Molecular Modelling of Resveratrol Derivatives with SIRT1 for the Stimulation of Deacetylase Activity
- Авторы: Zamani M.1, Mokarram P.2, Jamshidi M.3, Siri M.4, Ghasemi H.1
-
Учреждения:
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences
- Autophagy Research Center, Department of Biochemistry, School of Medicine,, Shiraz University of Medical Sciences
- Institute für Chemie, Universität Oldenburg
- Autophagy Research Center, Department of Biochemistry, School of Medicine,, Shiraz University of Medical Sciences,
- Выпуск: Том 20, № 6 (2024)
- Страницы: 943-954
- Раздел: Chemistry
- URL: https://kld-journal.fedlab.ru/1573-4099/article/view/644433
- DOI: https://doi.org/10.2174/0115734099258321231003161602
- ID: 644433
Цитировать
Полный текст
Аннотация
Background:Resveratrol is a polyphenol that is found in plants and has been proposed to have a potential therapeutic effect through the activation of SIRT1, which is a crucial member of the mammalian NAD+ -dependent deacetylases. However, how its activity is enhanced toward specific substrates by resveratrol derivatives has not been studied. This study aimed to evaluate the types of interaction of resveratrol and its derivatives with SIRT1 as the target protein, as well as to find out the best ligand with the strangest interaction with SIRT1.
Materials and Methods:In this study, we employed the extensive molecular docking analysis using AutoDock Vina to comparatively evaluate the interactions of resveratrol derivatives (22 molecules from the ZINC database) as ligands with SIRT1 (PDB ID: 5BTR) as a receptor. The ChemDraw and Chem3D tools were used to prepare 3D structures of all ligands and energetically minimize them by the MM2 force field.
Results:The molecular docking and visualizations showed that conformational change in resveratrol derivatives significantly influenced the parameter for docking results. Several types of interactions, including conventional hydrogen bonds, carbon-hydrogen bonds, Pi-donor hydrogen bonds, and Pi-Alkyl, were found via docking analysis of resveratrol derivatives and SIRT1 receptors. The possible activation effect of resveratrol 4'-(6-galloylglucoside) with ZINC ID: ZINC230079516 with higher binding energy score (-46.8608 kJ/mol) to the catalytic domain (CD) of SIRT1 was achieved at the maximum value for SIRT1, as compared to resveratrol and its other derivatives.
Conclusion:Finally, resveratrol 4'-(6-galloylglucoside), as a derivative for resveratrol, has stably interacted with the CD of SIRT1 and might be a potential effective activator for SIRT1.
Ключевые слова
Об авторах
Mozhdeh Zamani
Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences
Email: info@benthamscience.net
Pooneh Mokarram
Autophagy Research Center, Department of Biochemistry, School of Medicine,, Shiraz University of Medical Sciences
Автор, ответственный за переписку.
Email: info@benthamscience.net
Mehdi Jamshidi
Institute für Chemie, Universität Oldenburg
Email: info@benthamscience.net
Morvarid Siri
Autophagy Research Center, Department of Biochemistry, School of Medicine,, Shiraz University of Medical Sciences,
Email: info@benthamscience.net
Hadi Ghasemi
Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Ertan-Bolelli, T.; Bolelli, K. In silico design of novel sirtuin 1 enzyme activators for the treatment of age-related diseases and life span. Curr. Computeraided Drug Des., 2021, 17(3), 412-420. doi: 10.2174/1573409916666200422074441 PMID: 32321406
- Ng, F.; Tang, B.L. Sirtuins modulation of autophagy. J. Cell. Physiol., 2013, 228(12), 2262-2270. doi: 10.1002/jcp.24399 PMID: 23696314
- Ou, X.; Lee, M.R.; Huang, X.; Messina-Graham, S.; Broxmeyer, H.E. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells, 2014, 32(5), 1183-1194. doi: 10.1002/stem.1641 PMID: 24449278
- Wu, S.; Wei, Y.; Li, J.; Bai, Y.; Yin, P.; Wang, S. SIRT5 represses neurotrophic pathways and Aβ production in Alzheimers disease by targeting autophagy. ACS Chem. Neurosci., 2021, 12(23), 4428-4437. doi: 10.1021/acschemneuro.1c00468 PMID: 34788008
- Saha, S.; Panigrahi, D.P.; Patil, S.; Bhutia, S.K. Autophagy in health and disease: A comprehensive review. Biomed. Pharmacother., 2018, 104, 485-495. doi: 10.1016/j.biopha.2018.05.007 PMID: 29800913
- Yang, Y.; Klionsky, D.J. Autophagy and disease: Unanswered questions. Cell Death Differ., 2020, 27(3), 858-871. doi: 10.1038/s41418-019-0480-9 PMID: 31900427
- Ryter, S.W.; Bhatia, D.; Choi, M.E. Autophagy: A lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid. Redox Signal., 2019, 30(1), 138-159. doi: 10.1089/ars.2018.7518 PMID: 29463101
- Hou, X.; Rooklin, D.; Fang, H.; Zhang, Y. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci. Rep., 2016, 6(1), 38186. doi: 10.1038/srep38186 PMID: 27901083
- Salminen, A.; Kaarniranta, K. SIRT1: Regulation of longevity via autophagy. Cell. Signal., 2009, 21(9), 1356-1360. doi: 10.1016/j.cellsig.2009.02.014 PMID: 19249351
- Tıraş, Z.Ş.E.; Okur, H.H.; Günay, Z.; Yıldırım, H.K. Different approaches to enhance resveratrol content in wine. Ciênc. Téc. Vitiviníc., 2022, 37(1), 13-28.
- Sun, A.Y.; Wang, Q.; Simonyi, A.; Sun, G.Y. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol., 2010, 41(2-3), 375-383. doi: 10.1007/s12035-010-8111-y PMID: 20306310
- Morselli, E.; Galluzzi, L.; Kepp, O.; Criollo, A.; Maiuri, M.C.; Tavernarakis, N.; Madeo, F.; Kroemer, G. Autophagy mediates pharmacological lifespan extension by spermidineand resveratrol. Aging (Albany NY), 2009, 1(12), 961-970. doi: 10.18632/aging.100110 PMID: 20157579
- Wang, J.; Li, J.; Cao, N.; Li, Z.; Han, J.; Li, L. Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK. OncoTargets Ther., 2018, 11, 7777-7786. doi: 10.2147/OTT.S159095 PMID: 30464525
- Huang, H.; Liao, D.; Zhou, G.; Zhu, Z.; Cui, Y.; Pu, R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. Phytomedicine, 2020, 77, 153230. doi: 10.1016/j.phymed.2020.153230 PMID: 32682225
- Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int., 2019, 19(1), 180. doi: 10.1186/s12935-019-0906-y PMID: 31341423
- Singh, S.P.; Hussain, I.; Konwar, B.K.; Deka, R.C.; Singh, C.B. Design of potential IKK-β inhibitors using molecular docking and molecular dynamics techniques for their anti-cancer potential. Curr. Computeraided Drug Des., 2021, 17(1), 83-94. doi: 10.2174/1573409916666200102121505 PMID: 31899679
- Wang, N.; Luo, Z.; Jin, M.; Sheng, W.; Wang, H.T.; Long, X.; Wu, Y.; Hu, P.; Xu, H.; Zhang, X. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging, 2019, 11(10), 3117-3137. doi: 10.18632/aging.101966 PMID: 31105084
- Ahmad, M.; Gani, A. Development of novel functional snacks containing nano-encapsulated resveratrol with anti-diabetic, anti-obesity and antioxidant properties. Food Chem., 2021, 352, 129323. doi: 10.1016/j.foodchem.2021.129323 PMID: 33691210
- Banez, M.J.; Geluz, M.I.; Chandra, A.; Hamdan, T.; Biswas, O.S.; Bryan, N.S.; Von Schwarz, E.R. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health. Nutr. Res., 2020, 78, 11-26. doi: 10.1016/j.nutres.2020.03.002 PMID: 32428778
- Jia, R.; Li, Y.; Cao, L.; Du, J.; Zheng, T.; Qian, H.; Gu, Z.; Jeney, G.; Xu, P.; Yin, G. Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 215, 56-66. doi: 10.1016/j.cbpc.2018.10.002 PMID: 30336289
- Ho, Y.; Wu, C.Y.; Chin, Y.T.; Li, Z.L.; Pan, Y.; Huang, T.Y.; Su, P.Y.; Lee, S.Y.; Crawford, D.R.; Su, K.W.; Chiu, H.C.; Shih, Y.J.; Changou, C.A.; Yang, Y.C.S.H.; Whang-Peng, J.; Chen, Y.R.; Lin, H.Y.; Mousa, S.A.; Davis, P.J.; Wang, K. NDAT suppresses pro-inflammatory gene expression to enhance resveratrol-induced anti-proliferation in oral cancer cells. Food Chem. Toxicol., 2020, 136, 111092. doi: 10.1016/j.fct.2019.111092 PMID: 31883986
- Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; Dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective mechanisms of resveratrol in Alzheimers disease: Role of SIRT1. Oxid. Med. Cell. Longev., 2018, 2018, 8152373. doi: 10.1155/2018/8152373
- Griñán-Ferré, C.; Bellver-Sanchis, A.; Izquierdo, V.; Corpas, R.; Roig-Soriano, J.; Chillón, M.; Andres-Lacueva, C.; Somogyvári, M.; Sőti, C.; Sanfeliu, C.; Pallàs, M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimers disease pathology: From antioxidant to epigenetic therapy. Ageing Res. Rev., 2021, 67, 101271. doi: 10.1016/j.arr.2021.101271 PMID: 33571701
- Cao, W.; Dou, Y.; Li, A. Resveratrol boosts cognitive function by targeting SIRT1. Neurochem. Res., 2018, 43(9), 1705-1713. doi: 10.1007/s11064-018-2586-8 PMID: 29943083
- Cao, D.; Wang, M.; Qiu, X.; Liu, D.; Jiang, H.; Yang, N.; Xu, R.M. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev., 2015, 29(12), 1316-1325. doi: 10.1101/gad.265462.115 PMID: 26109052
- Knutson, M.D.; Leeuwenburgh, C. Resveratrol and novel potent activators of SIRT1: Effects on aging and age-related diseases. Nutr. Rev., 2008, 66(10), 591-596. doi: 10.1111/j.1753-4887.2008.00109.x PMID: 18826454
- Borra, M.T.; Smith, B.C.; Denu, J.M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem., 2005, 280(17), 17187-17195. doi: 10.1074/jbc.M501250200 PMID: 15749705
- Dalal, V.; Kumari, R. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting femc of staphylococcus aureus: An in‐Silico Approach. ChemistrySelect, 2022, 7(42), e202201728. doi: 10.1002/slct.202201728
- Kumari, R.; Dhankhar, P.; Dalal, V. Structure-based mimicking of hydroxylated biphenyl congeners (OHPCBs) for human transthyretin, an important enzyme of thyroid hormone system. J. Mol. Graph. Model., 2021, 105, 107870. doi: 10.1016/j.jmgm.2021.107870 PMID: 33647754
- Kumari, R.; Rathi, R.; Pathak, S.R.; Dalal, V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct., 2022, 1255, 132476. doi: 10.1016/j.molstruc.2022.132476
- Singh, V.; Dhankhar, P.; Dalal, V.; Tomar, S.; Kumar, P. In-silico functional and structural annotation of hypothetical protein from Klebsiella pneumonia: A potential drug target. J. Mol. Graph. Model., 2022, 116, 108262. doi: 10.1016/j.jmgm.2022.108262 PMID: 35839717
- Kumari, R.; Dalal, V. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J. Biomol. Struct. Dyn., 2022, 40(20), 9833-9847. doi: 10.1080/07391102.2021.1936179 PMID: 34096457
- Kumari, R.; Kumar, V.; Dhankhar, P.; Dalal, V. Promising antivirals for PLpro of SARS-CoV-2 using virtual screening, molecular docking, dynamics, and MMPBSA. J. Biomol. Struct. Dyn., 2023, 41(10), 4650-4666. doi: 10.1080/07391102.2022.2071340 PMID: 35510600
- Hubbard, B.P.; Sinclair, D.A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci., 2014, 35(3), 146-154. doi: 10.1016/j.tips.2013.12.004 PMID: 24439680
- Kuningas, M.; Putters, M.; Westendorp, R.G.J.; Slagboom, P.E.; van Heemst, D. SIRT1 gene, age-related diseases, and mortality: The Leiden 85-plus study. J. Gerontol. A Biol. Sci. Med. Sci., 2007, 62(9), 960-965. doi: 10.1093/gerona/62.9.960 PMID: 17895433
- Grau, L.; Soucek, R.; Pujol, M.D. Resveratrol derivatives: Synthesis and their biological activities. Eur. J. Med. Chem., 2023, 246, 114962. doi: 10.1016/j.ejmech.2022.114962 PMID: 36463729
- Arbo, B.D.; André-Miral, C.; Nasre-Nasser, R.G.; Schimith, L.E.; Santos, M.G.; Costa-Silva, D.; Muccillo-Baisch, A.L.; Hort, M.A. Resveratrol derivatives as potential treatments for Alzheimers and Parkinsons disease. Front. Aging Neurosci., 2020, 12, 103. doi: 10.3389/fnagi.2020.00103 PMID: 32362821
- Ranjbar, A.; Jamshidi, M.; Torabi, S. Molecular modelling of the antiviral action of Resveratrol derivatives against the activity of two novel SARS CoV-2 and 2019-nCoV receptors. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(14), 7834-7844. PMID: 32744711
- Zhou, S.; Yang, R.; Teng, Z.; Zhang, B.; Hu, Y.; Yang, Z.; Huan, M.; Zhang, X.; Mei, Q. Dose-dependent absorption and metabolism of trans-polydatin in rats. J. Agric. Food Chem., 2009, 57(11), 4572-4579. doi: 10.1021/jf803948g PMID: 19397265
- Feng, X.; Liang, N.; Zhu, D.; Gao, Q.; Peng, L.; Dong, H.; Yue, Q.; Liu, H.; Bao, L.; Zhang, J.; Hao, J.; Gao, Y.; Yu, X.; Sun, J. Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One, 2013, 8(3), e59888. doi: 10.1371/journal.pone.0059888 PMID: 23555824
- Lange, K.W.; Li, S. Resveratrol, pterostilbene, and dementia. Biofactors, 2018, 44(1), 83-90. doi: 10.1002/biof.1396 PMID: 29168580
- Vergoten, G.; Bailly, C. Molecular modeling of alkaloids bouchardatine and orirenierine binding to sirtuin-1 (SIRT1). Digital Chinese Medicine, 2022, 5(3), 276-285. doi: 10.1016/j.dcmed.2022.10.004
- Liu, J.; Zhao, H.; He, L.; Yu, R.; Kang, C. Discovery and design of dual inhibitors targeting Sphk1 and Sirt1. J. Mol. Model., 2023, 29(5), 141. doi: 10.1007/s00894-023-05551-2 PMID: 37059848
- Sandak, B.; Wolfson, H.J.; Nussinov, R. Flexible docking allowing induced fit in proteins: Insights from an open to closed conformational isomers. Proteins, 1998, 32(2), 159-174. doi: 10.1002/(SICI)1097-0134(19980801)32:23.0.CO;2-G PMID: 9714156
- Davenport, A.M.; Huber, F.M.; Hoelz, A. Structural and functional analysis of human SIRT1. J. Mol. Biol., 2014, 426(3), 526-541. doi: 10.1016/j.jmb.2013.10.009 PMID: 24120939
- Zhao, X.; Allison, D.; Condon, B.; Zhang, F.; Gheyi, T.; Zhang, A.; Ashok, S.; Russell, M.; MacEwan, I.; Qian, Y.; Jamison, J.A.; Luz, J.G. The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J. Med. Chem., 2013, 56(3), 963-969. doi: 10.1021/jm301431y PMID: 23311358
- Bakhtiari, N.; Mirzaie, S.; Hemmati, R.; Moslemee-jalalvand, E.; Noori, A.R.; Kazemi, J. Mounting evidence validates Ursolic Acid directly activates SIRT1: A powerful STAC which mimic endogenous activator of SIRT1. Arch. Biochem. Biophys., 2018, 650, 39-48. doi: 10.1016/j.abb.2018.05.012 PMID: 29758202
Дополнительные файлы
