Transcriptional Factors Mediated Reprogramming to Pluripotency


Cite item

Full Text

Abstract

A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.

About the authors

Nazira Fatima

Laboratory Animal Center,, Xi’an Jiaotong University Health Science Center,

Email: info@benthamscience.net

Muhammad Saif Ur Rahman

Institute of Advanced Studies,, Shenzhen University

Email: info@benthamscience.net

Muhammad Qasim

Department of Bioinformatics and Biotechnology,, Government College University, Faisalabad

Email: info@benthamscience.net

Usman Ali Ashfaq

Department of Bioinformatics and Biotechnology,, Government College University, Faisalabad

Email: info@benthamscience.net

Uzair Ahmed

EMBL Partnership Institute for Genome Editing Technologies,, Vilnius University

Email: info@benthamscience.net

Muhammad Masoud

Department of Bioinformatics and Biotechnology,, Government College University, Faisalabad

Author for correspondence.
Email: info@benthamscience.net

References

  1. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci 1952; 38(5): 455-63. doi: 10.1073/pnas.38.5.455 PMID: 16589125
  2. Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Development 1962; 10(4): 622-40. doi: 10.1242/dev.10.4.622 PMID: 13951335
  3. Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature 2006; 441(7097): 1061-7. doi: 10.1038/nature04955 PMID: 16810240
  4. Warren L, C. Lin. mRNA-based genetic reprogramming. Molecular Therapy 2019; 27: pp. (4)729-34. doi: 10.1016/j.ymthe.2018.12.009
  5. Feng B, Ng JH, Heng JCD, Ng HH. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 2009; 4(4): 301-12. doi: 10.1016/j.stem.2009.03.005 PMID: 19341620
  6. Kim JS, Choi HW, Choi S, Do JT. Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells 2011; 4(1): 1-8. doi: 10.15283/ijsc.2011.4.1.1 PMID: 24298328
  7. Edwards JL, Schrick FN, McCracken MD, et al. Cloning adult farm animals: A review of the possibilities and problems associated with somatic cell nuclear transfer. Am J Reprod Immunol 2003; 50(2): 113-23. doi: 10.1034/j.1600-0897.2003.00064.x PMID: 12846674
  8. Vierbuchen T, Wernig M. Direct lineage conversions: Unnatural but useful? Nat Biotechnol 2011; 29(10): 892-907. doi: 10.1038/nbt.1946 PMID: 21997635
  9. Blau HM, Chiu CP, Webster C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 1983; 32(4): 1171-80. doi: 10.1016/0092-8674(83)90300-8 PMID: 6839359
  10. Pfannkuche K, Hannes T, Khalil M, et al. Induced pluripotent stem cells: A new approach for physiological research. Cell Physiol Biochem 2010; 26(2): 105-24. doi: 10.1159/000320514 PMID: 20798495
  11. Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 2016; 17(3): 183-93. doi: 10.1038/nrm.2016.8 PMID: 26883003
  12. Zeineddine D, Hammoud AA, Mortada M, Boeuf H. The Oct4 protein: More than a magic stemness marker. Am J Stem Cells 2014; 3(2): 74-82. PMID: 25232507
  13. Buganim Y, Markoulaki S, van Wietmarschen N, et al. The developmental potential of iPSCs is greatly influenced by reprogramming factor selection. Cell Stem Cell 2014; 15(3): 295-309. doi: 10.1016/j.stem.2014.07.003 PMID: 25192464
  14. Limaye A, Hall B, Kulkarni AB. Manipulation of mouse embryonic stem cells for knockout mouse production. Curr Protoc Cell Biol 2009; 44(1): 19. doi: 10.1002/0471143030.cb1913s44
  15. Saunders A, Faiola F, Wang J. Concise review: Pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 2013; 31(7): 1227-36. doi: 10.1002/stem.1384 PMID: 23653415
  16. Graf U, Casanova EA, Cinelli P. The role of the leukemia inhibitory factor (LIF)—pathway in derivation and maintenance of murine pluripotent stem cells. Genes 2011; 2(1): 280-97. doi: 10.3390/genes2010280 PMID: 24710148
  17. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998; 12(13): 2048-60. doi: 10.1101/gad.12.13.2048 PMID: 9649508
  18. Yoshida GJ. Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res 2018; 37(1): 1-20. PMID: 29301578
  19. Burdon T, Stracey C, Chambers I, Nichols J, Smith A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 1999; 210(1): 30-43. doi: 10.1006/dbio.1999.9265 PMID: 10364425
  20. Cheng AM, Saxton TM, Sakai R, et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 1998; 95(6): 793-803. doi: 10.1016/S0092-8674(00)81702-X PMID: 9865697
  21. Yeo JC, Ng HH. The transcriptional regulation of pluripotency. Cell Res 2013; 23(1): 20-32. doi: 10.1038/cr.2012.172 PMID: 23229513
  22. Palmqvist L, Glover CH, Hsu L, et al. Correlation of murine embryonic stem cell gene expression profiles with functional measures of pluripotency. Stem Cells 2005; 23(5): 663-80. doi: 10.1634/stemcells.2004-0157 PMID: 15849174
  23. Kitamura T, Koshino Y, Shibata F, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 2003; 31(11): 1007-14. doi: 10.1016/S0301-472X(03)00260-1 PMID: 14585362
  24. Han JW, Yoon Y. Induced pluripotent stem cells: emerging techniques for nuclear reprogramming. Antioxid Redox Signal 2011; 15(7): 1799-820. doi: 10.1089/ars.2010.3814 PMID: 21194386
  25. Frisén J, Lendahl U, Perimann T. Mature cells can be reprogrammed to become pluripotent. The 2012 Nobel Prize in Physiology or Medicine–Advanced Information. 2012. Available from: http://Nobelprizeorg
  26. Wilmut I, Sullivan G, Chambers I. The evolving biology of cell reprogramming. Philos Trans R SocB 2011; 366(1575): 2183-97. doi: 10.1098/rstb.2011.0051
  27. Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 2005; 25(4): 1215-27. doi: 10.1128/MCB.25.4.1215-1227.2005 PMID: 15684376
  28. Di Tullio A, Manh TPV, Schubert A, Castellano G, Månsson R, Graf T. CCAAT/enhancer binding protein α (C/EBPα)-induced transdifferentiation of pre-B cells into macrophages involves no overt retrodifferentiation. Proc Natl Acad Sci 2011; 108(41): 17016-21. doi: 10.1073/pnas.1112169108 PMID: 21969581
  29. Shafa M, Krawetz R, Rancourt DE. Returning to the stem state: Epigenetics of recapitulating pre-differentiation chromatin structure. BioEssays 2010; 32(9): 791-9. doi: 10.1002/bies.201000033 PMID: 20652894
  30. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012; 481(7381): 295-305. doi: 10.1038/nature10761 PMID: 22258608
  31. García-León JA, Kumar M, Boon R, et al. SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem cells. Stem Cell Reports 2018; 10(2): 655-72. doi: 10.1016/j.stemcr.2017.12.014 PMID: 29337119
  32. Tsai SY, Bouwman BA, Ang YS, et al. Single transcription factor reprogramming of hair follicle dermal papilla cells to induced pluripotent stem cells. Stem Cells 2011; 29(6): 964-71. doi: 10.1002/stem.649 PMID: 21563278
  33. Fujino S, Miyoshi N. Oct4 gene expression in primary colorectal cancer promotes liver metastasis. Stem Cells Int 2019; 2019: 7896524. doi: 10.1155/2019/7896524
  34. Kim BE, Choi SW, Shin JH, et al. Single-factor SOX2 mediates direct neural reprogramming of human mesenchymal stem cells via transfection of in vitro transcribed mRNA. Cell Transplant 2018; 27(7): 1154-67. doi: 10.1177/0963689718771885 PMID: 29909688
  35. Dhaliwal NK, Abatti LE, Mitchell JA. KLF4 protein stability regulated by interaction with pluripotency transcription factors overrides transcriptional control. Genes Dev 2019; 33(15-16): 1069-82. doi: 10.1101/gad.324319.119 PMID: 31221664
  36. González F, Huangfu D. Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdiscip Rev Dev Biol 2016; 5(1): 39-65. doi: 10.1002/wdev.206 PMID: 26383234
  37. Winkler T, Cantilena A, Métais JY, et al. No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells. Stem Cells 2010; 28(4): 687-94. doi: 10.1002/stem.322 PMID: 20166152
  38. Okita K, Yamakawa T, Matsumura Y, et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 2013; 31(3): 458-66. doi: 10.1002/stem.1293 PMID: 23193063
  39. Zhou Q, Liu M, Xia X, et al. A mouse tissue transcription factor atlas. Nat Commun 2017; 8(1): 15089. doi: 10.1038/ncomms15089 PMID: 28429721
  40. Kribelbauer JF, Rastogi C, Bussemaker HJ, Mann RS. Low-affinity binding sites and the transcription factor specificity paradox in eukaryotes. Annu Rev Cell Dev Biol 2019; 35(1): 357-79. doi: 10.1146/annurev-cellbio-100617-062719 PMID: 31283382
  41. Wang X, Cairns MJ, Yan J. Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Res 2019; 47(22): gkz1038. doi: 10.1093/nar/gkz1038 PMID: 31724731
  42. Tang F, Yang Z, Tan Y, Li Y. Super-enhancer function and its application in cancer targeted therapy. NPJ Precis Oncol 2020; 4(1): 2. doi: 10.1038/s41698-020-0108-z PMID: 32128448
  43. Lee K, Wong W, Feng B. Decoding the pluripotency network: The emergence of new transcription factors. Biomedicines 2013; 1(1): 49-78. doi: 10.3390/biomedicines1010049 PMID: 28548056
  44. Bhinge AA. A functional genomics approach to map transcriptional and post-transcriptional gene regulatory network 2009.
  45. Class I. USPC AN Patent application title: SUPER-ENHANCERS AND METHODS OF USE THEREOF Inventors: Denes Hnisz (Cambridge, MA, US) Brian Abraham (Cambridge, MA, US) Tong Ihn Lee (Somerville, MA, US) Richard A Young (Weston, MA, US). Richard A. Young: Weston, MA, US 2014.
  46. Schoenfelder S, Fraser P. Long-range enhancer–promoter contacts in gene expression control. Nat Rev Genet 2019; 20(8): 437-55. doi: 10.1038/s41576-019-0128-0 PMID: 31086298
  47. Spitz F, Furlong EEM. Transcription factors: From enhancer binding to developmental control. Nat Rev Genet 2012; 13(9): 613-26. doi: 10.1038/nrg3207 PMID: 22868264
  48. Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol 2015; 16(3): 144-54. doi: 10.1038/nrm3949 PMID: 25650801
  49. Bi X, Xu Y, Li T, Li X, Li W, Shao W. RNA targets ribogenesis factor WDR43 to chromatin for transcription and pluripotency control. Molecular cell 2019; 75(1): 102-16.e9. doi: 10.1016/j.molcel.2019.05.007
  50. Kamachi Y, Kondoh H. Sox proteins: Regulators of cell fate specification and differentiation. Development 2013; 140(20): 4129-44. doi: 10.1242/dev.091793 PMID: 24086078
  51. Fagnocchi L, Zippo A. Multiple roles of MYC in integrating regulatory networks of pluripotent stem cells. Front Cell Dev Biol 2017; 5: 7. doi: 10.3389/fcell.2017.00007 PMID: 28217689
  52. Malik V, Glaser LV, Zimmer D, et al. Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for Oct4 and Sox2. Nat Commun 2019; 10(1): 3477. doi: 10.1038/s41467-019-11054-7 PMID: 31375664
  53. Niwa H. The principles that govern transcription factor network functions in stem cells. Development 2018; 145(6): dev157420. doi: 10.1242/dev.157420
  54. Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 2015; 161(3): 555-68. doi: 10.1016/j.cell.2015.03.017 PMID: 25892221
  55. Aksoy I, Jauch R, Chen J, et al. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J 2013; 32(7): 938-53. doi: 10.1038/emboj.2013.31 PMID: 23474895
  56. Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells 2014; 6(3): 305-11. doi: 10.4252/wjsc.v6.i3.305 PMID: 25126380
  57. Costa RH, Kalinichenko VV, Lim L. Transcription factors in mouse lung development and function. Am J Physiol Lung Cell Mol Physiol 2001; 280(5): L823-38. doi: 10.1152/ajplung.2001.280.5.L823 PMID: 11290504
  58. Kashyap V, Rezende NC, Scotland KB, et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 2009; 18(7): 1093-108. doi: 10.1089/scd.2009.0113 PMID: 19480567
  59. Rodda DJ, Chew JL, Lim LH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280(26): 24731-7. doi: 10.1074/jbc.M502573200 PMID: 15860457
  60. Niwa H. The principles that govern transcription factor network functions in stem cells. Development 2018; 145(6): dev157420. doi: 10.1242/dev.157420 PMID: 29540464
  61. Davies K. Regulation of Stomatal Development Initiation and Cell Fate Transitions by the bHLH Transcription Factor Speechless. PhD Dissertation Stanford University 2014.
  62. Chen JX, et al. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5 Circulation research 2012; 111(1): 50-5.
  63. Gökbuget D, Blelloch R. Epigenetic control of transcriptional regulation in pluripotency and early differentiation. Development 2019; 146(19): dev164772. doi: 10.1242/dev.164772 PMID: 31554624
  64. Chen AF, Liu AJ, Krishnakumar R, Freimer JW, DeVeale B, Blelloch R. GRHL2-dependent enhancer switching maintains a pluripotent stem cell transcriptional subnetwork after exit from naive pluripotency. Cell Stem Cell 2018; 23(2): 226-38. doi: 10.1016/j.stem.2018.06.005
  65. Buganim Y, Faddah DA, Jaenisch R. Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 2013; 14(6): 427-39. doi: 10.1038/nrg3473 PMID: 23681063
  66. Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000; 64(2): 435-59. doi: 10.1128/MMBR.64.2.435-459.2000 PMID: 10839822
  67. Schmidt R, Plath K. The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biol 2012; 13(10): 251. doi: 10.1186/gb-2012-13-10-251 PMID: 23088445
  68. Koche RP, Smith ZD, Adli M, et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 2011; 8(1): 96-105. doi: 10.1016/j.stem.2010.12.001 PMID: 21211784
  69. Sridharan R, Tchieu J, Mason MJ, et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 2009; 136(2): 364-77. doi: 10.1016/j.cell.2009.01.001 PMID: 19167336
  70. Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 2012; 151(5): 994-1004. doi: 10.1016/j.cell.2012.09.045 PMID: 23159369
  71. Chen J, Liu H, Liu J, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet 2013; 45(1): 34-42. doi: 10.1038/ng.2491 PMID: 23202127
  72. Liang G, He J, Zhang Y. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat Cell Biol 2012; 14(5): 457-66. doi: 10.1038/ncb2483 PMID: 22522173
  73. Wang T, Chen K, Zeng X, et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 2011; 9(6): 575-87. doi: 10.1016/j.stem.2011.10.005 PMID: 22100412
  74. Onder TT, Kara N, Cherry A, et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012; 483(7391): 598-602. doi: 10.1038/nature10953 PMID: 22388813
  75. Zhang B, Day DS, Ho JW, et al. A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity. Genome Res 2013; 23(6): 917-27. doi: 10.1101/gr.149674.112 PMID: 23547170
  76. Xie G, Lee JE, McKernan K, et al. (2020) MLL3/MLL4 methyltransferase activities regulate embryonic stem cell differentiation independent of enhancer H3K4me1. bioRxiv 2020; 09
  77. Seymour T, Twigger AJ, Kakulas F. Pluripotency genes and their functions in the normal and aberrant breast and brain. Int J Mol Sci 2015; 16(11): 27288-301. doi: 10.3390/ijms161126024 PMID: 26580604
  78. Cao K, Collings CK, Morgan MA, et al. An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells. Sci Adv 2018; 4(1): eaap8747. doi: 10.1126/sciadv.aap8747 PMID: 29404406
  79. Sze CC, Shilatifard A. MLL3/MLL4/COMPASS family on epigenetic regulation of enhancer function and cancer. Cold Spring Harb Perspect Med 2016; 6(11): a026427. doi: 10.1101/cshperspect.a026427 PMID: 27638352
  80. Yan J, Chen SAA, Local A, et al. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res 2018; 28(2): 204-20. doi: 10.1038/cr.2018.1 PMID: 29313530
  81. Bernatavichute YV. Mechanisms of CMT3 activation and histone methylation in Arabidopsis thaliana. PhD Dissertation Los Angeles: University of California 2009.
  82. Vignali M, Hassan AH, Neely KE, Workman JL. ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 2000; 20(6): 1899-910. doi: 10.1128/MCB.20.6.1899-1910.2000 PMID: 10688638
  83. Zhang H, Gayen S, Xiong J, et al. MLL1 inhibition reprograms epiblast stem cells to naive pluripotency. Cell Stem Cell 2016; 18(4): 481-94. doi: 10.1016/j.stem.2016.02.004 PMID: 26996599
  84. Prakash K, Fournier D. Evidence for the implication of the histone code in building the genome structure. Biosystems 2018; 164: 49-59. doi: 10.1016/j.biosystems.2017.11.005 PMID: 29158132
  85. Hayakawa T, Nakayama J-i. Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol 2011; 2011: 129383. doi: 10.1155/2011/129383
  86. Jamaladdin SJ. Investigating the physiological role of HDAC1 and HDAC2 in embryonic stem cells. PhD Dissertation University of Leicester 2016.
  87. Parbin S, Kar S, Shilpi A, et al. Histone Deacetylases. J Histochem Cytochem 2014; 62(1): 11-33. doi: 10.1369/0022155413506582 PMID: 24051359
  88. Yang XJ, Grégoire S. Class II histone deacetylases: From sequence to function, regulation, and clinical implication. Mol Cell Biol 2005; 25(8): 2873-84. doi: 10.1128/MCB.25.8.2873-2884.2005 PMID: 15798178
  89. Baas R. Mechanisms controlling SMAD-dependent transcription and chromatin modification. Utrecht University 2017.
  90. Biddlestone J, Batie M, Bandarra D, Munoz I, Rocha S. SINHCAF/FAM60A and SIN3A specifically repress HIF-2α expression. Biochem J 2018; 475(12): 2073-90. doi: 10.1042/BCJ20170945 PMID: 29784889
  91. Ohi Y, Qin H, Hong C, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 2011; 13(5): 541-9. doi: 10.1038/ncb2239 PMID: 21499256
  92. Nashun B, Hill PWS, Hajkova P. Reprogramming of cell fate: Epigenetic memory and the erasure of memories past. EMBO J 2015; 34(10): 1296-308. doi: 10.15252/embj.201490649 PMID: 25820261
  93. Chang G, Gao S, Hou X, et al. High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells. Cell Res 2014; 24(3): 293-306. doi: 10.1038/cr.2013.173 PMID: 24381111
  94. Pawlak M, Jaenisch R. De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev 2011; 25(10): 1035-40. doi: 10.1101/gad.2039011 PMID: 21576263
  95. Kallingappa PK, Turner PM, Eichenlaub MP, Green AL, Oback FC, Chibnall AM. Quiescence loosens epigenetic constraints in bovine somatic cells and improves their reprogramming into totipotency. Biol Reprod 2016; 95(1): 16. doi: 10.1095/biolreprod.115.137109
  96. Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 2004; 61(19-20): 2571-87. doi: 10.1007/s00018-004-4201-1 PMID: 15526163
  97. Guo H, Zhu P, Yan L, et al. The DNA methylation landscape of human early embryos. Nature 2014; 511(7511): 606-10. doi: 10.1038/nature13544 PMID: 25079557
  98. Paniza T, Deshpande M, Wang N, et al. Pluripotent stem cells with low differentiation potential contain incompletely reprogrammed DNA replication. J Cell Biol 2020; 219(9): e201909163. doi: 10.1083/jcb.201909163 PMID: 32673399
  99. Parry A, Rulands S, Reik W. (2021); Active turnover of DNA methylation during cell fate decisions. Natture Reviews Genetics 22(1): 59-66.
  100. Suetake I, Watanebe M, Takeshita K, Takahashi S, Carlton P. The Molecular Basis of DNA Methylation In: Kameda A, Tsukada Yi, Eds DNA and Histone Methylation as Cancer Targets. Cham: Humana Press 2017; pp. 19-51. doi: 10.1007/978-3-319-59786-7_2
  101. von Meyenn F, Iurlaro M, Habibi E, et al. Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol Cell 2016; 62(6): 848-61. doi: 10.1016/j.molcel.2016.04.025 PMID: 27237052
  102. Zhang J, Gao Q, Li P, et al. S phase-dependent interaction with DNMT1 dictates the role of UHRF1 but not UHRF2 in DNA methylation maintenance. Cell Res 2011; 21(12): 1723-39. doi: 10.1038/cr.2011.176 PMID: 22064703
  103. Kalkan T, Olova N, Roode M, et al. Tracking the embryonic stem cell transition from ground state pluripotency.Development 2017; 144(7): dev.142711. doi: 10.1242/dev.142711 PMID: 28174249
  104. Singer ZS, Yong J, Tischler J, et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol Cell 2014; 55(2): 319-31. doi: 10.1016/j.molcel.2014.06.029 PMID: 25038413
  105. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 2016; 30(7): 733-50. doi: 10.1101/gad.276568.115 PMID: 27036965
  106. Dawlaty MM, Breiling A, Le T, et al. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell 2014; 29(1): 102-11. doi: 10.1016/j.devcel.2014.03.003 PMID: 24735881
  107. Pantier R, Tatar T, Colby D, Chambers I. Endogenous epitope-tagging of Tet1, Tet2 and Tet3 identifies TET2 as a naïve pluripotency marker. Life Sci Alliance 2019; 2(5): e201900516. doi: 10.26508/lsa.201900516 PMID: 31582397
  108. Fidalgo M, Huang X, Guallar D, et al. Zfp281 coordinates opposing functions of Tet1 and Tet2 in pluripotent states. Cell Stem Cell 2016; 19(3): 355-69. doi: 10.1016/j.stem.2016.05.025 PMID: 27345836
  109. Kim K, Zhao R, Doi A, et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 2011; 29(12): 1117-9. doi: 10.1038/nbt.2052 PMID: 22119740
  110. Liu MY. Deciphering the tetrad of epigenetic cytosine modifications 2016.
  111. Dahl C, Grønbæk K, Guldberg P. Advances in DNA methylation: 5-hydroxymethylcytosine revisited. Clin Chim Acta 2011; 412(11-12): 831-6. doi: 10.1016/j.cca.2011.02.013 PMID: 21324307
  112. Olariu V, Lövkvist C, Sneppen K. Nanog, Oct4 and Tet1 interplay in establishing pluripotency. Sci Rep 2016; 6(1): 25438. doi: 10.1038/srep25438 PMID: 27146218
  113. Hu X, Zhang L, Mao SQ, et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 2014; 14(4): 512-22. doi: 10.1016/j.stem.2014.01.001 PMID: 24529596
  114. Huang Y, Rao A. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet 2014; 30(10): 464-74. doi: 10.1016/j.tig.2014.07.005 PMID: 25132561
  115. De Carvalho DD, You JS, Jones PA. DNA methylation and cellular reprogramming. Trends Cell Biol 2010; 20(10): 609-17. doi: 10.1016/j.tcb.2010.08.003 PMID: 20810283
  116. Han C, Deng R, Mao T, et al. Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency. FEBS J 2018; 285(14): 2708-23. doi: 10.1111/febs.14515 PMID: 29791079
  117. Ringrose L. Epigenetics and Systems Biology. Academic Press 2017.
  118. Kim KP, Wu Y, Yoon J, et al. Reprogramming competence of OCT factors is determined by transactivation domains. Sci Adv 2020; 6(36): eaaz7364. doi: 10.1126/sciadv.aaz7364 PMID: 32917606
  119. Spehalski E, Kovalchuk AL, Collins JT, et al. Oncogenic Myc translocations are independent of chromosomal location and orientation of the immunoglobulin heavy chain locus. Proc Natl Acad Sci 2012; 109(34): 13728-32. doi: 10.1073/pnas.1202882109 PMID: 22869734
  120. Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 2020; 39(1): 100. doi: 10.1186/s13046-020-01584-0 PMID: 32493501
  121. Wang T, Shi S, Sha H. MicroRNAs in regulation of pluripotency and somatic cell reprogramming. RNA Biol 2013; 10(8): 1255-61. doi: 10.4161/rna.25828 PMID: 23921205
  122. Choi YJ, Lin CP, Risso D, et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells.Science 2017; 355(6325): eaag1927. doi: 10.1126/science.aag1927 PMID: 28082412
  123. Festuccia N, Gonzalez I, Navarro P. The epigenetic paradox of pluripotent ES cells. J Mol Biol 2017; 429(10): 1476-503. doi: 10.1016/j.jmb.2016.12.009 PMID: 27988225
  124. Ding H, Blair A, Yang Y, Stuart JM. Biological process activity transformation of single cell gene expression for cross-species alignment. Nat Commun 2019; 10(1): 4899. doi: 10.1038/s41467-019-12924-w PMID: 31653878
  125. Kim H, Lee G, Ganat Y, et al. miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 2011; 8(6): 695-706. doi: 10.1016/j.stem.2011.04.002 PMID: 21624813
  126. Mo CF, Wu FC, Tai KY, et al. Loss of non-coding RNA expression from the DLK1-DIO3 imprinted locus correlates with reduced neural differentiation potential in human embryonic stem cell lines. Stem Cell Res Ther 2015; 6(1): 1-17. doi: 10.1186/scrt535 PMID: 25559585
  127. Zhu L, Gomez-Duran A, Saretzki G, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol 2016; 215(2): 187-202. doi: 10.1083/jcb.201601061 PMID: 27810911
  128. Jiang W, Zhang D, Bursac N, Zhang Y. WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs. Stem Cell Reports 2013; 1(1): 46-52. doi: 10.1016/j.stemcr.2013.03.003 PMID: 24052941
  129. Butcher LM, Ito M, Brimpari M, et al. Non-CG DNA methylation is a biomarker for assessing endodermal differentiation capacity in pluripotent stem cells. Nat Commun 2016; 7(1): 10458. doi: 10.1038/ncomms10458 PMID: 26822956
  130. Yanagihara K, Liu Y, Kanie K, et al. Prediction of differentiation tendency toward hepatocytes from gene expression in undifferentiated human pluripotent stem cells. Stem Cells Dev 2016; 25(24): 1884-97. doi: 10.1089/scd.2016.0099 PMID: 27733097
  131. Ran D, Shia WJ, Lo MC, et al. RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood 2013; 121(15): 2882-90. doi: 10.1182/blood-2012-08-451641 PMID: 23372166
  132. Ramos-Mejia V, Melen GJ, Sanchez L, et al. Nodal/Activin signaling predicts human pluripotent stem cell lines prone to differentiate toward the hematopoietic lineage. Mol Ther 2010; 18(12): 2173-81. doi: 10.1038/mt.2010.179 PMID: 20736931
  133. Bock C, Kiskinis E, Verstappen G, et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 2011; 144(3): 439-52. doi: 10.1016/j.cell.2010.12.032 PMID: 21295703
  134. Nishizawa M, Chonabayashi K, Nomura M, et al. Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell 2016; 19(3): 341-54. doi: 10.1016/j.stem.2016.06.019 PMID: 27476965
  135. Park J, Son Y, Lee NG, et al. DSG2 is a functional cell surface marker for identification and isolation of human pluripotent stem cells. Stem Cell Reports 2018; 11(1): 115-27. doi: 10.1016/j.stemcr.2018.05.009 PMID: 29910125
  136. Merkle FT, Ghosh S, Kamitaki N, et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 2017; 545(7653): 229-33. doi: 10.1038/nature22312 PMID: 28445466
  137. Lin T, Lin Y. p53 switches off pluripotency on differentiation. Stem Cell Res Ther 2017; 8(1): 44. doi: 10.1186/s13287-017-0498-1 PMID: 28241890
  138. Alvarez-Palomo AB, Requena-Osete J, Delgado-Morales R, et al. A synthetic mRNA cell reprogramming method using CYCLIN D1 promotes DNA repair, generating improved genetically stable human induced pluripotent stem cells. Stem Cells 2021; 39(7): 866-81. doi: 10.1002/stem.3358 PMID: 33621399
  139. Petropoulos S, Edsgärd D, Reinius B, et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 2016; 165(4): 1012-26. doi: 10.1016/j.cell.2016.03.023 PMID: 27062923
  140. Liu X, Nefzger CM, Rossello FJ, et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat Methods 2017; 14(11): 1055-62. doi: 10.1038/nmeth.4436 PMID: 28945704
  141. Davidson KC, Mason EA, Pera MF. The pluripotent state in mouse and human. Development 2015; 142(18): 3090-9. doi: 10.1242/dev.116061 PMID: 26395138
  142. Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013; 20(9): 1131-9. doi: 10.1038/nsmb.2660 PMID: 23934149
  143. Sahakyan A, Kim R, Chronis C, et al. Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell 2017; 20(1): 87-101. doi: 10.1016/j.stem.2016.10.006 PMID: 27989770
  144. Xiao L, Shan Y, Ma L, Dunk C, Yu Y, Wei Y. Tuning FOXD3 expression dose-dependently balances human embryonic stem cells between pluripotency and meso-endoderm fates. Biochim Biophys Acta Mol Cell Res 2019; 1866(12): 118531. doi: 10.1016/j.bbamcr.2019.118531 PMID: 31415841
  145. Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 2013; 20(3): 282-9. doi: 10.1038/nsmb.2489 PMID: 23463313
  146. Stadhouders R, Filion GJ, Graf T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 2019; 569(7756): 345-54. doi: 10.1038/s41586-019-1182-7 PMID: 31092938
  147. Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 2016; 15(1): 18. doi: 10.1186/s12943-016-0502-x PMID: 26905733
  148. Vacík T, Lađinović D, Raška I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus 2018; 9(1): 431-41. doi: 10.1080/19491034.2018.1498707 PMID: 30059280
  149. Shinagawa T, Takagi T, Tsukamoto D, et al. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 2014; 14(2): 217-27. doi: 10.1016/j.stem.2013.12.015 PMID: 24506885
  150. Christophorou MA, Castelo-Branco G, Halley-Stott RP, et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 2014; 507(7490): 104-8. doi: 10.1038/nature12942 PMID: 24463520
  151. Gao L, Emperle M, Guo Y, et al. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun 2020; 11(1): 3355. doi: 10.1038/s41467-020-17109-4 PMID: 32620778
  152. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014; 28(8): 812-28. doi: 10.1101/gad.234294.113 PMID: 24736841
  153. Wang G, Weng R, Lan Y, et al. Synergetic effects of DNA methylation and histone modification during mouse induced pluripotent stem cell generation. Sci Rep 2017; 7(1): 39527. doi: 10.1038/srep39527 PMID: 28155862
  154. Mao J, Zhang Q, Deng W, et al. Epigenetic modifiers facilitate induction and pluripotency of porcine iPSCs. Stem Cell Reports 2017; 8(1): 11-20. doi: 10.1016/j.stemcr.2016.11.013 PMID: 28041878
  155. Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 2014; 15(11): 703-8. doi: 10.1038/nrm3890 PMID: 25315270
  156. Federation AJ, Bradner JE, Meissner A. The use of small molecules in somatic-cell reprogramming. Trends Cell Biol 2014; 24(3): 179-87. doi: 10.1016/j.tcb.2013.09.011 PMID: 24183602
  157. Fingerman IM, McDaniel L, Zhang X, et al. NCBI Epigenomics: A new public resource for exploring epigenomic data sets. Nucleic Acids Res 2011; 39((Database)): D908-12. doi: 10.1093/nar/gkq1146 PMID: 21075792
  158. Banaszynski LA, Wen D, Dewell S, et al. Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell 2013; 155(1): 107-20. doi: 10.1016/j.cell.2013.08.061 PMID: 24074864
  159. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M. Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 2011; 12(1): 36-47. doi: 10.1038/nrm3036 PMID: 21179060
  160. Egli D, Birkhoff G, Eggan K. Mediators of reprogramming: Transcription factors and transitions through mitosis. Nat Rev Mol Cell Biol 2008; 9(7): 505-16. doi: 10.1038/nrm2439 PMID: 18568039
  161. Gaspar-Maia A, Qadeer ZA, Hasson D, et al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat Commun 2013; 4(1): 1565. doi: 10.1038/ncomms2582 PMID: 23463008
  162. Bortvin A, Eggan K, Skaletsky H, et al. Incomplete reactivation of Oct4 -related genes in mouse embryos cloned from somatic nuclei. Development 2003; 130(8): 1673-80. doi: 10.1242/dev.00366 PMID: 12620990
  163. Vallabhaneni H, Lynch PJ, Chen G, et al. High basal levels of γH2AX in human induced pluripotent stem cells are linked to replication-associated DNA damage and repair. Stem Cells 2018; 36(10): 1501-13. doi: 10.1002/stem.2861 PMID: 29873142
  164. Ayuningtyas FD, Kim MH, Kino-oka M. Muscle lineage switching by migratory behaviour-driven epigenetic modifications of human mesenchymal stem cells on a dendrimer-immobilized surface. Acta Biomater 2020; 106: 170-80. doi: 10.1016/j.actbio.2020.02.026 PMID: 32092429
  165. Mansour AA, Gafni O, Weinberger L, et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 2012; 488(7411): 409-13. doi: 10.1038/nature11272 PMID: 22801502
  166. Singhal N, Graumann J, Wu G, et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 2010; 141(6): 943-55. doi: 10.1016/j.cell.2010.04.037 PMID: 20550931
  167. Doege CA, Inoue K, Yamashita T, et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 2012; 488(7413): 652-5. doi: 10.1038/nature11333 PMID: 22902501
  168. Costa Y, Ding J, Theunissen TW, et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013; 495(7441): 370-4. doi: 10.1038/nature11925 PMID: 23395962
  169. Gao Y, Chen J, Li K, et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013; 12(4): 453-69. doi: 10.1016/j.stem.2013.02.005 PMID: 23499384
  170. Ang YS, Tsai SY, Lee DF, et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 2011; 145(2): 183-97. doi: 10.1016/j.cell.2011.03.003 PMID: 21477851
  171. Stadtfeld M, Hochedlinger K. Induced pluripotency: History, mechanisms, and applications. Genes Dev 2010; 24(20): 2239-63. doi: 10.1101/gad.1963910 PMID: 20952534
  172. Sauer V, Roy-Chowdhury N, Guha C, Roy-Chowdhury J. Induced pluripotent stem cells as a source of hepatocytes. Curr Pathobiol Rep 2014; 2(1): 11-20. doi: 10.1007/s40139-013-0039-2 PMID: 25650171
  173. Lai X, Li Q, Wu F, et al. Epithelial-mesenchymal transition and metabolic switching in cancer: Lessons from somatic cell reprogramming. Front Cell Dev Biol 2020; 8: 760. doi: 10.3389/fcell.2020.00760 PMID: 32850862
  174. Takaishi M, Tarutani M, Takeda J, Sano S. Mesenchymal to epithelial transition induced by reprogramming factors attenuates the malignancy of cancer cells. PLoS One 2016; 11(6): e0156904. doi: 10.1371/journal.pone.0156904 PMID: 27258152
  175. Liu X, Ding J, Meng L. Oncogene-induced senescence: A double edged sword in cancer. Acta Pharmacol Sin 2018; 39(10): 1553-8. doi: 10.1038/aps.2017.198 PMID: 29620049
  176. Paranjpe SS, Veenstra GJC. Establishing pluripotency in early development. Biochim Biophys Acta 2015; 1849(6): 626-36. doi: 10.1016/j.bbagrm.2015.03.006 PMID: 25857441
  177. Chin MH, Mason MJ, Xie W, et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009; 5(1): 111-23. doi: 10.1016/j.stem.2009.06.008 PMID: 19570518
  178. Allshire RC, Madhani HD. Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 2018; 19(4): 229-44. doi: 10.1038/nrm.2017.119 PMID: 29235574
  179. Lee JH, Hart SR, Skalnik DG. Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 2004; 38(1): 32-8. doi: 10.1002/gene.10250 PMID: 14755802
  180. Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012; 151(7): 1617-32. doi: 10.1016/j.cell.2012.11.039 PMID: 23260147
  181. Lewandowski J, Kurpisz M. Techniques of human embryonic stem cell and induced pluripotent stem cell derivation. Arch Immunol Ther Exp 2016; 64(5): 349-70. doi: 10.1007/s00005-016-0385-y PMID: 26939778
  182. van Leeuwen J, Berg DK, Pfeffer PL. Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos. PLoS One 2015; 10(6): e0129787. doi: 10.1371/journal.pone.0129787 PMID: 26076128
  183. Theunissen TW, Jaenisch R. Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development 2017; 144(24): 4496-509. doi: 10.1242/dev.157404 PMID: 29254992
  184. Takahashi K, Yamanaka S. A developmental framework for induced pluripotency. Development 2015; 142(19): 3274-85. doi: 10.1242/dev.114249 PMID: 26443632
  185. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463(7284): 1035-41. doi: 10.1038/nature08797 PMID: 20107439
  186. Chen JX, et al. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circulation research 2012; 111(1): 50-5. doi: 10.1161/CIRCRESAHA.112.270264
  187. Sun S, White RR, Fischer KE, Zhang Z, Austad SN, Vijg J. Inducible aging in Hydra oligactis implicates sexual reproduction, loss of stem cells, and genome maintenance as major pathways. Geroscience 2020; 42(4): 1119-32. doi: 10.1007/s11357-020-00214-z PMID: 32578072
  188. Yang MM, Wang J, Dong L, et al. Lack of association of C3 gene with uveitis: additional insights into the genetic profile of uveitis regarding complement pathway genes. Sci Rep 2017; 7(1): 879. doi: 10.1038/s41598-017-00833-1 PMID: 28408754
  189. Yang N, Zuchero JB, Ahlenius H, et al. Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol 2013; 31(5): 434-9. doi: 10.1038/nbt.2564 PMID: 23584610
  190. Weltner J, Balboa D, Katayama S, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun 2018; 9(1): 2643. doi: 10.1038/s41467-018-05067-x PMID: 29980666
  191. Aschheim K. Making neurons with microRNAs. Nat Biotechnol 2011; 29(8): 721-2.
  192. Jayawardena T, Egemnazarov B, Finch E, Zhang L, Payne J, Pandya K. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 2012; 110(11): 1465-73.
  193. Yamamoto K, Kishida T, Sato Y, et al. Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci USA 2015; 112(19): 6152-7. doi: 10.1073/pnas.1420713112 PMID: 25918395
  194. Xie H, Ye M, Feng R, Graf T. Stepwise reprogramming of B cells into macrophages. Cell 2004; 117(5): 663-76. doi: 10.1016/S0092-8674(04)00419-2 PMID: 15163413
  195. Strumpf D, Mao C-A, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 2005; 132(9): 2093-102. doi: 10.1242/dev.01801 PMID: 15788452
  196. Xu H, Tsang KS, Chan JCN, et al. The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells. Cell Transplant 2013; 22(1): 147-58. doi: 10.3727/096368912X653057 PMID: 22776709
  197. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 2014; 14(2): 188-202. doi: 10.1016/j.stem.2013.12.001 PMID: 24360883
  198. Pataskar A, Jung J, Smialowski P, et al. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J 2016; 35(1): 24-45. doi: 10.15252/embj.201591206 PMID: 26516211
  199. Galipeau J, Sensébé L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell 2018; 22(6): 824-33. doi: 10.1016/j.stem.2018.05.004 PMID: 29859173
  200. Karow M, Camp JG, Falk S, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci 2018; 21(7): 932-40. doi: 10.1038/s41593-018-0168-3 PMID: 29915193
  201. Ahfeldt T, Schinzel RT, Lee YK, et al. Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 2012; 14(2): 209-19. doi: 10.1038/ncb2411 PMID: 22246346
  202. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S. Editing DNA methylation in the mammalian genome. Cell 2016; 167(1): 233-47. doi: 10.1016/j.cell.2016.08.056
  203. Baumann V, Wiesbeck M, Breunig CT, et al. Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat Commun 2019; 10(1): 2119. doi: 10.1038/s41467-019-10146-8 PMID: 31073172
  204. Black JB, Adler AF, Wang HG, et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 2016; 19(3): 406-14. doi: 10.1016/j.stem.2016.07.001 PMID: 27524438
  205. Hill PWS, Leitch HG, Requena CE, et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 2018; 555(7696): 392-6. doi: 10.1038/nature25964 PMID: 29513657
  206. Warren L, Wang J. Feeder‐free reprogramming of human fibroblasts with messenger RNA. Curr Protoc Stem Cell Biol 2013; 27(1): 4A.6.1-4A.6.27. doi: 10.1002/9780470151808.sc04a06s27
  207. Zhou H. Dissecting transcriptional control by Klf4 in somatic cell reprogramming UCLA Electronic Theses and Dissertations. Los Angeles University of California 2017.
  208. Tian Z, Guo F, Biswas S, Deng W. Rationale and methodology of reprogramming for generation of induced pluripotent stem cells and induced neural progenitor cells. Int J Mol Sci 2016; 17(4): 594. doi: 10.3390/ijms17040594 PMID: 27104529
  209. Rizzino A, Wuebben EL. Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim Biophys Acta Gene Regul Mech 2016; 1859(6): 780-91. doi: 10.1016/j.bbagrm.2016.03.006 PMID: 26992828
  210. Rizzino A. Sox2 and Oct‐3/4: A versatile pair of master regulators that orchestrate the self‐renewal and pluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst Biol Med 2009; 1(2): 228-36. doi: 10.1002/wsbm.12 PMID: 20016762
  211. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm. Nat Commun 2014; 5(1): 3678. doi: 10.1038/ncomms4678 PMID: 24759836
  212. King HW, Klose RJ. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife 2017; 6: e22631. doi: 10.7554/eLife.22631 PMID: 28287392
  213. Respuela P, Nikolić M, Tan M, et al. Foxd3 promotes exit from naive pluripotency through enhancer decommissioning and inhibits germline specification. Cell Stem Cell 2016; 18(1): 118-33. doi: 10.1016/j.stem.2015.09.010 PMID: 26748758
  214. Krishnakumar R, Chen AF, Pantovich MG, et al. FOXD3 regulates pluripotent stem cell potential by simultaneously initiating and repressing enhancer activity. Cell Stem Cell 2016; 18(1): 104-17. doi: 10.1016/j.stem.2015.10.003 PMID: 26748757
  215. Iturbide A, Pascual-Reguant L, Fargas L, et al. LOXL2 oxidizes methylated TAF10 and controls TFIID-dependent genes during neural progenitor differentiation. Mol Cell 2015; 58(5): 755-66. doi: 10.1016/j.molcel.2015.04.012 PMID: 25959397
  216. Hu K. Quick, coordinated and authentic reprogramming of ribosome biogenesis during iPSC reprogramming. Cells 2020; 9(11): 2484. doi: 10.3390/cells9112484 PMID: 33203179
  217. Carey BW, Markoulaki S, Hanna JH, et al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 2011; 9(6): 588-98. doi: 10.1016/j.stem.2011.11.003 PMID: 22136932
  218. Stadtfeld M, Apostolou E, Akutsu H, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 2010; 465(7295): 175-81. doi: 10.1038/nature09017 PMID: 20418860
  219. Han J, Yuan P, Yang H, et al. Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 2010; 463(7284): 1096-100. doi: 10.1038/nature08735 PMID: 20139965
  220. Jiang J, Lv W, Ye X, et al. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res 2013; 23(1): 92-106. doi: 10.1038/cr.2012.157 PMID: 23147797
  221. Zhao XY, Lv Z, Li W, Zeng F, Zhou Q. Production of mice using iPS cells and tetraploid complementation. Nat Protoc 2010; 5(5): 963-71. doi: 10.1038/nprot.2010.61 PMID: 20431542
  222. Lengner CJ, Gimelbrant AA, Erwin JA, et al. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 2010; 141(5): 872-83. doi: 10.1016/j.cell.2010.04.010 PMID: 20471072
  223. Stadtfeld M, Apostolou E, Ferrari F, et al. Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all–iPS cell mice from terminally differentiated B cells. Nat Genet 2012; 44(4): 398-405 S1-S2. doi: 10.1038/ng.1110 PMID: 22387999
  224. Yuan X, Wan H, Zhao X, Zhu S, Zhou Q, Ding S. Brief report: Combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells 2011; 29(3): 549-53. doi: 10.1002/stem.594 PMID: 21425417
  225. Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ 2018; 6: e4370. doi: 10.7717/peerj.4370 PMID: 29770269
  226. Ahmadzadeh V, Farajnia S, Baghban R, Rahbarnia L, Zarredar H. CRISPR‐Cas system: Toward a more efficient technology for genome editing and beyond. J Cell Biochem 2019; 120(10): 16379-92. doi: 10.1002/jcb.29140 PMID: 31219653
  227. Takahashi S, Kobayashi S, Hiratani I. Epigenetic differences between naïve and primed pluripotent stem cells. Cell Mol Life Sci 2018; 75(7): 1191-203. doi: 10.1007/s00018-017-2703-x PMID: 29134247
  228. Kojima Y, Kaufman-Francis K, Studdert JB, et al. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 2014; 14(1): 107-20. doi: 10.1016/j.stem.2013.09.014 PMID: 24139757
  229. Graf T, Stadtfeld M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 2008; 3(5): 480-3. doi: 10.1016/j.stem.2008.10.007 PMID: 18983963
  230. Liu G, David BT, Trawczynski M, Fessler RG. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep 2020; 16(1): 3-32. doi: 10.1007/s12015-019-09935-x PMID: 31760627
  231. Volpato V, Webber C. Addressing variability in iPSC-derived models of human disease: Guidelines to promote reproducibility. Dis Model Mech 2020; 13(1): dmm042317. doi: 10.1242/dmm.042317 PMID: 31953356
  232. Matoba S, Zhang Y. Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 2018; 23(4): 471-85. doi: 10.1016/j.stem.2018.06.018 PMID: 30033121
  233. Steichen C, Hannoun Z, Luce E, Hauet T, Dubart-Kupperschmitt A. Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World J Stem Cells 2019; 11(10): 729-47. doi: 10.4252/wjsc.v11.i10.729 PMID: 31692979
  234. Schwartz SD, Tan G, Hosseini H, Nagiel A. Subretinal transplantation of embryonic stem cell–derived retinal pigment epithelium for the treatment of macular degeneration: An assessment at 4 years. Invest Ophthalmol Vis Sci 2016; 57(5): ORSFc1-9. doi: 10.1167/iovs.15-18681
  235. da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 2018; 36(4): 328-37. doi: 10.1038/nbt.4114 PMID: 29553577
  236. Kudo H, Wada H, Sasaki H, et al. Induction of macrophage-like immunosuppressive cells from mouse ES cells that contribute to prolong allogeneic graft survival. PLoS One 2014; 9(10): e111826. doi: 10.1371/journal.pone.0111826 PMID: 25356669
  237. Sasaki H, Wada H, Baghdadi M, et al. New immunosuppressive cell therapy to prolong survival of induced pluripotent stem cell–derived allografts. Transplantation 2015; 99(11): 2301-10. doi: 10.1097/TP.0000000000000875 PMID: 26360665
  238. Cai S, Hou J, Fujino M, et al. iPSC-derived regulatory dendritic cells inhibit allograft rejection by generating alloantigen-specific regulatory T cells. Stem Cell Reports 2017; 8(5): 1174-89. doi: 10.1016/j.stemcr.2017.03.020 PMID: 28434942

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers