Delayed Wound Healing in the Elderly and a New Therapeutic Target: CD271


Cite item

Full Text

Abstract

With the development of society, the global population is showing a trend of aging. It is well known that age is one of the factors affecting wound healing. Aging compromises the normal physiological process of wound healing, such as the change of skin structure, the decrease of growth factors, the deceleration of cell proliferation, and the weakening of migration ability, hence delaying wound healing. At present, research in adult stem cell-related technology and its derived regenerative medicine provides a novel idea for the treatment of senile wounds. Studies have confirmed that CD271 (P75 neurotropism receptor/P75NTR)-positive cells (CD271+ cells) are a kind of stem cells with a stronger ability of proliferation, differentiation, migration and secretion than CD271 negative (CD271- cells). Meanwhile, the total amount and distribution of CD271 positive cells in different ages of skin are also different, which may be related to the delayed wound healing of aging skin. Therefore, this article reviews the relationship between CD271+ cells and senile wounds and discusses a new scheme for the treatment of senile wounds.

About the authors

Hongqing Zhao

Department of Plastic Surgery, Jinzhou Medical University

Email: info@benthamscience.net

Sirui Fan

Department of Plastic Surgery, First Affiliated Hospital of Liaoning Medical University

Email: info@benthamscience.net

Jiachen Sun

Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Morita S, Mochizuki M, Wada K, et al. Humanized anti-CD271 monoclonal antibody exerts an anti-tumor effect by depleting cancer stem cells. Cancer Lett 2019; 461: 144-52. doi: 10.1016/j.canlet.2019.07.011 PMID: 31325530
  2. Murillo-Sauca O, Chung MK, Shin JH, et al. CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget 2014; 5(16): 6854-66. doi: 10.18632/oncotarget.2269 PMID: 25149537
  3. Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 2007; 8(9): 703-13. doi: 10.1038/nrm2241 PMID: 17717515
  4. Foerster Y, Stöver T, Wagenblast J, et al. Relevance of neurotrophin receptors CD271 and TrkC for prognosis, migration, and proliferation in head and neck squamous cell carcinoma. Cells 2019; 8(10): 1167.
  5. Hasebe Y, Hasegawa S, Hashimoto N, et al. Analysis of cell characterization using cell surface markers in the dermis. J Dermatol Sci 2011; 62(2): 98-106. doi: 10.1016/j.jdermsci.2011.01.012 PMID: 21382697
  6. Truzzi F, Saltari A, Palazzo E, et al. CD271 mediates stem cells to early progeny transition in human epidermis. J Invest Dermatol 2015; 135(3): 786-95. doi: 10.1038/jid.2014.454 PMID: 25330297
  7. Akamatsu H, Hasegawa S, Yamada T, et al. Age-related decrease in CD271 + cells in human skin. J Dermatol 2016; 43(3): 311-3. doi: 10.1111/1346-8138.13048 PMID: 26300383
  8. Bosset S, Barré P, Chalon A, et al. Skin ageing: Clinical and histopathologic study of permanent and reducible wrinkles. Eur J Dermatol 2002; 12(3): 247-52. PMID: 11978565
  9. Yamamoto N, Akamatsu H, Hasegawa S, et al. Isolation of multipotent stem cells from mouse adipose tissue. J Dermatol Sci 2007; 48(1): 43-52. doi: 10.1016/j.jdermsci.2007.05.015 PMID: 17644316
  10. Khavkin J, Ellis DAF. Aging skin: Histology, physiology, and pathology. Facial Plast Surg Clin North Am 2011; 19(2): 229-34. doi: 10.1016/j.fsc.2011.04.003 PMID: 21763983
  11. Bonté F, Girard D, Archambault JC, Desmoulière A. Skin changes during ageing. Subcell Biochem 2019; 91: 249-80. doi: 10.1007/978-981-13-3681-2_10 PMID: 30888656
  12. Bernstein EF, Chen YQ, Kopp JB, et al. Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by northern analysis, immunohistochemical staining, and confocal laser scanning microscopy. J Am Acad Dermatol 1996; 34(2 Pt 1): 209-18. doi: 10.1016/S0190-9622(96)80114-9 PMID: 8642084
  13. Lovell CR, Smolenski KA, Duance VC, Light ND, Young S, Dyson M. Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol 1987; 117(4): 419-28. doi: 10.1111/j.1365-2133.1987.tb04921.x PMID: 3676091
  14. Montagna W, Carlisle K. Structural changes in aging human skin. J Invest Dermatol 1979; 73(1): 47-53. doi: 10.1111/1523-1747.ep12532761 PMID: 448177
  15. Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol 1990; 16(10): 908-14. doi: 10.1111/j.1524-4725.1990.tb01554.x PMID: 2229632
  16. Jahroomishirazi R, Bader A, Ebert S, et al. Isolation and characterization of CD271+ stem cells derived from sheep dermal skin. Cells Tissues Organs 2014; 200(2): 141-52. doi: 10.1159/000381534 PMID: 25997892
  17. Victorelli S. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J 2019; 38(23): e101982.
  18. Zhang M, Cao Y, Li X, et al. Cd271 mediates proliferation and differentiation of epidermal stem cells to support cutaneous burn wound healing. Cell Tissue Res 2018; 371(2): 273-82. doi: 10.1007/s00441-017-2723-8 PMID: 29150821
  19. Tsuchida Y. The effect of aging and arteriosclerosis on human skin blood flow. J Dermatol Sci 1993; 5(3): 175-81. doi: 10.1016/0923-1811(93)90764-G PMID: 8241073
  20. Gniadecka M, Serup J, Søndergaard J. Age-related diurnal changes of dermal oedema: Evaluation by high-frequency ultrasound. Br J Dermatol 1994; 131(6): 849-55. doi: 10.1111/j.1365-2133.1994.tb08588.x PMID: 7857838
  21. Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: A review. Int J Cosmet Sci 2008; 30(2): 87-95. doi: 10.1111/j.1468-2494.2007.00415.x PMID: 18377617
  22. Pochi PE, Strauss JS, Downing DT. Age-related changes in sebaceous gland activity. J Invest Dermatol 1979; 73(1): 108-11. doi: 10.1111/1523-1747.ep12532792 PMID: 448169
  23. Bonham CA, Kuehlmann B, Gurtner GC. Impaired neovascularization in aging. Adv Wound Care 2020; 9(3): 111-26. doi: 10.1089/wound.2018.0912
  24. Nguyen HP, Katta R. Sugar Sag: Glycation and the role of diet in aging skin. Skin Therapy Lett 2015; 20(6): 1-5. PMID: 27224842
  25. Tashkin DP, Murray HE, Skeans M, Murray RP. Skin manifestations of inhaled corticosteroids in COPD patients: Results from Lung Health Study II. Chest 2004; 126(4): 1123-33. doi: 10.1016/S0012-3692(15)31287-3 PMID: 15486373
  26. Bentov I, Reed MJ. Anesthesia, microcirculation, and wound repair in aging. Anesthesiology 2014; 120(3): 760-72. doi: 10.1097/ALN.0000000000000036 PMID: 24195972
  27. Pal R, Singh SN, Chatterjee A, Saha M. Age-related changes in cardiovascular system, autonomic functions, and levels of BDNF of healthy active males: role of yogic practice. Age 2014; 36(4): 9683. doi: 10.1007/s11357-014-9683-7 PMID: 25012275
  28. Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J Immunol 2013; 1904: 1746-57. doi: 10.4049/jimmunol.1201213
  29. Sgonc R, Gruber J. Age-related aspects of cutaneous wound healing: A mini-review. Gerontology 2013; 59(2): 159-64. doi: 10.1159/000342344 PMID: 23108154
  30. Wilkinson HN, Hardman MJ. Senescence in wound repair: Emerging strategies to target chronic healing wounds. Front Cell Dev Biol 2020; 8: 773. doi: 10.3389/fcell.2020.00773 PMID: 32850866
  31. Altavilla D, Saitta A, Cucinotta D, et al. Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse. Diabetes 2001; 50(3): 667-74. doi: 10.2337/diabetes.50.3.667 PMID: 11246889
  32. Greaves NS, Ashcroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci 2013; 72(3): 206-17. doi: 10.1016/j.jdermsci.2013.07.008 PMID: 23958517
  33. Peake MA, Caley M, Giles PJ, et al. Identification of a transcriptional signature for the wound healing continuum. Wound Repair Regen 2014; 22(3): 399-405. doi: 10.1111/wrr.12170 PMID: 24844339
  34. Nall AV, Brownlee RE, Colvin CP, et al. Transforming growth factor beta 1 improves wound healing and random flap survival in normal and irradiated rats. Arch Otolaryngol Head Neck Surg 1996; 122(2): 171-7. doi: 10.1001/archotol.1996.01890140057011 PMID: 8630211
  35. Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: A review. Int J Burns Trauma 2012; 2(1): 18-28. PMID: 22928164
  36. Zorin V, Zorina A, Smetanina N, et al. Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation. Aging 2017; 9(5): 1404-13. doi: 10.18632/aging.101240
  37. Sadoun E, Reed MJ. Impaired angiogenesis in aging is associated with alterations in vessel density, matrix composition, inflammatory response, and growth factor expression. J Histochem Cytochem 2003; 51(9): 1119-30. doi: 10.1177/002215540305100902 PMID: 12923237
  38. Kim DJ, Mustoe T, Clark RAF. Cutaneous wound healing in aging small mammals: A systematic review. Wound Repair Regen 2015; 23(3): 318-39. doi: 10.1111/wrr.12290 PMID: 25817246
  39. Beckert S, Haack S, Hierlemann H, et al. Stimulation of steroid-suppressed cutaneous healing by repeated topical application of IGF-I: Different mechanisms of action based upon the mode of IGF-I delivery. J Surg Res 2007; 139(2): 217-21. doi: 10.1016/j.jss.2006.08.006 PMID: 17070552
  40. Liarte S, Bernabé-García Á, Nicolás FJ. Role of TGF-β in skin chronic wounds: A keratinocyte perspective. Cells 2020; 9(2): 306. doi: 10.3390/cells9020306 PMID: 32012802
  41. Reed MJ, Corsa AC, Kudravi SA, McCormick RS, Arthur WT. A deficit in collagenase activity contributes to impaired migration of aged microvascular endothelial cells. J Cell Biochem 2000; 77(1): 116-26. doi: 10.1002/(SICI)1097-4644(20000401)77:13.0.CO;2-7 PMID: 10679822
  42. Bond JS, Duncan JAL, Sattar A, et al. Maturation of the human scar: An observational study. Plast Reconstr Surg 2008; 121(5): 1650-8. doi: 10.1097/PRS.0b013e31816a9f6f PMID: 18453989
  43. Oh S. Combined treatment of monopolar and bipolar radiofrequency increases skin elasticity by decreasing the accumulation of advanced glycated end products in aged animal skin. Int J Mol Sci 2022; 23(6)
  44. Anastasia A, Barker PA, Chao MV, Hempstead BL. Detection of p75NTR trimers: Implications for receptor stoichiometry and activation. J Neurosci 2015; 35(34): 11911-20. doi: 10.1523/JNEUROSCI.0591-15.2015 PMID: 26311773
  45. Zhang N, Yuan W, Fan JS, Lin Z. Structure of the C-terminal domain of TRADD reveals a novel fold in the death domain superfamily. Sci Rep 2017; 7(1): 7073. doi: 10.1038/s41598-017-07348-9 PMID: 28765645
  46. Maffioli E. Brain proteome and behavioural analysis in wild type, BDNF +/- and BDNF -/- Adult Zebrafish (Danio rerio) exposed to two different temperatures. Int J Mol Sci 2022; 23(10)
  47. Lehraiki A, Cerezo M, Rouaud F, et al. Increased CD271 expression by the NF-kB pathway promotes melanoma cell survival and drives acquired resistance to BRAF inhibitor vemurafenib. Cell Discov 2015; 27(1): 15030. doi: 10.1038/celldisc.2015.30
  48. Shu YH, Lu XM, Wei JX, Xiao L, Wang YT. Update on the role of p75NTR in neurological disorders: A novel therapeutic target. Biomed Pharmacother 2015; 76: 17-23. doi: 10.1016/j.biopha.2015.10.010 PMID: 26653545
  49. Bothwell M. Recent advances in understanding neurotrophin signaling. F1000Res 2016; 5: F1000. Faculty Rev- 1885.
  50. Nielsen PS, Riber-Hansen R, Steiniche T. Immunohistochemical CD271 expression correlates with melanoma progress in a case-control study. Pathology 2018; 50(4): 402-10. doi: 10.1016/j.pathol.2017.12.340 PMID: 29678478
  51. Mochizuki M, Tamai K, Imai T, et al. CD271 regulates the proliferation and motility of hypopharyngeal cancer cells. Sci Rep 2016; 29(6): 30707. doi: 10.1038/srep30707
  52. Nakamura T, Endo K, Kinoshita S. Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells 2007; 25(3): 628-38. doi: 10.1634/stemcells.2006-0494 PMID: 17110619
  53. Okumura T, Shimada Y, Imamura M, Yasumoto S. Neurotrophin receptor p75NTR characterizes human esophageal keratinocyte stem cells in vitro. Oncogene 2003; 22(26): 4017-26. doi: 10.1038/sj.onc.1206525 PMID: 12821936
  54. Latifi-Pupovci H, Kuçi Z, Wehner S, et al. In vitro migration and proliferation ("wound healing") potential of mesenchymal stromal cells generated from human CD271(+) bone marrow mononuclear cells. J Transl Med 2015; 25(13): 315.
  55. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 2009; 37(5): 1528-42. doi: 10.1177/147323000903700531 PMID: 19930861
  56. Iwata Y, Akamatsu H, Hasebe Y, Hasegawa S, Sugiura K. Skin-resident stem cells and wound healing. Nihon Rinsho Meneki Gakkai Kaishi 2017; 40(1): 1-11. doi: 10.2177/jsci.40.1 PMID: 28539548
  57. Nieto-Estévez V, Pignatelli J, Araúzo-Bravo MJ, Hurtado-Chong A, Vicario-Abejón C. A global transcriptome analysis reveals molecular hallmarks of neural stem cell death, survival, and differentiation in response to partial FGF-2 and EGF deprivation. PLoS One 2013; 8(1): e53594. doi: 10.1371/journal.pone.0053594 PMID: 23308259
  58. Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G, Niemann C. Human skin stem cells and the ageing process. Exp Gerontol 2008; 43(11): 986-97. doi: 10.1016/j.exger.2008.09.001 PMID: 18809487
  59. Iwata Y, Hasebe Y, Hasegawa S, et al. Dermal CD271+ cells are closely associated with regeneration of the dermis in the wound healing process. Acta Derm Venereol 2017; 97(5): 593-600. doi: 10.2340/00015555-2624 PMID: 28127619
  60. Zhang M, Zhang R, Li X, et al. CD271 promotes STZ-induced diabetic wound healing and regulates epidermal stem cell survival in the presence of the pTrkA receptor. Cell Tissue Res 2020; 379(1): 181-93. doi: 10.1007/s00441-019-03125-4 PMID: 31768712
  61. Yamada T, Akamatsu H, Hasegawa S, et al. Age-related changes of p75 Neurotrophin receptor-positive adipose-derived stem cells. J Dermatol Sci 2010; 58(1): 36-42. doi: 10.1016/j.jdermsci.2010.02.003 PMID: 20194005
  62. Akamatsu H, Yamada T, Sanada A, et al. Age-related decrease in responsiveness of CD271 positive skin stem cells to growth factors. Exp Dermatol 2022; 31(8): exd.14601.. doi: 10.1111/exd.14601 PMID: 35524485
  63. Iwata Y, Akamatsu H, Hasegawa S, et al. The epidermal Integrin beta-1 and p75NTR positive cells proliferating and migrating during wound healing produce various growth factors, while the expression of p75NTR is decreased in patients with chronic skin ulcers. J Dermatol Sci 2013; 71(2): 122-9. doi: 10.1016/j.jdermsci.2013.04.006 PMID: 23642664
  64. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83(12): 4167-71. doi: 10.1073/pnas.83.12.4167 PMID: 2424019
  65. Galiano RD, Tepper OM, Pelo CR, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 2004; 164(6): 1935-47. doi: 10.1016/S0002-9440(10)63754-6 PMID: 15161630
  66. Nauta A, Seidel C, Deveza L, et al. Adipose-derived stromal cells overexpressing vascular endothelial growth factor accelerate mouse excisional wound healing. Mol Ther 2013; 21(2): 445-55. doi: 10.1038/mt.2012.234 PMID: 23164936
  67. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217. doi: 10.1016/j.cell.2013.05.039
  68. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol 2004; 165(3): 741-51. doi: 10.1016/S0002-9440(10)63337-8 PMID: 15331399
  69. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107(2): 135-42. doi: 10.1172/JCI11914 PMID: 11160126
  70. Plikus MV, Gay DL, Treffeisen E, Wang A, Supapannachart RJ, Cotsarelis G. Epithelial stem cells and implications for wound repair. Semin Cell Dev Biol 2012; 23(9): 946-53. doi: 10.1016/j.semcdb.2012.10.001 PMID: 23085626
  71. Gordon W, Andersen B. A nervous hedgehog rolls into the hair follicle stem cell scene. Cell Stem Cell 2011; 8(5): 459-60. doi: 10.1016/j.stem.2011.04.005 PMID: 21549317
  72. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990; 61(7): 1329-37. doi: 10.1016/0092-8674(90)90696-C PMID: 2364430
  73. Horsley V, O’Carroll D, Tooze R, et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 2006; 126(3): 597-609. doi: 10.1016/j.cell.2006.06.048
  74. Renault VM, Rafalski VA, Morgan AA, et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 2009; 5(5): 527-39. doi: 10.1016/j.stem.2009.09.014
  75. Schultz MB, Sinclair DA. When stem cells grow old: Phenotypes and mechanisms of stem cell aging. Development 2016; 143(1): 3-14. doi: 10.1242/dev.130633 PMID: 26732838

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers