2017/9676504 PMID: 28337461
- Yang, C.; Wang, X.; Ji, Y.; Ma, T.; Zhang, F.; Wang, Y.; Ci, M.; Chen, D.; Jiang, A.; Wang, W. Photocatalytic degradation of methylene blue with ZnO@C nanocomposites: Kinetics, mechanism, and the inhibition effect on monoamine oxidase A and B. NanoImpact, 2019, 15, 100174. doi: 10.1016/j.impact.2019.100174
- De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D.E.; Mattevi, A. Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proc. Natl. Acad. Sci., 2005, 102(36), 12684-12689. doi: 10.1073/pnas.0505975102 PMID: 16129825
- Hubálek, F.; Binda, C.; Khalil, A.; Li, M.; Mattevi, A.; Castagnoli, N.; Edmondson, D.E. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J. Biol. Chem., 2005, 280(16), 15761-15766. doi: 10.1074/jbc.M500949200 PMID: 15710600
- Jin, C.F.; Wang, Z.Z.; Chen, K.Z.; Xu, T.F.; Hao, G.F. Computational fragment-based design facilitates discovery of potent and selective monoamine oxidase-B (MAO-B) inhibitor. J. Med. Chem., 2020, 63(23), 15021-15036. doi: 10.1021/acs.jmedchem.0c01663 PMID: 33210537
- Łażewska, D.; Olejarz-Maciej, A.; Reiner, D.; Kaleta, M.; Latacz, G.; Zygmunt, M.; Doroz-Płonka, A.; Karcz, T.; Frank, A.; Stark, H.; Kieć-Kononowicz, K. Dual target ligands with 4-tertbutylphenoxy scaffold as histamine H3 receptor antagonists and monoamine oxidase B inhibitors. Int. J. Mol. Sci., 2020, 21(10), 3411. doi: 10.3390/ijms21103411 PMID: 32408504
- Tandarić, T.; Prah, A.; Stare, J.; Mavri, J.; Vianello, R. Hydride abstraction as the rate-limiting step of the irreversible inhibition of monoamine oxidase B by rasagiline and selegiline: A computational empirical valence bond study. Int. J. Mol. Sci., 2020, 21(17), 6151. doi: 10.3390/ijms21176151 PMID: 32858935
- Harvey, B.H.; Duvenhage, I.; Viljoen, F.; Scheepers, N.; Malan, S.F.; Wegener, G.; Brink, C.B.; Petzer, J.P. Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochem. Pharmacol., 2010, 80(10), 1580-1591. doi: 10.1016/j.bcp.2010.07.037 PMID: 20699087
- Petzer, A.; Harvey, B.H.; Wegener, G.; Petzer, J.P. Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol. Appl. Pharmacol., 2012, 258(3), 403-409. doi: 10.1016/j.taap.2011.12.005 PMID: 22197611
- Hu, Y.; Cui, Q.; Ma, D.; Jin, W.; Li, Y.; Zhang, J.; Xu, Y. Key targets and molecular mechanisms of active volatile components of rabdosia rubescens in gastric cancer cells. Curr. Computeraided Drug Des., 2022, 18(7), 493-505. doi: 10.2174/1573409918666221003091312 PMID: 36200190
- Paudel, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Rubrofusarin as a dual protein tyrosine phosphate 1b and human monoamine oxidase a inhibitor: An in vitro and in silico study. ACS Omega, 2019, 4(7), 11621-11630. doi: 10.1021/acsomega.9b01433 PMID: 31460269
- Aziz, D.M.; Azeez, H.J. Synthesis of new ß-lactam- N-(thiazol-2-yl)benzene sulfonamide hybrids: Their in vitro antimicrobial and in silico molecular docking studies. J. Mol. Struct., 2020, 1222, 128904. doi: 10.1016/j.molstruc.2020.128904
- Zhang, Y.M.; Xu, H.Y.; Hu, H.N.; Tian, F.Y.; Chen, F.; Liu, H.N.; Zhan, L.; Pi, X.P.; Liu, J.; Gao, Z.B.; Nan, F.J. Discovery of HN37 as a potent and chemically stable antiepileptic drug candidate. J. Med. Chem., 2021, 64(9), 5816-5837. doi: 10.1021/acs.jmedchem.0c02252 PMID: 33929863
- Wang, X.; Yang, C.; Sun, Y.; Sui, X.; Zhu, T.; Wang, Q.; Wang, S.; Yang, J.; Yang, W.; Liu, F.; Zhang, M.; Wang, Y.; Luo, Y. A novel screening strategy of anti-SARS-CoV-2 drugs via blocking interaction between Spike RBD and ACE2. Environ. Int., 2021, 147, 106361. doi: 10.1016/j.envint.2020.106361 PMID: 33401173
- Ding, K.; Kong, X.; Wang, J.; Lu, L.; Zhou, W.; Zhan, T.; Zhang, C.; Zhuang, S. Side chains of parabens modulate antiandrogenic activity: in vitro and molecular docking studies. Environ. Sci. Technol., 2017, 51(11), 6452-6460. doi: 10.1021/acs.est.7b00951 PMID: 28466639
- Ng, C.A.; Hungerbuehler, K. Exploring the use of molecular docking to identify bioaccumulative perfluorinated alkyl acids (PFAAs). Environ. Sci. Technol., 2015, 49(20), 12306-12314. doi: 10.1021/acs.est.5b03000 PMID: 26393377
Дополнительные файлы
