Optimizing the Extraction of Polyphenols from the Bark of Terminalia arjuna and an In-silico Investigation on its Activity in Colorectal Cancer


Дәйексөз келтіру

Толық мәтін

Аннотация

Background::The interconnection between different fields of research has gained interest due to its cutting-edge perspectives in solving scientific problems. Terminalia arjuna is indigenously used in India for curing several diseases, and its pharmacological activities are being revisited in recent drug-repurposing research.

Objective:Efficient ultrasound-assisted extraction of phytochemicals from the bark of Terminalia arjuna is highlighted in this study. Following the optimization of the extraction process, the crude hydroethanolic extract is subjected to phytochemical profiling and an in-silico investigation of its anti-cancer properties.

Materials and Methods:A three-level four-factor Box-Behnken design is exploited to optimize four operational parameters, namely extraction time, ultrasonic power, ethanol concentration (as the extracting solvent) and solute (in g): solvent (in mL) ratio. At the optimum parametric condition, the crude extract is obtained, and its GC-MS analysis is carried out. An analysis of network pharmacology (by constructing and visualizing biological networks using Cytoscape) combined with molecular docking reveals the potential antineoplastic targets of the crude extract.

Results:The ANOVA table exhibits the significance, adequacy and reliability of the proposed second-order polynomial model with the R² value of 0.917 and adjusted R² of 0.865. Experimental results portray the significant antioxidant potential of the prepared extract in its crude form. The GC-MS analysis of the crude extract predicts the extracted phytochemicals, while the constructed biological networks highlight its multi-targeted activity in colorectal cancer

Conclusion:The study identifies three phytochemicals viz. luteolin, β-sitosterol and arjunic acid as potent anti-cancer agents and can be extended with in-vitro and in-vivo experiments to validate the in-silico results, thus establishing lead phytochemicals in multi-targeted colorectal cancer therapies.

Авторлар туралы

Tathagata Adhikary

School of Bioscience and Engineering,, Jadavpur University

Email: info@benthamscience.net

Piyali Basak

School of Bioscience and Engineering,, Jadavpur University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Petrovska, B. Historical review of medicinal plants′ usage. Pharmacogn. Rev., 2012, 6(11), 1-5. doi: 10.4103/0973-7847.95849 PMID: 22654398
  2. WHO Global Report on Traditional and Complementary Medicine 2019. World Health Organization, 2019.
  3. Stickel, F.; Schuppan, D. Herbal medicine in the treatment of liver diseases. Dig. Liver Dis., 2007, 39(4), 293-304. doi: 10.1016/j.dld.2006.11.004 PMID: 17331820
  4. Amalraj, A.; Gopi, S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med., 2017, 7(1), 65-78. doi: 10.1016/j.jtcme.2016.02.003 PMID: 28053890
  5. Dwivedi, S.; Chopra, D. Revisiting terminalia arjuna - An ancient cardiovascular drug. J. Tradit. Complement. Med., 2014, 4(4), 224-231. doi: 10.4103/2225-4110.139103 PMID: 25379463
  6. Rao, B.C.S.; Singh, R.H.; Tripathi, K. Effect of Terminalia arjuna (W&A) on regression of LVH in hypertensives: A clinical study. J. Res. Ayurveda Siddha, 2001, 22(3–4), 216-227.
  7. Bharani, A.; Ganguly, A.; Bhargava, K.D. Salutary effect of terminalia Arjuna in patients with severe refractory heart failure. Int. J. Cardiol., 1995, 49(3), 191-199. doi: 10.1016/0167-5273(95)02320-V PMID: 7649665
  8. Tchabo, W.; Ma, Y.; Kwaw, E.; Xiao, L.; Wu, M.; Apaliya, M.T. Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf. Int. J. Food Prop., 2018, 21(1), 717-732. doi: 10.1080/10942912.2018.1446025
  9. Braimah, M. N.; Anozie, A. N.; Odejobi, O. J. Utilization of Response Surface Methodology (RSM) in the optimization of crude oil refinery process, new port-harcourt refinery, nigeria. JMEST, 2016, 3(3), 1-9.
  10. Silva, V. Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes; InTech, 2018. doi: 10.5772/65616
  11. Myers, R.H.; Montgomery, D.C.; Vining, G.G.; Borror, C.M.; Kowalski, S.M. Response surface methodology: A retrospective and literature survey. J. Qual. Technol., 2004, 36(1), 53-77. doi: 10.1080/00224065.2004.11980252
  12. Espínola, F.; Moya, M.; Fernández, D.G.; Castro, E. Modelling of virgin olive oil extraction using response surface methodology. Int. J. Food Sci. Technol., 2011, 46(12), 2576-2583. doi: 10.1111/j.1365-2621.2011.02786.x
  13. Prakash Maran, J.; Manikandan, S.; Vigna Nivetha, C.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem., 2017, 10, S1145-S1157. doi: 10.1016/j.arabjc.2013.02.007
  14. Patist, A.; Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. Technol., 2008, 9(2), 147-154. doi: 10.1016/j.ifset.2007.07.004
  15. Zhang, Q. A network pharmacology approach to investigate the anticancer mechanism and potential active ingredients of Rheum Palmatum L. against lung cancer via induction of apoptosis. Front. Pharmacol., 2020, 11, 528308. doi: 10.3389/fphar.2020.528308
  16. Agbor, G.A.; Vinson, J.A.; Donnelly, P.E. Folin-ciocalteau reagent for polyphenolic assay. Int. J. Food Sci. Nutr. Diet., 2014, 3(8), 147-156.
  17. Muflihah, Y.M.; Gollavelli, G.; Ling, Y.C. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 indonesian indigenous herbs. Antioxidants, 2021, 10(10), 1530. doi: 10.3390/antiox10101530 PMID: 34679665
  18. Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem., 2009, 113(4), 1202-1205. doi: 10.1016/j.foodchem.2008.08.008
  19. Berker, K.I.; Güçlü, K.; Tor, İ.; Apak, R. Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 2007, 72(3), 1157-1165. doi: 10.1016/j.talanta.2007.01.019 PMID: 19071739
  20. Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341. doi: 10.1006/abio.1999.4019 PMID: 10222007
  21. Dasgupta, N.; De, B. Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chem., 2007, 101(2), 471-474. doi: 10.1016/j.foodchem.2006.02.003
  22. Coudert, E.; Gehant, S.; de Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; Sigrist, C.J.A.; Redaschi, N.; Bridge, A.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Neto, T.M.B.; Blatter, M-C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; A-Jee, H.B.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 2023, 39(1), btac793. doi: 10.1093/bioinformatics/btac793 PMID: 36484697
  23. Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053. doi: 10.1093/nar/gkv1072 PMID: 26481362
  24. Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2019, 48(D1), gkz1021. doi: 10.1093/nar/gkz1021 PMID: 31680165
  25. García-Aranda, M.; Redondo, M. Targeting receptor kinases in colorectal cancer. Cancers, 2019, 11(4), 433. doi: 10.3390/cancers11040433 PMID: 30934752
  26. Biovia, D.S. Discovery studio modeling environment; Release, 2017.
  27. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
  28. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  29. Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In: Methods Mol. Biol; , 2015; 1263, pp. 243-250. doi: 10.1007/978-1-4939-2269-7_19
  30. Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937. doi: 10.1021/acs.jcim.7b00564 PMID: 29243483
  31. Elksibi, I.; Haddar, W.; Ben Ticha, M.; gharbi, R.; Mhenni, M.F. Development and optimisation of a non conventional extraction process of natural dye from olive solid waste using response surface methodology (RSM). Food Chem., 2014, 161, 345-352. doi: 10.1016/j.foodchem.2014.03.108 PMID: 24837961
  32. Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem., 2008, 108(3), 977-985. doi: 10.1016/j.foodchem.2007.12.009 PMID: 26065761
  33. Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A, 2004, 1054(1-2), 95-111. doi: 10.1016/S0021-9673(04)01409-8 PMID: 15553136
  34. Kuljarachanan, T.; Devahastin, S.; Chiewchan, N. Evolution of antioxidant compounds in lime residues during drying. Food Chem., 2009, 113(4), 944-949. doi: 10.1016/j.foodchem.2008.08.026
  35. Tomšik, A.; Pavlić, B.; Vladić, J.; Ramić, M.; Brindza, J.; Vidović, S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem., 2016, 29, 502-511. doi: 10.1016/j.ultsonch.2015.11.005 PMID: 26563916
  36. Yang, B.; Zhang, M.; Weng, H.; Xu, Y.; Zeng, L. Optimization of ultrasound assisted extraction (UAE) of kinsenoside compound from Anoectochilus roxburghii (Wall.) Lindl by response surface methodology (RSM). Molecules, 2020, 25(1), 193. doi: 10.3390/molecules25010193 PMID: 31906599
  37. Mohammadpour, H.; Sadrameli, S.M.; Eslami, F.; Asoodeh, A. Optimization of ultrasound-assisted extraction of moringa peregrina oil with response surface methodology and comparison with soxhlet method. Ind. Crops Prod., 2019, 131, 106-116. doi: 10.1016/j.indcrop.2019.01.030
  38. Zhu, Y.; Yu, J.; Jiao, C.; Tong, J.; Zhang, L.; Chang, Y.; Sun, W.; Jin, Q.; Cai, Y. Optimization of quercetin extraction method in Dendrobium officinale by response surface methodology. Heliyon, 2019, 5(9), e02374. doi: 10.1016/j.heliyon.2019.e02374 PMID: 31517114
  39. Oomens, J.; Steill, J.D. Free carboxylate stretching modes. J. Phys. Chem. A, 2008, 112(15), 3281-3283. doi: 10.1021/jp801806e PMID: 18363393
  40. Chaudhary, S.P.; Mishra, A.; Singh, A.K.; Dwivedi, K.N.; Ram, B. A FT-IR spectroscopic study of phytoconstituents of prepared formulation of arjuna (terminalia arjuna lin.) and shilajatu. Int. J. Sci. Res., 2015, 5, 12.
  41. Ramesh, P.; Palaniappan, A. Terminalia arjuna, a cardioprotective herbal medicine–relevancy in the modern era of pharmaceuticals and green nanomedicine-A review. Pharmaceuticals, 2023, 16(1), 126. doi: 10.3390/ph16010126 PMID: 36678623
  42. Uthirapathy, S.; Ahamad, J. Phytochemical analysis of different fractions of terminalia arjuna bark by GC-MS. Int. Res. J. Pharma., 2019, 10(1), 10. doi: 10.7897/2230-8407.10018
  43. Gupta, D.; Kumar, M. Evaluation of in vitro antimicrobial potential and GC–MS analysis of camellia sinensis and terminalia arjuna. Biotechnol. Rep., 2017, 13, 19-25. doi: 10.1016/j.btre.2016.11.002 PMID: 28352558
  44. Sadhanandham, S. GC-MS analysis and antioxidant studies of an ayurvedic drug, partharishtam. Int. J. Pharm. Sci. Rev. Res., 2015, 34(2), 273-281.
  45. Epa, U.S. User’s guide for TEST (version 5.1)(toxicity estimation software tool): A program to estimate toxicity from molecular structure. 2020. Available from: https://www.epa.gov/sites/default/files/2016-05/documents/600r16058.pdf
  46. Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. vNN web server for ADMET predictions. Front. Pharmacol., 2017, 8, 889. doi: 10.3389/fphar.2017.00889

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024