A Number of the N-terminal RASSF Family: RASSF7
- Авторы: Xu Y.1, Du W.2, Xiao Y.3, Gao K.1, Li J.1, Li S.1
-
Учреждения:
- Department of Urology, Affiliated Hospital of Xuzhou Medical University
- Department of Urology,, Wanbei Coal-electricity Group General Hospital
- Department of Urology,, Affiliated Hospital of Xuzhou Medical University
- Выпуск: Том 24, № 12 (2024)
- Страницы: 889-895
- Раздел: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/643769
- DOI: https://doi.org/10.2174/1871520622666220930094149
- ID: 643769
Цитировать
Полный текст
Аннотация
The Ras association domain family 7 (RASSF7, also named HRC1), a potential tumor-related gene, located on human chromosome 11p15, has been identified as an important member of the N-terminal RASSF family. Whereas, the molecular biological mechanisms of RASSF7 in tumorigenesis remain to be further established. We perform a systematic review of the literature and assessment from PUBMED and MEDLINE databases in this article. RASSF7 plays a significant role in mitosis, microtubule growth, apoptosis, proliferation and differentiation. Many research literature shows that the RASSF7 could promote the occurrence and advance of human tumors by regulating Aurora B, MKK4, MKK7, JNK, YAP, MEK, and ERK, whereas, it might inhibit c-Myc and thus lead to the suppression of tumorigenesis. The pregulation of RASSF7 often occurs in various malignancies such as lung cancer, neuroblastoma, thyroid neoplasm, hepatocellular cancer, breast cancer and gastric cancer. The expression stage of RASSF7 is positively correlated with the tumor TNM stage. In this review, we primarily elaborate on the acknowledged structure and progress in the various biomechanisms and research advances of RASSF7, especially the potential relevant signaling pathways. We hope that RASSF7 , a prospective therapeutic target for human malignancies, could play an available role in future anti-cancer treatment.
Ключевые слова
Об авторах
Yang Xu
Department of Urology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Wei Du
Department of Urology,, Wanbei Coal-electricity Group General Hospital
Email: info@benthamscience.net
Yongshuang Xiao
Department of Urology,, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Keyu Gao
Department of Urology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Jie Li
Department of Urology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Shuofeng Li
Department of Urology, Affiliated Hospital of Xuzhou Medical University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5), 635-647. doi: 10.1016/j.cell.2005.01.014 PMID: 15766527
- Bos, J.L. Ras oncogenes in human cancer: a review. Cancer Res., 1989, 49(17), 4682-4689. PMID: 2547513
- Campbell, S.L.; Khosravi-Far, R.; Rossman, K.L.; Clark, G.J.; Der, C.J. Increasing complexity of Ras signaling. Oncogene, 1998, 17(11), 1395-1413. doi: 10.1038/sj.onc.1202174 PMID: 9779987
- Selby, P.B.; Lee, S.S.; Kelley, E.M.; Bangham, J.W.; Raymer, G.D.; Hunsicker, P.R. Specific-locus experiments show that female mice exposed near the time of birth to low-LET ionizing radiation exhibit both a low mutational response and a dose-rate effect. Mutat. Res., 1991, 249(2), 351-367. doi: 10.1016/0027-5107(91)90010-L PMID: 2072978
- Chen, Y.; Takita, J.; Hiwatari, M.; Igarashi, T.; Hanada, R.; Kikuchi, A.; Hongo, T.; Taki, T.; Ogasawara, M.; Shimada, A.; Hayashi, Y. Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies. Genes Chrom. Can., 2006, 45(6), 583-591. doi: 10.1002/gcc.20322 PMID: 16518851
- Agathanggelou, A.; Cooper, W.N.; Latif, F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res., 2005, 65(9), 3497-3508. doi: 10.1158/0008-5472.CAN-04-4088 PMID: 15867337
- Avruch, J.; Xavier, R.; Bardeesy, N.; Zhang, X.; Praskova, M.; Zhou, D.; Xia, F. Rassf family of tumor suppressor polypeptides. J. Biol. Chem., 2009, 284(17), 11001-11005. doi: 10.1074/jbc.R800073200 PMID: 19091744
- Ponting, C.P.; Benjamin, D.R. A novel family ofras-binding domains. Trends Biochem. Sci., 1996, 21(11), 422-425. doi: 10.1016/S0968-0004(96)30038-8 PMID: 8987396
- Osborne, C.; Wilson, P.; Tripathy, D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist, 2004, 9(4), 361-377. doi: 10.1634/theoncologist.9-4-361 PMID: 15266090
- Jones, P.A. The DNA methylation paradox. Trends Genet., 1999, 15(1), 34-37. doi: 10.1016/S0168-9525(98)01636-9 PMID: 10087932
- Knudson, A.G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA, 1971, 68(4), 820-823. doi: 10.1073/pnas.68.4.820 PMID: 5279523
- Hou, Y.; Li, S.; Du, W.; Li, H.; Wen, R. The tumor suppressor role of the ras association domain family 10. Anticancer. Agents Med. Chem., 2020, 20(18), 2207-2215. doi: 10.2174/1871520620666200714141906 PMID: 32664845
- Li, S.; Teng, J.; Li, H.; Chen, F.; Zheng, J. The emerging roles of RASSF5 in human malignancy. Anticancer. Agents Med. Chem., 2018, 18(3), 314-322. doi: 10.2174/1871520617666170327120747 PMID: 28356010
- Sarkar, A.; Iwasa, H.; Hossain, S.; Xu, X.; Sawada, T.; Shimizu, T.; Maruyama, J.; Arimoto-Matsuzaki, K.; Hata, Y. Domain analysis of Ras-association domain family member 6 upon interaction with MDM2. FEBS Lett., 2017, 591(2), 260-272. doi: 10.1002/1873-3468.12551 PMID: 28054709
- Iwasa, H.; Kuroyanagi, H.; Maimaiti, S.; Ikeda, M.; Nakagawa, K.; Hata, Y. Characterization of RSF-1, the Caenorhabditis elegans homolog of the Ras-association domain family protein 1. Exp. Cell Res., 2013, 319(3), 1-11. doi: 10.1016/j.yexcr.2012.10.008 PMID: 23103556
- Hwang, E.; Cheong, H.K.; Mushtaq, A.U.; Kim, H.Y.; Yeo, K.J.; Kim, E.; Lee, W.C.; Hwang, K.Y.; Cheong, C.; Jeon, Y.H. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(7), 1944-1953. doi: 10.1107/S139900471400947X PMID: 25004971
- Cheong.; Chaejoon.; Jeon.; Young, Ho.; Hae-Kap. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(7), 1944-1953.
- Hwang, E. Backbone assignment of the SARAH domain from Mst2 kinase. J. Anal. Sci. Technol., 2010, 1(1), 15-18. doi: 10.5355/JAST.2010.15
- Saucedo, L.J.; Edgar, B.A. Filling out the Hippo pathway. Nat. Rev. Mol. Cell Biol., 2007, 8(8), 613-621. doi: 10.1038/nrm2221 PMID: 17622252
- Praskova, M.; Khoklatchev, A.; Ortiz-Vega, S.; Avruch, J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem. J., 2004, 381(2), 453-462. doi: 10.1042/BJ20040025 PMID: 15109305
- Romano, D.; Matallanas, D.; Weitsman, G.; Preisinger, C.; Ng, T.; Kolch, W. Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res., 2010, 70(3), 1195-1203. doi: 10.1158/0008-5472.CAN-09-3147 PMID: 20086174
- Oh, H.J.; Lee, K.K.; Song, S.J.; Jin, M.S.; Song, M.S.; Lee, J.H.; Im, C.R.; Lee, J.O.; Yonehara, S.; Lim, D.S. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res., 2006, 66(5), 2562-2569. doi: 10.1158/0008-5472.CAN-05-2951 PMID: 16510573
- Iwasa, H.; Hossain, S.; Hata, Y. Tumor suppressor C-RASSF proteins. Cell. Mol. Life Sci., 2018, 75(10), 1773-1787. doi: 10.1007/s00018-018-2756-5 PMID: 29353317
- Lock, F.E.; Underhill-Day, N.; Dunwell, T.; Matallanas, D.; Cooper, W.; Hesson, L.; Recino, A.; Ward, A.; Pavlova, T.; Zabarovsky, E.; Grant, M.M.; Maher, E.R.; Chalmers, A.D.; Kolch, W.; Latif, F. The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-κB signaling pathways. Oncogene, 2010, 29(30), 4307-4316. doi: 10.1038/onc.2010.192 PMID: 20514026
- Gulsen, T.; Hadjicosti, I.; Li, Y.; Zhang, X.; Whitley, P.R.; Chalmers, A.D. Truncated RASSF7 promotes centrosomal defects and cell death. Dev. Biol., 2016, 409(2), 502-517. doi: 10.1016/j.ydbio.2015.11.001 PMID: 26569555
- Kumaraswamy, A.; Mamidi, A.; Desai, P.; Sivagnanam, A.; Perumalsamy, L.R.; Ramakrishnan, C.; Gromiha, M.; Rajalingam, K.; Mahalingam, S. The non-enzymatic RAS effector RASSF7 inhibits oncogenic c-Myc function. J. Biol. Chem., 2018, 293(40), 15691-15705. doi: 10.1074/jbc.RA118.004452 PMID: 30139745
- Miller, V.A. Optimizing therapy in previously treated non-small cell lung cancer. Semin. Oncol., 2006, 33(1)(Suppl. 1), 25-31. doi: 10.1053/j.seminoncol.2005.12.005 PMID: 16472706
- Schoen, P.; Leserman, L.; Wilschut, J. Fusion of reconstituted influenza virus envelopes with liposomes mediated by streptavidin/biotin interactions. FEBS Lett., 1996, 390(3), 315-318. doi: 10.1016/0014-5793(96)00682-5 PMID: 8706885
- Xin, S.; Li, X.; Zhao, G.; Wang, Y.; Zhang, J.; Duan, Z. RASSF7 and RASSF8 proteins are predictive factors for development and metastasis in malignant thyroid neoplasms. J. Cancer Res. Ther., 2013, 9(7), 173. doi: 10.4103/0973-1482.122519
- Weitzel, J.N.; Patel, J. A single P1 clone bearing three genes from human chromosome 11p15.5: HRC1, HRAS1, and RNH. Genet. Anal. Tech. Appl., 1994, 11(5-6), 165-170. doi: 10.1016/1050-3862(94)90037-X PMID: 7710782
- Schwab, M. Encyclopedia of Cancer; Springer Berlin Heidelberg: Berlin, Heidelberg, 2017, p. 2129.
- Krontiris, T.G.; Devlin, B.; Karp, D.D.; Robert, N.J.; Risch, N. An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N. Engl. J. Med., 1993, 329(8), 517-523. doi: 10.1056/NEJM199308193290801 PMID: 8336750
- Phelan, C.M.; Rebbeck, T.R.; Weber, B.L.; Devilee, P.; Ruttledge, M.H.; Lynch, H.T.; Lenoir, G.M.; Stratton, M.R.; Easton, D.F.; Ponder, B.A.J.; Cannon-Albright, L.; Larsson, C.; Goldgar, D.E.; Narod, S.A. Ovarian cancer risk in BRCA1 carriers is modified by the HRAS1 variable number of tandem repeat (VNTR) locus. Nat. Genet., 1996, 12(3), 309-311. doi: 10.1038/ng0396-309 PMID: 8589723
- Vega, A.; Sobrido, M.J.; Ruiz-Ponte, C.; Barros, F.; Carracedo, A. RareHRAS1 alleles are a risk factor for the development of brain tumors. Cancer, 2001, 92(11), 2920-2926. doi: 10.1002/1097-0142(20011201)92:113.0.CO;2-S PMID: 11753967
- Porteous, D.J.; Bickmore, W.; Christie, S.; Boyd, P.A.; Cranston, G.; Fletcher, J.M.; Gosden, J.R.; Rout, D.; Seawright, A.; Simola, K.O. HRAS1-selected chromosome transfer generates markers that colocalize aniridia- and genitourinary dysplasia-associated translocation breakpoints and the Wilms tumor gene within band 11p13. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5355-5359. doi: 10.1073/pnas.84.15.5355 PMID: 3037545
- Weitzel, J.N.; Ding, S.; Larson, G.P.; Nelson, R.A.; Goodman, A.; Grendys, E.C.; Ball, H.G.; Krontiris, T.G. The HRAS1 minisatellite locus and risk of ovarian cancer. Cancer Res., 2000, 60(2), 259-261. PMID: 10667571
- van der Weyden, L.; Adams, D.J. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim. Biophys. Acta, 2007, 1776(1), 58-85. PMID: 17692468
- Underhill-Day, N.; Hill, V.; Latif, F. N-terminal RASSF family. Epigenetics, 2011, 6(3), 284-292. doi: 10.4161/epi.6.3.14108 PMID: 21116130
- Recino, A.; Flaxman, A.; Sherwood, V.; Cooper, W.; Ward, A.; Latif, F.; Chalmers, A.D. RASSF7: A new possible therapeutic cancer target? Genet. Res., 2010, 92(1), 71-72.
- Djos, A.; Martinsson, T.; Kogner, P.; Carén, H. The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Mol. Cancer, 2012, 11(1), 40. doi: 10.1186/1476-4598-11-40 PMID: 22695170
- Wang, S.; Liang, Q.; Qiao, H.; Li, H.; Shen, T.; Ji, F.; Jiao, J. DISC1 regulates astrogenesis in the embryonic brain via modulation of RAS/MEK/ERK signaling through RASSF7. Development, 2016, 143(15), dev.133066.
- Recino, A.; Sherwood, V.; Flaxman, A.; Cooper, W.N.; Latif, F.; Ward, A.; Chalmers, A.D. Human RASSF7 regulates the microtubule cytoskeleton and is required for spindle formation, Aurora B activation and chromosomal congression during mitosis. Biochem. J., 2010, 430(2), 207-213. doi: 10.1042/BJ20100883 PMID: 20629633
- Mezzanotte, J.J.; Hill, V.; Schmidt, M.L.; Shinawi, T.; Tommasi, S.; Krex, D.; Schackert, G.; Pfeifer, G.P.; Latif, F.; Clark, G.J. RASSF6 exhibits promoter hypermethylation in metastatic melanoma and inhibits invasion in melanoma cells. Epigenetics, 2014, 9(11), 1496-1503. doi: 10.4161/15592294.2014.983361 PMID: 25482183
- Sherwood, V.; Recino, A.; Jeffries, A.; Ward, A.; Chalmers, A.D. The N-terminal RASSF family: a new group of Ras-association-domaincontaining proteins, with emerging links to cancer formation. Biochem. J., 2010, 425(2), 303-311. doi: 10.1042/BJ20091318 PMID: 20025613
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70. doi: 10.1016/S0092-8674(00)81683-9 PMID: 10647931
- Sherwood, V.; Manbodh, R.; Sheppard, C.; Chalmers, A.D. RASSF7 is a member of a new family of RAS association domain-containing proteins and is required for completing mitosis. Mol. Biol. Cell, 2008, 19(4), 1772-1782. doi: 10.1091/mbc.e07-07-0652 PMID: 18272789
- Takahashi, S.; Ebihara, A.; Kajiho, H.; Kontani, K.; Nishina, H.; Katada, T. RASSF7 negatively regulates pro-apoptotic JNK signaling by inhibiting the activity of phosphorylated-MKK7. Cell Death Differ., 2011, 18(4), 645-655. doi: 10.1038/cdd.2010.137 PMID: 21278800
- He, L.; He, X.; Lowe, S.W.; Hannon, G.J. microRNAs join the p53 network-Another piece in the tumour-suppression puzzle. Nat. Rev. Cancer, 2007, 7(11), 819-822. doi: 10.1038/nrc2232 PMID: 17914404
- Schüller, U.; Zhao, Q.; Godinho, S.A.; Heine, V.M.; Medema, R.H.; Pellman, D.; Rowitch, D.H. Forkhead transcription factor FoxM1 regulates mitotic entry and prevents spindle defects in cerebellar granule neuron precursors. Mol. Cell. Biol., 2007, 27(23), 8259-8270. doi: 10.1128/MCB.00707-07 PMID: 17893320
- Pereira, G.; Schiebel, E. Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol. Cell, 2005, 19(2), 209-221. doi: 10.1016/j.molcel.2005.05.030 PMID: 16039590
- Granic, A.; Potter, H. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimers disease, and atherosclerosis. PLoS One, 2013, 8(4), e60718. doi: 10.1371/journal.pone.0060718 PMID: 23593294
- Eggert, U.; Mitchison, T. Small molecule screening by imaging. Curr. Opin. Chem. Biol., 2006, 10(3), 232-237. doi: 10.1016/j.cbpa.2006.04.010 PMID: 16682248
- Ruchaud, S.; Carmena, M.; Earnshaw, W.C. Chromosomal passengers: conducting cell division. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 798-812. doi: 10.1038/nrm2257 PMID: 17848966
- Hauf, S.; Cole, R.W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel, A.; van Meel, J.; Rieder, C.L.; Peters, J.M. The small molecule heperadin reveals a role for aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol., 2003, 161(2), 281-294. doi: 10.1083/jcb.200208092 PMID: 12707311
- Steigemann, P.; Wurzenberger, C.; Schmitz, M.H.A.; Held, M.; Guizetti, J.; Maar, S.; Gerlich, D.W. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 2009, 136(3), 473-484. doi: 10.1016/j.cell.2008.12.020 PMID: 19203582
- Rosasco-Nitcher, S.E.; Lan, W.; Khorasanizadeh, S.; Stukenberg, P.T. Centromeric Aurora-B activation requires TD-60, microtubules, and substrate priming phosphorylation. Science, 2008, 319(5862), 469-472. doi: 10.1126/science.1148980 PMID: 18218899
- Funabiki, H. Correcting aberrant kinetochore microtubule attachments: a hidden regulation of Aurora B on microtubules. Curr. Opin. Cell Biol., 2019, 58, 34-41. doi: 10.1016/j.ceb.2018.12.007 PMID: 30684807
- Uren, A.G.; Wong, L.; Pakusch, M.; Fowler, K.J.; Burrows, F.J.; Vaux, D.L.; Choo, K.H.A. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol., 2000, 10(21), 1319-1328. doi: 10.1016/S0960-9822(00)00769-7 PMID: 11084331
- Cooke, C.A.; Heck, M.M.; Earnshaw, W.C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol., 1987, 105(5), 2053-2067. doi: 10.1083/jcb.105.5.2053 PMID: 3316246
- MAP Kinase Kinase Kinases. Schwab, M., Ed.; Encyclopedia of Cancer; Springer Berlin Heidelberg: Berlin, Heidelberg, 2016, p. 2655.
- Waetzig, V.; Zhao, Y.; Herdegen, T. The bright side of JNKs-Multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog. Neurobiol., 2006, 80(2), 84-97. doi: 10.1016/j.pneurobio.2006.08.002 PMID: 17045385
- Ma, X.; Xu, W.; Zhang, D.; Yang, Y.; Li, W.; Xue, L. Wallenda regulates JNK-mediated cell death in Drosophila. Cell Death Dis., 2015, 6(5), e1737. doi: 10.1038/cddis.2015.111 PMID: 25950467
- Shimizu, S.; Konishi, A.; Nishida, Y.; Mizuta, T.; Nishina, H.; Yamamoto, A.; Tsujimoto, Y. Involvement of JNK in the regulation of autophagic cell death. Oncogene, 2010, 29(14), 2070-2082. doi: 10.1038/onc.2009.487 PMID: 20101227
- He, T.C.; Sparks, A.B.; Rago, C.; Hermeking, H.; Zawel, L.; da Costa, L.T.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Identification of c-MYC as a target of the APC pathway. Science, 1998, 281(5382), 1509-1512. doi: 10.1126/science.281.5382.1509 PMID: 9727977
- Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765. doi: 10.1038/nature07823 PMID: 19219026
- Minna, J.D.; Roth, J.A.; Gazdar, A.F. Focus on lung cancer. Cancer Cell, 2002, 1(1), 49-52. doi: 10.1016/S1535-6108(02)00027-2 PMID: 12086887
- Dong, Q.Z.; Wang, Y.; Dong, X.J.; Li, Z.X.; Tang, Z.P.; Cui, Q.Z.; Wang, E.H. CIP2A is overexpressed in non-small cell lung cancer and correlates with poor prognosis. Ann. Surg. Oncol., 2011, 18(3), 857-865. doi: 10.1245/s10434-010-1313-8 PMID: 20842459
- Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell, 2010, 19(4), 491-505. doi: 10.1016/j.devcel.2010.09.011 PMID: 20951342
- Song, S.; Honjo, S.; Jin, J.; Chang, S.S.; Scott, A.W.; Chen, Q.; Kalhor, N.; Correa, A.M.; Hofstetter, W.L.; Albarracin, C.T.; Wu, T.T.; Johnson, R.L.; Hung, M.C.; Ajani, J.A. The hippo coactivator YAP1 mediates EGFR overexpression and confers chemoresistance in esophageal cancer. Clin. Cancer Res., 2015, 21(11), 2580-2590. doi: 10.1158/1078-0432.CCR-14-2191 PMID: 25739674
- Dong, J.; Feldmann, G.; Huang, J.; Wu, S.; Zhang, N.; Comerford, S.A.; Gayyed, M.F.; Anders, R.A.; Maitra, A.; Pan, D. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 2007, 130(6), 1120-1133. doi: 10.1016/j.cell.2007.07.019 PMID: 17889654
- Zheng, X.; Dong, Q.; Zhang, X.; Han, Q.; Han, X.; Han, Y.; Wu, J.; Rong, X.; Wang, E. The coiled-coil domain of oncogene RASSF 7 inhibits hippo signaling and promotes non-small cell lung cancer. Oncotarget, 2017, 8(45), 78734-78748. doi: 10.18632/oncotarget.20223 PMID: 29108261
- Johnsen, J.I.; Kogner, P.; Albihn, A.; Henriksson, M.A. Embryonal neural tumours and cell death. Apoptosis, 2009, 14(4), 424-438. doi: 10.1007/s10495-009-0325-y PMID: 19259824
- Stern, F.; Lehman, E.; Ruder, A. Mortality among unionized construction plasterers and cement masons. Am. J. Ind. Med., 2001, 39(4), 373-388. doi: 10.1002/ajim.1028 PMID: 11323787
- Chen, A.Y.; Jemal, A.; Ward, E.M. Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005. Cancer, 2009, 115(16), 3801-3807. doi: 10.1002/cncr.24416 PMID: 19598221
- Said, S.; Schlumberger, M.; Suarez, H.G. Oncogenes and anti-oncogenes in human epithelial thyroid tumors. J. Endocrinol. Invest., 1994, 17(5), 371-379. doi: 10.1007/BF03349004 PMID: 8077623
- Zhang, M.; Li, Q.; Zhang, L.; Wang, Y.; Wang, L.; Li, Q.; He, T.; Wan, B.; Wang, X. RASSF7 promotes cell proliferation through activating MEK1/2-ERK1/2 signaling pathway in hepatocellular carcinoma. Cell. Mol. Biol., 2018, 64(5), 73-79. doi: 10.14715/cmb/2018.64.5.12 PMID: 29729697
- Fatima, A.; Tariq, F.; Malik, M.F.A.; Qasim, M.; Haq, F. Copy number profiling of mammaprint genes reveals association with the prognosis of breast cancer patients. J. Breast Cancer, 2017, 20(3), 246-253. doi: 10.4048/jbc.2017.20.3.246 PMID: 28970850
- Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med., 2001, 345(11), 784-789. doi: 10.1056/NEJMoa001999 PMID: 11556297
Дополнительные файлы
