Identifying Dental Pulp Stem Cell as a Novel Therapeutic trategy for Digestive Diseases


如何引用文章

全文:

详细

:Mesenchymal stem cells (MSCs) have been identified as potential therapeutics for various diseases. In contrast to other sources of MSCs, dental stem cells (DSCs) have received increased attention due to their high activity and easy accessibility. Among them, dental pulp stem cells (DPSCs) exhibit superior self-renewal, multipotency, immunomodulatory, and regenerative capacities. Following their inspiring performance in animal models and clinical trials, DPSCs show pharmacological potential in regenerative medicine. In this review, we have generalized the sources, heterogeneity, and biological characteristics of DPSCs, as well as compared them with other types of dental stem cells. In addition, we summarized the application of DPSCs in digestive diseases (such as liver, esophageal, and intestinal diseases), highlighting their regenerative and pharmacological potential based on the existing preclinical and clinical evidence. Specifically, DPSCs can be home to injured or inflamed tissues and exert repair and regeneration functions by facilitating immune regulation, anti-inflammation, and directional differentiation. Although DPSCs have a rosy prospect, future studies should handle the underlying drawbacks and pave the way for the identification of DPSCs as novel regenerative medicine.

作者简介

Saiyan Bian

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University

Email: info@benthamscience.net

Wenjie Zheng

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Xieyin Sun

Research Center of Clinical Medicine,, Affiliated Hospital of Nantong University, Medical School of Nantong University

Email: info@benthamscience.net

Zhaoyi Lin

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University,

Email: info@benthamscience.net

Nuo Xu

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University

Email: info@benthamscience.net

Yinqi Chen

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University

Email: info@benthamscience.net

参考

  1. in ’t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; Noort, W.A.; Claas, F.H.J.; Willemze, R.; Fibbe, W.E.; Kanhai, H.H.H. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4), 1548-1549. doi: 10.1182/blood-2003-04-1291 PMID: 12900350
  2. Secco, M.; Zucconi, E.; Vieira, N.M.; Fogaça, L.L.Q.; Cerqueira, A.; Carvalho, M.D.F.; Jazedje, T.; Okamoto, O.K.; Muotri, A.R.; Zatz, M. Multipotent stem cells from umbilical cord: Cord is richer than blood!. Stem Cells, 2008, 26(1), 146-150. doi: 10.1634/stemcells.2007-0381 PMID: 17932423
  3. Gruber, H.E.; Deepe, R.; Hoelscher, G.L.; Ingram, J.A.; Norton, H.J.; Scannell, B.; Loeffler, B.J.; Zinchenko, N.; Hanley, E.N., Jr; Tapp, H. Human adipose-derived mesenchymal stem cells: Direction to a phenotype sharing similarities with the disc, gene expression profiling, and coculture with human annulus cells. Tissue Eng. Part A, 2010, 16(9), 2843-2860. doi: 10.1089/ten.tea.2009.0709 PMID: 20408770
  4. Friedenstein, A.J.; Piatetzky-Shapiro, I.I.; Petrakova, K.V. Osteogenesis in transplants of bone marrow cells. Development, 1966, 16(3), 381-390. doi: 10.1242/dev.16.3.381 PMID: 5336210
  5. Staniowski, T.; Zawadzka-Knefel, A.; Skośkiewicz-Malinowska, K. Therapeutic potential of dental pulp stem cells according to different transplant types. Molecules, 2021, 26(24), 7423. doi: 10.3390/molecules26247423 PMID: 34946506
  6. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dentalpulp stem cells. J Dent Res 2002; 81(8): 531-5. doi: 10.1177/154405910208100806. PMID: 12147742
  7. Mai, Z.; Chen, H.; Ye, Y.; Hu, Z.; Sun, W.; Cui, L.; Zhao, X. Translational and clinical applications of dental stem cell-derived exosomes. Front. Genet., 2021, 12, 750990. doi: 10.3389/fgene.2021.750990 PMID: 34764982
  8. Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci, 2000, 97(25), 13625-13630. doi: 10.1073/pnas.240309797 PMID: 11087820
  9. Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem cell properties of human dental pulp stem cells. J. Dent. Res., 2002, 81(8), 531-535. doi: 10.1177/154405910208100806 PMID: 12147742
  10. Botelho, J.; Cavacas, M.A.; Machado, V.; Mendes, J.J. Dental stem cells: Recent progresses in tissue engineering and regenerative medicine. Ann. Med., 2017, 49(8), 644-651. doi: 10.1080/07853890.2017.1347705 PMID: 28649865
  11. Liu, Y.; Wang, L.; Liu, S.; Liu, D.; Chen, C.; Xu, X.; Chen, X.; Shi, S. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J. Dent. Res., 2014, 93(11), 1124-1132. doi: 10.1177/0022034514552675 PMID: 25252877
  12. Huang, G.T.J.; Yamaza, T.; Shea, L.D.; Djouad, F.; Kuhn, N.Z.; Tuan, R.S.; Shi, S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng. Part A, 2010, 16(2), 605-615. doi: 10.1089/ten.tea.2009.0518 PMID: 19737072
  13. Yamaza, T.; Kentaro, A.; Chen, C.; Liu, Y.; Shi, Y.; Gronthos, S.; Wang, S.; Shi, S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res. Ther., 2010, 1(1), 5. doi: 10.1186/scrt5 PMID: 20504286
  14. Liu, Y.; Chen, C.; Liu, S.; Liu, D.; Xu, X.; Chen, X.; Shi, S. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED. J. Dent. Res., 2015, 94(1), 209-218. doi: 10.1177/0022034514557672 PMID: 25394850
  15. Kaukua, N.; Shahidi, M.K.; Konstantinidou, C.; Dyachuk, V.; Kaucka, M.; Furlan, A.; An, Z.; Wang, L.; Hultman, I.; Ährlund-Richter, L.; Blom, H.; Brismar, H.; Lopes, N.A.; Pachnis, V.; Suter, U.; Clevers, H.; Thesleff, I.; Sharpe, P.; Ernfors, P.; Fried, K.; Adameyko, I. Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513(7519), 551-554. doi: 10.1038/nature13536 PMID: 25079316
  16. Arthur, A.; Rychkov, G.; Shi, S.; Koblar, S.A.; Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 2008, 26(7), 1787-1795. doi: 10.1634/stemcells.2007-0979 PMID: 18499892
  17. Ishizaka, R.; Hayashi, Y.; Iohara, K.; Sugiyama, M.; Murakami, M.; Yamamoto, T.; Fukuta, O.; Nakashima, M. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials, 2013, 34(8), 1888-1897. doi: 10.1016/j.biomaterials.2012.10.045 PMID: 23245334
  18. Iohara, K.; Zheng, L.; Ito, M.; Ishizaka, R.; Nakamura, H.; Into, T.; Matsushita, K.; Nakashima, M. Regeneration of dental pulp after pulpotomy by transplantation of CD31 -/CD146 - side population cells from a canine tooth. Regen. Med., 2009, 4(3), 377-385. doi: 10.2217/rme.09.5 PMID: 19438313
  19. Iohara, K.; Murakami, M.; Takeuchi, N.; Osako, Y.; Ito, M.; Ishizaka, R.; Utunomiya, S.; Nakamura, H.; Matsushita, K.; Nakashima, M. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl. Med., 2013, 2(7), 521-533. doi: 10.5966/sctm.2012-0132 PMID: 23761108
  20. Zhao, H.; Feng, J.; Seidel, K.; Shi, S.; Klein, O.; Sharpe, P.; Chai, Y. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell, 2014, 14(2), 160-173. doi: 10.1016/j.stem.2013.12.013 PMID: 24506883
  21. Sui, B.; Chen, C.; Kou, X.; Li, B.; Xuan, K.; Shi, S.; Jin, Y. Pulp stem cell–mediated functional pulp regeneration. J. Dent. Res., 2019, 98(1), 27-35. doi: 10.1177/0022034518808754 PMID: 30372659
  22. Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci., 2003, 100(10), 5807-5812. doi: 10.1073/pnas.0937635100 PMID: 12716973
  23. An, Z.; Sabalic, M.; Bloomquist, R.F.; Fowler, T.E.; Streelman, T.; Sharpe, P.T. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun., 2018, 9(1), 378. doi: 10.1038/s41467-017-02785-6 PMID: 29371677
  24. Liu, Y.; Jing, H.; Kou, X.; Chen, C.; Liu, D.; Jin, Y.; Lu, L.; Shi, S. PD-1 is required to maintain stem cell properties in human dental pulp stem cells. Cell Death Differ., 2018, 25(7), 1350-1360. doi: 10.1038/s41418-018-0077-8 PMID: 29472716
  25. Iohara, K.; Imabayashi, K.; Ishizaka, R.; Watanabe, A.; Nabekura, J.; Ito, M.; Matsushita, K.; Nakamura, H.; Nakashima, M. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng. Part A, 2011, 17(15-16), 1911-1920. doi: 10.1089/ten.tea.2010.0615 PMID: 21417716
  26. Sui, B.; Wu, D.; Xiang, L.; Fu, Y.; Kou, X.; Shi, S. Dental pulp stem cells: From discovery to clinical application. J. Endod., 2020, 46(9), S46-S55. doi: 10.1016/j.joen.2020.06.027 PMID: 32950195
  27. Galipeau, J.; Sensébé, L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell, 2018, 22(6), 824-833. doi: 10.1016/j.stem.2018.05.004 PMID: 29859173
  28. Nosrat, I.V.; Smith, C.A.; Mullally, P.; Olson, L.; Nosrat, C.A. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur. J. Neurosci., 2004, 19(9), 2388-2398. doi: 10.1111/j.0953-816X.2004.03314.x PMID: 15128393
  29. Kou, X.; Xu, X.; Chen, C.; Sanmillan, M.L.; Cai, T.; Zhou, Y.; Giraudo, C.; Le, A.; Shi, S. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med., 2018, 10(432), eaai8524. doi: 10.1126/scitranslmed.aai8524 PMID: 29540618
  30. Jarmalavičiūtė, A.; Tunaitis, V.; Pivoraitė, U.; Venalis, A.; Pivoriūnas, A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine–induced apoptosis. Cytotherapy, 2015, 17(7), 932-939. doi: 10.1016/j.jcyt.2014.07.013 PMID: 25981557
  31. Lee, A.E.; Choi, J.G.; Shi, S.H.; He, P.; Zhang, Q.Z.; Le, A.D. DPSC-derived extracellular vesicles promote rat jawbone regeneration. J. Dent. Res., 2023, 102(3), 313-321. doi: 10.1177/00220345221133716 PMID: 36348514
  32. Imanishi, Y.; Hata, M.; Matsukawa, R.; Aoyagi, A.; Omi, M.; Mizutani, M.; Naruse, K.; Ozawa, S.; Honda, M.; Matsubara, T.; Takebe, J. Efficacy of extracellular vesicles from dental pulp stem cells for bone regeneration in rat calvarial bone defects. Inflamm. Regen., 2021, 41(1), 12. doi: 10.1186/s41232-021-00163-w PMID: 33853679
  33. Takaoka, S.; Uchida, F.; Ishikawa, H.; Toyomura, J.; Ohyama, A.; Watanabe, M.; Matsumura, H.; Marushima, A.; Iizumi, S.; Fukuzawa, S.; Ishibashi-Kanno, N.; Yamagata, K.; Yanagawa, T.; Matsumaru, Y.; Bukawa, H. Transplanted neural lineage cells derived from dental pulp stem cells promote peripheral nerve regeneration. Hum. Cell, 2022, 35(2), 462-471. doi: 10.1007/s13577-021-00634-9 PMID: 34993901
  34. Zheng, C.; Chen, J.; Liu, S.; Jin, Y. Stem cell-based bone and dental regeneration: A view of microenvironmental modulation. Int. J. Oral Sci., 2019, 11(3), 23. doi: 10.1038/s41368-019-0060-3 PMID: 31423011
  35. El Moshy, S.; Radwan, I.A.; Rady, D.; Abbass, M.M.S.; El-Rashidy, A.A.; Sadek, K.M.; Dörfer, C.E.; Fawzy El-Sayed, K.M. Dental stem cell-derived secretome/conditioned medium: The future for regenerative therapeutic applications. Stem Cells Int., 2020, 2020, 1-29. doi: 10.1155/2020/7593402 PMID: 32089709
  36. Tanikawa, D.Y.S.; Pinheiro, C.C.G.; Almeida, M.C.A.; Oliveira, C.R.G.C.M.; Coudry, R.A.; Rocha, D.L.; Bueno, D.F. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int., 2020, 2020, 1-9. doi: 10.1155/2020/6234167 PMID: 32256610
  37. Ye, Q.; Wang, H.; Xia, X.; Zhou, C.; Liu, Z.; Xia, Z.; Zhang, Z.; Zhao, Y.; Yehenala, J.; Wang, S.; Zhou, G.; Hu, K.; Wu, B.; Wu, C.T.; Wang, S.; He, Y. Safety and efficacy assessment of allogeneic human dental pulp stem cells to treat patients with severe COVID-19: Structured summary of a study protocol for a randomized controlled trial (Phase I/II). Trials, 2020, 21(1), 520. doi: 10.1186/s13063-020-04380-5 PMID: 32532356
  38. Song, W.P.; Jin, L.Y.; Zhu, M.D.; Wang, H.; Xia, D.S. Clinical trials using dental stem cells: 2022 update. World J. Stem Cells, 2023, 15(3), 31-51. doi: 10.4252/wjsc.v15.i3.31 PMID: 37007456
  39. Pinheiro, C.C.G.; Leyendecker Junior, A.; Tanikawa, D.Y.S.; Ferreira, J.R.M.; Jarrahy, R.; Bueno, D.F. Is there a noninvasive source of MSCs isolated with GMP methods with better osteogenic potential? Stem Cells Int., 2019, 2019, 1-14. doi: 10.1155/2019/7951696 PMID: 31781247
  40. Wenceslau, C.V.; de Souza, D.M.; Mambelli-Lisboa, N.C.; Ynoue, L.H.; Araldi, R.P.; da Silva, J.M.; Pagani, E.; Haddad, M.S.; Kerkis, I. Restoration of BDNF, DARPP32, and D2R expression following intravenous infusion of human immature dental pulp stem cells in huntington’s disease 3-NP rat model. Cells, 2022, 11(10), 1664. doi: 10.3390/cells11101664 PMID: 35626701
  41. Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol., 2020, 18(12), 2650-2666. doi: 10.1016/j.cgh.2019.07.060 PMID: 31401364
  42. Du, X.S.; Li, H.D.; Yang, X.J.; Li, J.J.; Xu, J.J.; Chen, Y.; Xu, Q.Q.; Yang, L.; He, C.S.; Huang, C.; Meng, X.M.; Li, J. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. Int. Immunopharmacol., 2019, 75, 105671. doi: 10.1016/j.intimp.2019.05.056 PMID: 31377590
  43. Devaraj, E.; Perumal, E.; Subramaniyan, R.; Mustapha, N. Liver fibrosis: Extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology, 2022, 76(1), 275-285. doi: 10.1002/hep.32239 PMID: 34773651
  44. Schildberg, F.A.; Sharpe, A.H.; Turley, S.J. Hepatic immune regulation by stromal cells. Curr. Opin. Immunol., 2015, 32, 1-6. doi: 10.1016/j.coi.2014.10.002 PMID: 25463592
  45. Luo, N.; Li, J.; Wei, Y.; Lu, J.; Dong, R. Hepatic stellate cell: A double-edged sword in the liver. Physiol. Res., 2021, 70(6), 821-829. doi: 10.33549/physiolres.934755 PMID: 34717063
  46. Kim, H.J.; Cho, Y.A.; Lee, Y.M.; Lee, S.Y.; Bae, W.J.; Kim, E.C. PIN1 suppresses the hepatic differentiation of pulp stem cells via Wnt3a. J. Dent. Res., 2016, 95(12), 1415-1424. doi: 10.1177/0022034516659642 PMID: 27439725
  47. Psaraki, A.; Ntari, L.; Karakostas, C.; Korrou-Karava, D.; Roubelakis, M.G. Extracellular vesicles derived from mesenchymal stem/stromal cells: The regenerative impact in liver diseases. Hepatology, 2022, 75(6), 1590-1603. doi: 10.1002/hep.32129 PMID: 34449901
  48. Li, P.; Ou, Q.; Shi, S.; Shao, C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell. Mol. Immunol., 2023, 20(6), 558-569. doi: 10.1038/s41423-023-00998-y PMID: 36973490
  49. Yao, J.; Chen, N.; Wang, X.; Zhang, L.; Huo, J.; Chi, Y.; Li, Z.; Han, Z. Human supernumerary teeth-derived apical papillary stem cells possess preferable characteristics and efficacy on hepatic fibrosis in mice. Stem Cells Int., 2020, 2020, 1-12. doi: 10.1155/2020/6489396 PMID: 32399047
  50. Nagano, T.; Mori-Kudo, I.; Kawamura, T.; Taiji, M.; Noguchi, H. Pre- or post-treatment with hepatocyte growth factor prevents glycerol-induced acute renal failure. Ren. Fail., 2004, 26(1), 5-11. doi: 10.1081/JDI-120028537 PMID: 15083915
  51. Li, J.T.; Liao, Z.X.; Ping, J.; Xu, D.; Wang, H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J. Gastroenterol., 2008, 43(6), 419-428. doi: 10.1007/s00535-008-2180-y PMID: 18600385
  52. Mormone, E.; George, J.; Nieto, N. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem. Biol. Interact., 2011, 193(3), 225-231. doi: 10.1016/j.cbi.2011.07.001 PMID: 21803030
  53. Iwanaka, T.; Yamaza, T.; Sonoda, S.; Yoshimaru, K.; Matsuura, T.; Yamaza, H.; Ohga, S.; Oda, Y.; Taguchi, T. A model study for the manufacture and validation of clinical-grade deciduous dental pulp stem cells for chronic liver fibrosis treatment. Stem Cell Res. Ther., 2020, 11(1), 134. doi: 10.1186/s13287-020-01630-w PMID: 32213198
  54. Morishita, R.; Aoki, M.; Yo, Y.; Ogihara, T. Hepatocyte growth factor as cardiovascular hormone: Role of HGF in the pathogenesis of cardiovascular disease. Endocr. J., 2002, 49(3), 273-284. doi: 10.1507/endocrj.49.273 PMID: 12201209
  55. Ding, B.S.; Nolan, D.J.; Butler, J.M.; James, D.; Babazadeh, A.O.; Rosenwaks, Z.; Mittal, V.; Kobayashi, H.; Shido, K.; Lyden, D.; Sato, T.N.; Rabbany, S.Y.; Rafii, S. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 2010, 468(7321), 310-315. doi: 10.1038/nature09493 PMID: 21068842
  56. Kawaida, K.; Matsumoto, K.; Shimazu, H.; Nakamura, T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc. Natl. Acad. Sci., 1994, 91(10), 4357-4361. doi: 10.1073/pnas.91.10.4357 PMID: 8183913
  57. Cao, X.; Jin, S.; Sun, L.; Zhan, Y.; Lin, F.; Li, Y.; Zhou, Y.; Wang, X.; Gao, L.; Zhang, B. Therapeutic effects of hepatocyte growth factor-overexpressing dental pulp stem cells on liver cirrhosis in a rat model. Sci. Rep., 2017, 7(1), 15812. doi: 10.1038/s41598-017-14995-5 PMID: 29150644
  58. Verma, V.; Simone, C., II; Werner-Wasik, M. Acute and late toxicities of concurrent chemoradiotherapy for locally-advanced non-small cell lung cancer. Cancers, 2017, 9(12), 120. doi: 10.3390/cancers9090120 PMID: 28885561
  59. Citrin, D.; Cotrim, A.P.; Hyodo, F.; Baum, B.J.; Krishna, M.C.; Mitchell, J.B. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist, 2010, 15(4), 360-371. doi: 10.1634/theoncologist.2009-S104 PMID: 20413641
  60. Palma, D.A.; Senan, S.; Oberije, C.; Belderbos, J.; Dios, N.R.; Bradley, J.D.; Barriger, R.B.; Moreno-Jiménez, M.; Kim, T.H.; Ramella, S.; Everitt, S.; Rengan, R.; Marks, L.B.; De Ruyck, K.; Warner, A.; Rodrigues, G. Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: An individual patient data meta-analysis. Int. J. Radiat. Oncol. Biol. Phys., 2013, 87(4), 690-696. doi: 10.1016/j.ijrobp.2013.07.029 PMID: 24035329
  61. Kim, D.B.; Bowers, S.; Thomas, M. Black and white esophagus: Rare presentations of severe esophageal ischemia. Semin. Thorac. Cardiovasc. Surg., 2017, 29(2), 256-259. doi: 10.1053/j.semtcvs.2017.01.006 PMID: 28823340
  62. Zhang, C.; Zhang, Y.; Feng, Z.; Zhang, F.; Liu, Z.; Sun, X.; Ruan, M.; Liu, M.; Jin, S. Therapeutic effect of dental pulp stem cell transplantation on a rat model of radioactivity-induced esophageal injury. Cell Death Dis., 2018, 9(7), 738. doi: 10.1038/s41419-018-0753-0 PMID: 29970894
  63. Herrera-Imbroda, B.; Aragón, I.M.; Hierro, M.I.; Álvarez, M.; Alaminos, M.; Campos, A.; Izeta, A.; Machuca, J.; Lara, M.F. An immunohistochemical study of cytokeratins distribution of the human adult male and female urethra. Histol. Histopathol., 2017, 32(3), 283-291. PMID: 27337975
  64. Giampietri, C.; Petrungaro, S.; Coluccia, P.; Antonangeli, F.; Giannakakis, K.; Faraggiana, T.; Filippini, A.; Cossu, G.; Ziparo, E. c-Flip overexpression affects satellite cell proliferation and promotes skeletal muscle aging. Cell Death Dis., 2010, 1(4), e38. doi: 10.1038/cddis.2010.17 PMID: 21364645
  65. Croagh, D.; Phillips, W.A.; Redvers, R.; Thomas, R.J.S.; Kaur, P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells, 2007, 25(2), 313-318. doi: 10.1634/stemcells.2006-0421 PMID: 17038667
  66. Croagh, D.; Thomas, R.J.S.; Phillips, W.A.; Kaur, P. Esophageal stem cells-a review of their identification and characterization. Stem Cell Rev., 2008, 4(4), 261-268. doi: 10.1007/s12015-008-9031-3 PMID: 18679835
  67. Loftus, E.V., Jr Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 2004, 126(6), 1504-1517. doi: 10.1053/j.gastro.2004.01.063 PMID: 15168363
  68. Kumar, M.; Garand, M.; Al Khodor, S. Integrating omics for a better understanding of Inflammatory Bowel Disease: A step towards personalized medicine. J. Transl. Med., 2019, 17(1), 419. doi: 10.1186/s12967-019-02174-1 PMID: 31836022
  69. Conrad, K.; Roggenbuck, D.; Laass, M.W. Diagnosis and classification of ulcerative colitis. Autoimmun. Rev., 2014, 13(4-5), 463-466. doi: 10.1016/j.autrev.2014.01.028 PMID: 24424198
  70. West, N.R.; Hegazy, A.N.; Owens, B.M.J.; Bullers, S.J.; Linggi, B.; Buonocore, S.; Coccia, M.; Görtz, D.; This, S.; Stockenhuber, K.; Pott, J.; Friedrich, M.; Ryzhakov, G.; Baribaud, F.; Brodmerkel, C.; Cieluch, C.; Rahman, N.; Müller-Newen, G.; Owens, R.J.; Kühl, A.A.; Maloy, K.J.; Plevy, S.E.; Keshav, S.; Travis, S.P.L.; Powrie, F. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor–neutralizing therapy in patients with inflammatory bowel disease. Nat. Med., 2017, 23(5), 579-589. doi: 10.1038/nm.4307 PMID: 28368383
  71. Lightner, A.L. Duodenal Crohn’s Disease. Inflamm. Bowel Dis., 2018, 24(3), 546-551. doi: 10.1093/ibd/izx083 PMID: 29462397
  72. Liu, H.; Liang, Z.; Wang, F.; Zhou, C.; Zheng, X.; Hu, T.; He, X.; Wu, X.; Lan, P. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight, 2019, 4(24), e131273. doi: 10.1172/jci.insight.131273 PMID: 31689240
  73. Li, N.; Zhang, Y.; Nepal, N.; Li, G.; Yang, N.; Chen, H.; Lin, Q.; Ji, X.; Zhang, S.; Jin, S. Dental pulp stem cells overexpressing hepatocyte growth factor facilitate the repair of DSS-induced ulcerative colitis. Stem Cell Res. Ther., 2021, 12(1), 30. doi: 10.1186/s13287-020-02098-4 PMID: 33413675
  74. Zhao, Y.; Wang, L.; Jin, Y.; Shi, S. Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J. Dent. Res., 2012, 91(10), 948-954. doi: 10.1177/0022034512458690 PMID: 22904205
  75. Duijvestein, M.; Vos, A.C.W.; Roelofs, H.; Wildenberg, M.E.; Wendrich, B.B.; Verspaget, H.W.; Kooy-Winkelaar, E.M.C.; Koning, F.; Zwaginga, J.J.; Fidder, H.H.; Verhaar, A.P.; Fibbe, W.E.; van den Brink, G.R.; Hommes, D.W. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: Results of a phase I study. Gut, 2010, 59(12), 1662-1669. doi: 10.1136/gut.2010.215152 PMID: 20921206
  76. Barnhoorn, M.C.; Wasser, M.N.J.M.; Roelofs, H.; Maljaars, P.W.J.; Molendijk, I.; Bonsing, B.A.; Oosten, L.E.M.; Dijkstra, G.; van der Woude, C.J.; Roelen, D.L.; Zwaginga, J.J.; Verspaget, H.W.; Fibbe, W.E.; Hommes, D.W.; Peeters, K.C.M.J.; van der Meulen-de Jong, A.E. Long-term evaluation of allogeneic bone marrow-derived mesenchymal stromal cell therapy for crohn’s disease perianal fistulas. J. Crohn’s Colitis, 2020, 14(1), 64-70. doi: 10.1093/ecco-jcc/jjz116 PMID: 31197361
  77. Vieujean, S.; Loly, J.P.; Boutaffala, L.; Meunier, P.; Reenaers, C.; Briquet, A.; Lechanteur, C.; Baudoux, E.; Beguin, Y.; Louis, E. Mesenchymal stem cell injection in crohn’s disease strictures: A phase I–II clinical study. J. Crohn’s Colitis, 2022, 16(3), 506-510. doi: 10.1093/ecco-jcc/jjab154 PMID: 34473270
  78. Wang, H. MicroRNAs and apoptosis in colorectal cancer. Int. J. Mol. Sci., 2020, 21(15), 5353. doi: 10.3390/ijms21155353 PMID: 32731413
  79. Lei, G.; Xu, M.; Xu, Z.; Lu, C.; Tan, S. Combination of novel DR5 targeting agonistic scFv antibody TR2-3 with cisplatin shows enhanced synergistic antitumor activity in vitro and in vivo. Biomed. Pharmacother., 2018, 98, 271-279. doi: 10.1016/j.biopha.2017.12.033 PMID: 29272788
  80. Liu, F.R.; Bai, S.; Feng, Q.; Pan, X.Y.; Song, S.L.; Fang, H.; Cui, J.; Yang, J.L. Anti-colorectal cancer effects of anti-p21Ras scFv delivered by the recombinant adenovirus KGHV500 and cytokine-induced killer cells. BMC Cancer, 2018, 18(1), 1087. doi: 10.1186/s12885-018-4989-y PMID: 30419845
  81. Rajabinejad, M.; Ranjbar, S.; Afshar Hezarkhani, L.; Salari, F.; Gorgin Karaji, A.; Rezaiemanesh, A. Regulatory T cells for amyotrophic lateral sclerosis/motor neuron disease: A clinical and preclinical systematic review. J. Cell. Physiol., 2020, 235(6), 5030-5040. doi: 10.1002/jcp.29401 PMID: 31788795
  82. Rajabinejad, M.; Salari, F.; Gorgin Karaji, A.; Rezaiemanesh, A. The role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis; anti- or pro-inflammatory cells? Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4149-4158. doi: 10.1080/21691401.2019.1687504 PMID: 31698956
  83. Lee, H.Y.; Hong, I.S. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci., 2017, 108(10), 1939-1946. doi: 10.1111/cas.13334 PMID: 28756624
  84. Nikkhah, E.; Kalalinia, F.; Asgharian Rezaee, M.; Tayarani-Najaran, Z. Suppressive effects of dental pulp stem cells and its conditioned medium on development and migration of colorectal cancer cells through MAPKinase pathways. Iran. J. Basic Med. Sci., 2021, 24(9), 1292-1300. PMID: 35083017
  85. Chen, K.; Liu, Q.; Tsang, L.L.; Ye, Q.; Chan, H.C.; Sun, Y.; Jiang, X. Human MSCs promotes colorectal cancer epithelial–mesenchymal transition and progression via CCL5/β-catenin/Slug pathway. Cell Death Dis., 2017, 8(5), e2819. doi: 10.1038/cddis.2017.138 PMID: 28542126
  86. Sani, I.K.; Marashi, S.H.; Kalalinia, F. Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity. Toxicol. In vitro 2015, 29(5), 893-900. doi: 10.1016/j.tiv.2015.03.012 PMID: 25819016
  87. Ramazani, E.; Tayarani-Najaran, Z.; Fereidoni, M. Celecoxib, indomethacin, and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways. Iran. J. Basic Med. Sci., 2019, 22(5), 477-484. PMID: 31217926
  88. Rahiman, N.; Akaberi, M.; Sahebkar, A.; Emami, S.A.; Tayarani-Najaran, Z. Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells. Microvasc. Res., 2018, 118, 82-89. doi: 10.1016/j.mvr.2018.03.003 PMID: 29524452
  89. Yamada, Y.; Nakamura-Yamada, S.; Kusano, K.; Baba, S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int. J. Mol. Sci., 2019, 20(5), 1132. doi: 10.3390/ijms20051132 PMID: 30845639
  90. Wilson, R.; Urraca, N.; Skobowiat, C.; Hope, K.A.; Miravalle, L.; Chamberlin, R.; Donaldson, M.; Seagroves, T.N.; Reiter, L.T. Assessment of the tumorigenic potential of spontaneously immortalized and hTERT -immortalized cultured dental pulp stem cells. Stem Cells Transl. Med., 2015, 4(8), 905-912. doi: 10.5966/sctm.2014-0196 PMID: 26032749
  91. Masuda, K.; Han, X.; Kato, H.; Sato, H.; Zhang, Y.; Sun, X.; Hirofuji, Y.; Yamaza, H.; Yamada, A.; Fukumoto, S. Dental pulp-derived mesenchymal stem cells for modeling genetic disorders. Int. J. Mol. Sci., 2021, 22(5), 2269. doi: 10.3390/ijms22052269 PMID: 33668763
  92. Rubio, D.; Garcia, S.; Paz, M.F.; De la Cueva, T.; Lopez-Fernandez, L.A.; Lloyd, A.C.; Garcia-Castro, J.; Bernad, A. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One, 2008, 3(1), e1398. doi: 10.1371/journal.pone.0001398 PMID: 18167557
  93. Spagnuolo G. Commitment of oral-derived stem cells in dental and maxillofacial applications. Dent J 2018; 6(4). doi: 10.3390/dj6040072
  94. Li, Y.; Lü, X.; Sun, X.; Bai, S.; Li, S.; Shi, J. Odontoblast-like cell differentiation and dentin formation induced with TGF-β1. Arch. Oral Biol., 2011, 56(11), 1221-1229. doi: 10.1016/j.archoralbio.2011.05.002 PMID: 21641578
  95. Dissanayaka, W.L.; Zhu, L.; Hargreaves, K.M.; Jin, L.; Zhang, C. Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J. Dent. Res., 2014, 93(12), 1296-1303. doi: 10.1177/0022034514550040 PMID: 25201919
  96. Prescott, R.S.; Alsanea, R.; Fayad, M.I.; Johnson, B.R.; Wenckus, C.S.; Hao, J.; John, A.S.; George, A. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J. Endod., 2008, 34(4), 421-426. doi: 10.1016/j.joen.2008.02.005 PMID: 18358888
  97. Shen, Z.; Kuang, S.; Zhang, Y.; Yang, M.; Qin, W.; Shi, X.; Lin, Z. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact. Mater., 2020, 5(4), 1113-1126. doi: 10.1016/j.bioactmat.2020.07.002 PMID: 32743122

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024