Optimizing the Extraction of Polyphenols from the Bark of Terminalia arjuna and an In-silico Investigation on its Activity in Colorectal Cancer
- Авторлар: Adhikary T.1, Basak P.1
-
Мекемелер:
- School of Bioscience and Engineering,, Jadavpur University
- Шығарылым: Том 20, № 5 (2024)
- Беттер: 653-665
- Бөлім: Chemistry
- URL: https://kld-journal.fedlab.ru/1573-4099/article/view/644230
- DOI: https://doi.org/10.2174/0115734099264119230925054833
- ID: 644230
Дәйексөз келтіру
Толық мәтін
Аннотация
Background::The interconnection between different fields of research has gained interest due to its cutting-edge perspectives in solving scientific problems. Terminalia arjuna is indigenously used in India for curing several diseases, and its pharmacological activities are being revisited in recent drug-repurposing research.
Objective:Efficient ultrasound-assisted extraction of phytochemicals from the bark of Terminalia arjuna is highlighted in this study. Following the optimization of the extraction process, the crude hydroethanolic extract is subjected to phytochemical profiling and an in-silico investigation of its anti-cancer properties.
Materials and Methods:A three-level four-factor Box-Behnken design is exploited to optimize four operational parameters, namely extraction time, ultrasonic power, ethanol concentration (as the extracting solvent) and solute (in g): solvent (in mL) ratio. At the optimum parametric condition, the crude extract is obtained, and its GC-MS analysis is carried out. An analysis of network pharmacology (by constructing and visualizing biological networks using Cytoscape) combined with molecular docking reveals the potential antineoplastic targets of the crude extract.
Results:The ANOVA table exhibits the significance, adequacy and reliability of the proposed second-order polynomial model with the R² value of 0.917 and adjusted R² of 0.865. Experimental results portray the significant antioxidant potential of the prepared extract in its crude form. The GC-MS analysis of the crude extract predicts the extracted phytochemicals, while the constructed biological networks highlight its multi-targeted activity in colorectal cancer
Conclusion:The study identifies three phytochemicals viz. luteolin, β-sitosterol and arjunic acid as potent anti-cancer agents and can be extended with in-vitro and in-vivo experiments to validate the in-silico results, thus establishing lead phytochemicals in multi-targeted colorectal cancer therapies.
Негізгі сөздер
Авторлар туралы
Tathagata Adhikary
School of Bioscience and Engineering,, Jadavpur University
Email: info@benthamscience.net
Piyali Basak
School of Bioscience and Engineering,, Jadavpur University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Petrovska, B. Historical review of medicinal plants′ usage. Pharmacogn. Rev., 2012, 6(11), 1-5. doi: 10.4103/0973-7847.95849 PMID: 22654398
- WHO Global Report on Traditional and Complementary Medicine 2019. World Health Organization, 2019.
- Stickel, F.; Schuppan, D. Herbal medicine in the treatment of liver diseases. Dig. Liver Dis., 2007, 39(4), 293-304. doi: 10.1016/j.dld.2006.11.004 PMID: 17331820
- Amalraj, A.; Gopi, S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med., 2017, 7(1), 65-78. doi: 10.1016/j.jtcme.2016.02.003 PMID: 28053890
- Dwivedi, S.; Chopra, D. Revisiting terminalia arjuna - An ancient cardiovascular drug. J. Tradit. Complement. Med., 2014, 4(4), 224-231. doi: 10.4103/2225-4110.139103 PMID: 25379463
- Rao, B.C.S.; Singh, R.H.; Tripathi, K. Effect of Terminalia arjuna (W&A) on regression of LVH in hypertensives: A clinical study. J. Res. Ayurveda Siddha, 2001, 22(34), 216-227.
- Bharani, A.; Ganguly, A.; Bhargava, K.D. Salutary effect of terminalia Arjuna in patients with severe refractory heart failure. Int. J. Cardiol., 1995, 49(3), 191-199. doi: 10.1016/0167-5273(95)02320-V PMID: 7649665
- Tchabo, W.; Ma, Y.; Kwaw, E.; Xiao, L.; Wu, M.; Apaliya, M.T. Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf. Int. J. Food Prop., 2018, 21(1), 717-732. doi: 10.1080/10942912.2018.1446025
- Braimah, M. N.; Anozie, A. N.; Odejobi, O. J. Utilization of Response Surface Methodology (RSM) in the optimization of crude oil refinery process, new port-harcourt refinery, nigeria. JMEST, 2016, 3(3), 1-9.
- Silva, V. Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes; InTech, 2018. doi: 10.5772/65616
- Myers, R.H.; Montgomery, D.C.; Vining, G.G.; Borror, C.M.; Kowalski, S.M. Response surface methodology: A retrospective and literature survey. J. Qual. Technol., 2004, 36(1), 53-77. doi: 10.1080/00224065.2004.11980252
- Espínola, F.; Moya, M.; Fernández, D.G.; Castro, E. Modelling of virgin olive oil extraction using response surface methodology. Int. J. Food Sci. Technol., 2011, 46(12), 2576-2583. doi: 10.1111/j.1365-2621.2011.02786.x
- Prakash Maran, J.; Manikandan, S.; Vigna Nivetha, C.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem., 2017, 10, S1145-S1157. doi: 10.1016/j.arabjc.2013.02.007
- Patist, A.; Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. Technol., 2008, 9(2), 147-154. doi: 10.1016/j.ifset.2007.07.004
- Zhang, Q. A network pharmacology approach to investigate the anticancer mechanism and potential active ingredients of Rheum Palmatum L. against lung cancer via induction of apoptosis. Front. Pharmacol., 2020, 11, 528308. doi: 10.3389/fphar.2020.528308
- Agbor, G.A.; Vinson, J.A.; Donnelly, P.E. Folin-ciocalteau reagent for polyphenolic assay. Int. J. Food Sci. Nutr. Diet., 2014, 3(8), 147-156.
- Muflihah, Y.M.; Gollavelli, G.; Ling, Y.C. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 indonesian indigenous herbs. Antioxidants, 2021, 10(10), 1530. doi: 10.3390/antiox10101530 PMID: 34679665
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem., 2009, 113(4), 1202-1205. doi: 10.1016/j.foodchem.2008.08.008
- Berker, K.I.; Güçlü, K.; Tor, İ.; Apak, R. Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 2007, 72(3), 1157-1165. doi: 10.1016/j.talanta.2007.01.019 PMID: 19071739
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341. doi: 10.1006/abio.1999.4019 PMID: 10222007
- Dasgupta, N.; De, B. Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chem., 2007, 101(2), 471-474. doi: 10.1016/j.foodchem.2006.02.003
- Coudert, E.; Gehant, S.; de Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; Sigrist, C.J.A.; Redaschi, N.; Bridge, A.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Neto, T.M.B.; Blatter, M-C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; A-Jee, H.B.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 2023, 39(1), btac793. doi: 10.1093/bioinformatics/btac793 PMID: 36484697
- Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053. doi: 10.1093/nar/gkv1072 PMID: 26481362
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2019, 48(D1), gkz1021. doi: 10.1093/nar/gkz1021 PMID: 31680165
- García-Aranda, M.; Redondo, M. Targeting receptor kinases in colorectal cancer. Cancers, 2019, 11(4), 433. doi: 10.3390/cancers11040433 PMID: 30934752
- Biovia, D.S. Discovery studio modeling environment; Release, 2017.
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In: Methods Mol. Biol; , 2015; 1263, pp. 243-250. doi: 10.1007/978-1-4939-2269-7_19
- Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937. doi: 10.1021/acs.jcim.7b00564 PMID: 29243483
- Elksibi, I.; Haddar, W.; Ben Ticha, M.; gharbi, R.; Mhenni, M.F. Development and optimisation of a non conventional extraction process of natural dye from olive solid waste using response surface methodology (RSM). Food Chem., 2014, 161, 345-352. doi: 10.1016/j.foodchem.2014.03.108 PMID: 24837961
- Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem., 2008, 108(3), 977-985. doi: 10.1016/j.foodchem.2007.12.009 PMID: 26065761
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A, 2004, 1054(1-2), 95-111. doi: 10.1016/S0021-9673(04)01409-8 PMID: 15553136
- Kuljarachanan, T.; Devahastin, S.; Chiewchan, N. Evolution of antioxidant compounds in lime residues during drying. Food Chem., 2009, 113(4), 944-949. doi: 10.1016/j.foodchem.2008.08.026
- Tomik, A.; Pavlić, B.; Vladić, J.; Ramić, M.; Brindza, J.; Vidović, S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem., 2016, 29, 502-511. doi: 10.1016/j.ultsonch.2015.11.005 PMID: 26563916
- Yang, B.; Zhang, M.; Weng, H.; Xu, Y.; Zeng, L. Optimization of ultrasound assisted extraction (UAE) of kinsenoside compound from Anoectochilus roxburghii (Wall.) Lindl by response surface methodology (RSM). Molecules, 2020, 25(1), 193. doi: 10.3390/molecules25010193 PMID: 31906599
- Mohammadpour, H.; Sadrameli, S.M.; Eslami, F.; Asoodeh, A. Optimization of ultrasound-assisted extraction of moringa peregrina oil with response surface methodology and comparison with soxhlet method. Ind. Crops Prod., 2019, 131, 106-116. doi: 10.1016/j.indcrop.2019.01.030
- Zhu, Y.; Yu, J.; Jiao, C.; Tong, J.; Zhang, L.; Chang, Y.; Sun, W.; Jin, Q.; Cai, Y. Optimization of quercetin extraction method in Dendrobium officinale by response surface methodology. Heliyon, 2019, 5(9), e02374. doi: 10.1016/j.heliyon.2019.e02374 PMID: 31517114
- Oomens, J.; Steill, J.D. Free carboxylate stretching modes. J. Phys. Chem. A, 2008, 112(15), 3281-3283. doi: 10.1021/jp801806e PMID: 18363393
- Chaudhary, S.P.; Mishra, A.; Singh, A.K.; Dwivedi, K.N.; Ram, B. A FT-IR spectroscopic study of phytoconstituents of prepared formulation of arjuna (terminalia arjuna lin.) and shilajatu. Int. J. Sci. Res., 2015, 5, 12.
- Ramesh, P.; Palaniappan, A. Terminalia arjuna, a cardioprotective herbal medicinerelevancy in the modern era of pharmaceuticals and green nanomedicine-A review. Pharmaceuticals, 2023, 16(1), 126. doi: 10.3390/ph16010126 PMID: 36678623
- Uthirapathy, S.; Ahamad, J. Phytochemical analysis of different fractions of terminalia arjuna bark by GC-MS. Int. Res. J. Pharma., 2019, 10(1), 10. doi: 10.7897/2230-8407.10018
- Gupta, D.; Kumar, M. Evaluation of in vitro antimicrobial potential and GCMS analysis of camellia sinensis and terminalia arjuna. Biotechnol. Rep., 2017, 13, 19-25. doi: 10.1016/j.btre.2016.11.002 PMID: 28352558
- Sadhanandham, S. GC-MS analysis and antioxidant studies of an ayurvedic drug, partharishtam. Int. J. Pharm. Sci. Rev. Res., 2015, 34(2), 273-281.
- Epa, U.S. Users guide for TEST (version 5.1)(toxicity estimation software tool): A program to estimate toxicity from molecular structure. 2020. Available from: https://www.epa.gov/sites/default/files/2016-05/documents/600r16058.pdf
- Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. vNN web server for ADMET predictions. Front. Pharmacol., 2017, 8, 889. doi: 10.3389/fphar.2017.00889
Қосымша файлдар
