Molecular Mechanism and Structure-activity Relationship of the Inhibition Effect between Monoamine Oxidase and Selegiline Analogues


Цитировать

Полный текст

Аннотация

Introduction:To investigate the inhibition properties and structure-activity relationship between monoamine oxidase (MAO) and selected monoamine oxidase inhibitors (MAOIs, including selegiline, rasagiline and clorgiline).

Methods:The inhibition effect and molecular mechanism between MAO and MAOIs were identified via the half maximal inhibitory concentration (IC50) and molecular docking technology.

Results:It was indicated that selegiline and rasagiline were MAO B inhibitors, but clorgiline was MAO-A inhibitor based on the selectivity index (SI) of MAOIs (0.000264, 0.0197 and 14607.143 for selegiline, rasagiline and clorgiline, respectively). The high-frequency amino acid residues of the MAOIs and MAO were Ser24, Arg51, Tyr69 and Tyr407 for MAO-A and Arg42 and Tyr435 for MAO B. The MAOIs and MAO A/B pharmacophores included the aromatic core, hydrogen bond acceptor, hydrogen bond donor-acceptor and hydrophobic core.

Conclusion:This study shows the inhibition effect and molecular mechanism between MAO and MAOIs and provides valuable findings on the design and treatment of Alzheimer's and Parkinson's diseases.

Об авторах

Chuanxi Yang

School of Environmental and Municipal Engineering, Qingdao University of Technology

Email: info@benthamscience.net

Xiaoning Wang

School of Mechanical Engineering and Automation, Northeastern University

Email: info@benthamscience.net

Chang Gao

, Qingdao Jiaming Measurement and Control Technology Co., Ltd

Email: info@benthamscience.net

Yunxiang Liu

, Environmental Monitoring Station of Yuncheng County Environmental Protection Bureau

Email: info@benthamscience.net

Ziyi Ma

School of Environmental and Municipal Engineering, Qingdao University of Technology

Email: info@benthamscience.net

Jinqiu Zang

School of Environmental and Municipal Engineering, Qingdao University of Technology

Email: info@benthamscience.net

Haoce Wang

School of Environmental and Municipal Engineering, Qingdao University of Technology

Email: info@benthamscience.net

Lin Liu

School of Environmental and Municipal Engineering, Qingdao University of Technology

Email: info@benthamscience.net

Yonglin Liu

School of Environmental and Municipal Engineering, Qingdao University of Technology

Email: info@benthamscience.net

Haofen Sun

School of Environmental and Municipal Engineering, Qingdao University of Technology

Email: info@benthamscience.net

Weiliang Wang

School of Environmental and Municipal Engineering, Qingdao University of Technology

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Finberg, J.P.M. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther., 2014, 143(2), 133-152. doi: 10.1016/j.pharmthera.2014.02.010 PMID: 24607445
  2. Ramsay, R.R.; Dunford, C.; Gillman, P.K. Methylene blue and serotonin toxicity: Inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. Br. J. Pharmacol., 2007, 152(6), 946-951. doi: 10.1038/sj.bjp.0707430 PMID: 17721552
  3. Saura, J.; Luque, J.M.; Cesura, A.M.; Prada, M.D.; Chan-Palay, V.; Huber, G.; Löffler, J.; Richards, J.G. Increased monoamine oxidase b activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience, 1994, 62(1), 15-30. doi: 10.1016/0306-4522(94)90311-5 PMID: 7816197
  4. Lu, C.; Zhou, Q.; Yan, J.; Du, Z.; Huang, L.; Li, X. A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 62, 745-753. doi: 10.1016/j.ejmech.2013.01.039 PMID: 23454517
  5. Albreht, A.; Vovk, I.; Mavri, J.; Marco-Contelles, J.; Ramsay, R.R. Evidence for a cyanine link between propargylamine drugs and monoamine oxidase clarifies the inactivation mechanism. Front Chem., 2018, 6, 169. doi: 10.3389/fchem.2018.00169 PMID: 29892597
  6. Ramsay, R.R.; Basile, L.; Maniquet, A.; Hagenow, S.; Pappalardo, M.; Saija, M.C.; Bryant, S.D.; Albreht, A.; Guccione, S. Parameters for irreversible inactivation of monoamine oxidase. Molecules, 2020, 25(24), 5908. doi: 10.3390/molecules25245908 PMID: 33322203
  7. Ramsay, R.R.; Albreht, A. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural Transm., 2018, 125(11), 1659-1683. doi: 10.1007/s00702-018-1861-9 PMID: 29516165
  8. Krátký, M.; Vu, Q.A.; Štěpánková, Š.; Maruca, A.; Silva, T.B.; Ambrož, M.; Pflégr, V.; Rocca, R.; Svrčková, K.; Alcaro, S.; Borges, F.; Vinšová, J. Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorg. Chem., 2021, 116, 105301. doi: 10.1016/j.bioorg.2021.105301 PMID: 34492558
  9. Tandarić, T.; Vianello, R. Computational insight into the mechanism of the irreversible inhibition of monoamine oxidase enzymes by the antiparkinsonian propargylamine inhibitors rasagiline and selegiline. ACS Chem. Neurosci., 2019, 10(8), 3532-3542. doi: 10.1021/acschemneuro.9b00147 PMID: 31264403
  10. Xie, S.; Chen, J.; Li, X.; Su, T.; Wang, Y.; Wang, Z.; Huang, L.; Li, X. Synthesis and evaluation of selegiline derivatives as monoamine oxidase inhibitor, antioxidant and metal chelator against Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(13), 3722-3729. doi: 10.1016/j.bmc.2015.04.009 PMID: 25934229
  11. Pisani, L.; Muncipinto, G.; Miscioscia, T.F.; Nicolotti, O.; Leonetti, F.; Catto, M.; Caccia, C.; Salvati, P.; Soto-Otero, R.; Mendez-Alvarez, E.; Passeleu, C.; Carotti, A. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: Development and biopharmacological profiling of 7-(3-chlorobenzyl)oxy-4-(methylamino)methyl-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor. J. Med. Chem., 2009, 52(21), 6685-6706. doi: 10.1021/jm9010127 PMID: 19810674
  12. Pisani, L.; Farina, R.; Nicolotti, O.; Gadaleta, D.; Soto-Otero, R.; Catto, M.; Di Braccio, M.; Mendez-Alvarez, E.; Carotti, A. In silico design of novel 2H-chromen-2-one derivatives as potent and selective MAO-B inhibitors. Eur. J. Med. Chem., 2015, 89(7), 98-105. doi: 10.1016/j.ejmech.2014.10.029 PMID: 25462230
  13. Musa, M.A.; Badisa, V.L.D.; Aghimien, M.O.; Eyunni, S.V.K.; Latinwo, L.M. Identification of 7,8‐dihydroxy‐3‐phenylcoumarin as a reversible monoamine oxidase enzyme inhibitor. J. Biochem. Mol. Toxicol., 2021, 35(2), e22651. doi: 10.1002/jbt.22651 PMID: 33085988
  14. Youdim, M.B.H.; Gross, A.; Finberg, J.P.M. Rasagiline N-propargyl-1R(+)-aminoindan, a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br. J. Pharmacol., 2001, 132(2), 500-506. doi: 10.1038/sj.bjp.0703826 PMID: 11159700
  15. Park, S.E.; Paudel, P.; Wagle, A.; Seong, S.H.; Kim, H.R.; Fauzi, F.M.; Jung, H.A.; Choi, J.S. Luteolin, a potent human monoamine oxidase A inhibitor and dopamine D4 and vasopressin V1A receptor antagonist. J. Agric. Food Chem., 2020, 68(39), 10719-10729. doi: 10.1021/acs.jafc.0c04502 PMID: 32869630
  16. Delport, A.; Harvey, B.H.; Petzer, A.; Petzer, J.P. Methylene blue analogues with marginal monoamine oxidase inhibition retain antidepressant-like activity. ACS Chem. Neurosci., 2018, 9(12), 2917-2928. doi: 10.1021/acschemneuro.8b00042 PMID: 29976053
  17. Delport, A.; Harvey, B.H.; Petzer, A.; Petzer, J.P. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicol. Appl. Pharmacol., 2017, 325, 1-8. doi: 10.1016/j.taap.2017.03.026 PMID: 28377303
  18. El-Azab, A.S.; Abdel-Aziz, A.A.M.; Abou-Zeid, L.A.; El-Husseiny, W.M.; El Morsy, A.M.; El-Gendy, M.A.; El-Sayed, M.A.A. Synthesis, antitumour activities and molecular docking of thiocarboxylic acid ester-based NSAID scaffolds: COX-2 inhibition and mechanistic studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 989-998. doi: 10.1080/14756366.2018.1474878 PMID: 29806488
  19. Liu, Z.; Liu, Y.; Zeng, G.; Shao, B.; Chen, M.; Li, Z.; Jiang, Y.; Liu, Y.; Zhang, Y.; Zhong, H. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere, 2018, 203, 139-150. doi: 10.1016/j.chemosphere.2018.03.179 PMID: 29614407
  20. Ming, Y.; Jiachen, L.; Tao, G.; Zhihui, W. Exploration of the mechanism of tripterygium wilfordii in the treatment of myocardial fibrosis based on network pharmacology and molecular docking. Curr. Computeraided Drug Des., 2023, 19(1), 68-79. PMID: 36306461
  21. Zong, W.; Wang, X.; Du, Y.; Zhang, S.; Zhang, Y.; Teng, Y. Molecular mechanism for the regulation of microcystin toxicity to protein phosphatase 1 by glutathione conjugation pathway. BioMed Res. Int., 2017, 2017, 1-10. doi: 10.1155/2017/9676504 PMID: 28337461
  22. Yang, C.; Wang, X.; Ji, Y.; Ma, T.; Zhang, F.; Wang, Y.; Ci, M.; Chen, D.; Jiang, A.; Wang, W. Photocatalytic degradation of methylene blue with ZnO@C nanocomposites: Kinetics, mechanism, and the inhibition effect on monoamine oxidase A and B. NanoImpact, 2019, 15, 100174. doi: 10.1016/j.impact.2019.100174
  23. De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D.E.; Mattevi, A. Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proc. Natl. Acad. Sci., 2005, 102(36), 12684-12689. doi: 10.1073/pnas.0505975102 PMID: 16129825
  24. Hubálek, F.; Binda, C.; Khalil, A.; Li, M.; Mattevi, A.; Castagnoli, N.; Edmondson, D.E. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J. Biol. Chem., 2005, 280(16), 15761-15766. doi: 10.1074/jbc.M500949200 PMID: 15710600
  25. Jin, C.F.; Wang, Z.Z.; Chen, K.Z.; Xu, T.F.; Hao, G.F. Computational fragment-based design facilitates discovery of potent and selective monoamine oxidase-B (MAO-B) inhibitor. J. Med. Chem., 2020, 63(23), 15021-15036. doi: 10.1021/acs.jmedchem.0c01663 PMID: 33210537
  26. Łażewska, D.; Olejarz-Maciej, A.; Reiner, D.; Kaleta, M.; Latacz, G.; Zygmunt, M.; Doroz-Płonka, A.; Karcz, T.; Frank, A.; Stark, H.; Kieć-Kononowicz, K. Dual target ligands with 4-tertbutylphenoxy scaffold as histamine H3 receptor antagonists and monoamine oxidase B inhibitors. Int. J. Mol. Sci., 2020, 21(10), 3411. doi: 10.3390/ijms21103411 PMID: 32408504
  27. Tandarić, T.; Prah, A.; Stare, J.; Mavri, J.; Vianello, R. Hydride abstraction as the rate-limiting step of the irreversible inhibition of monoamine oxidase B by rasagiline and selegiline: A computational empirical valence bond study. Int. J. Mol. Sci., 2020, 21(17), 6151. doi: 10.3390/ijms21176151 PMID: 32858935
  28. Harvey, B.H.; Duvenhage, I.; Viljoen, F.; Scheepers, N.; Malan, S.F.; Wegener, G.; Brink, C.B.; Petzer, J.P. Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochem. Pharmacol., 2010, 80(10), 1580-1591. doi: 10.1016/j.bcp.2010.07.037 PMID: 20699087
  29. Petzer, A.; Harvey, B.H.; Wegener, G.; Petzer, J.P. Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol. Appl. Pharmacol., 2012, 258(3), 403-409. doi: 10.1016/j.taap.2011.12.005 PMID: 22197611
  30. Hu, Y.; Cui, Q.; Ma, D.; Jin, W.; Li, Y.; Zhang, J.; Xu, Y. Key targets and molecular mechanisms of active volatile components of rabdosia rubescens in gastric cancer cells. Curr. Computeraided Drug Des., 2022, 18(7), 493-505. doi: 10.2174/1573409918666221003091312 PMID: 36200190
  31. Paudel, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Rubrofusarin as a dual protein tyrosine phosphate 1b and human monoamine oxidase a inhibitor: An in vitro and in silico study. ACS Omega, 2019, 4(7), 11621-11630. doi: 10.1021/acsomega.9b01433 PMID: 31460269
  32. Aziz, D.M.; Azeez, H.J. Synthesis of new ß-lactam- N-(thiazol-2-yl)benzene sulfonamide hybrids: Their in vitro antimicrobial and in silico molecular docking studies. J. Mol. Struct., 2020, 1222, 128904. doi: 10.1016/j.molstruc.2020.128904
  33. Zhang, Y.M.; Xu, H.Y.; Hu, H.N.; Tian, F.Y.; Chen, F.; Liu, H.N.; Zhan, L.; Pi, X.P.; Liu, J.; Gao, Z.B.; Nan, F.J. Discovery of HN37 as a potent and chemically stable antiepileptic drug candidate. J. Med. Chem., 2021, 64(9), 5816-5837. doi: 10.1021/acs.jmedchem.0c02252 PMID: 33929863
  34. Wang, X.; Yang, C.; Sun, Y.; Sui, X.; Zhu, T.; Wang, Q.; Wang, S.; Yang, J.; Yang, W.; Liu, F.; Zhang, M.; Wang, Y.; Luo, Y. A novel screening strategy of anti-SARS-CoV-2 drugs via blocking interaction between Spike RBD and ACE2. Environ. Int., 2021, 147, 106361. doi: 10.1016/j.envint.2020.106361 PMID: 33401173
  35. Ding, K.; Kong, X.; Wang, J.; Lu, L.; Zhou, W.; Zhan, T.; Zhang, C.; Zhuang, S. Side chains of parabens modulate antiandrogenic activity: in vitro and molecular docking studies. Environ. Sci. Technol., 2017, 51(11), 6452-6460. doi: 10.1021/acs.est.7b00951 PMID: 28466639
  36. Ng, C.A.; Hungerbuehler, K. Exploring the use of molecular docking to identify bioaccumulative perfluorinated alkyl acids (PFAAs). Environ. Sci. Technol., 2015, 49(20), 12306-12314. doi: 10.1021/acs.est.5b03000 PMID: 26393377

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024