The Importance of Structural Water in HDAC8 for Correct Binding Pose Applied for Drug Design of Anticancer Molecules
- Авторлар: Morales-Herrejón G.1, Mendoza-Figueroa H.1, Martínez-Archundía M.1, Correa-Basurto J.1
-
Мекемелер:
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional
- Шығарылым: Том 24, № 15 (2024)
- Беттер: 1109-1125
- Бөлім: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/643865
- DOI: https://doi.org/10.2174/0118715206299644240523054454
- ID: 643865
Дәйексөз келтіру
Толық мәтін
Аннотация
Aims:Validating the docking procedure and maintaining the structural water molecules at HDAC8 catalytic site.
Background:Molecular docking simulations play a significant role in Computer-Aided Drug Design, contributing to the development of new molecules. To ensure the reliability of these simulations, a validation process called \"self-docking or re-docking\" is employed, focusing on the binding mode of a ligand co-crystallized with the protein of interest.
Objective:In this study, several molecular docking studies were conducted using five X-ray structures of HDAC8-ligand complexes from the PDB.
Methods:Ligands initially complexed with HDAC8 were removed and re-docked onto the free protein, revealing a poor reproduction of the expected binding mode. In response to this, we observed that most HDAC8-ligand complexes contained one to two water molecules in the catalytic site, which were crucial for maintaining the cocrystallized ligand.
Results:These water molecules enhance the binding mode of the co-crystallized ligand by stabilizing the proteinligand complex through hydrogen bond interactions between ligand and water molecules. Notably, these interactions are lost if water molecules are removed, as is often done in classical docking methodologies. Considering this, molecular docking simulations were repeated, both with and without one or two conserved water molecules near Zn+2 in the catalytic cavity. Simulations indicated that replicating the native binding pose of co-crystallized ligands on free HDAC8 without these water molecules was challenging, showing greater coordinate displacements (RMSD) compared to those including conserved water molecules from crystals.
Conclusion:The study highlighted the importance of conserved water molecules within the active site, as their presence significantly influenced the successful reproduction of the ligands' native binding modes. The results suggest an optimal molecular docking procedure for validating methods suitable for filtering new HDAC8 inhibitors for future experimental assays.
Негізгі сөздер
Авторлар туралы
Gerardo Morales-Herrejón
Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional
Email: info@benthamscience.net
Humberto Mendoza-Figueroa
Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional
Email: info@benthamscience.net
Marlet Martínez-Archundía
Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional
Email: info@benthamscience.net
José Correa-Basurto
Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Maurer, M.; Oostenbrink, C. Water in protein hydration and ligand recognition. J. Mol. Recognit., 2019, 32(12), e2810. doi: 10.1002/jmr.2810 PMID: 31456282
- Bellissent-Funel, M.C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A.E. Water determines the structure and dynamics of proteins. Chem. Rev., 2016, 116(13), 7673-7697. doi: 10.1021/acs.chemrev.5b00664 PMID: 27186992
- Carugo, O. Structure and function of water molecules buried in the protein core. Curr. Protein Pept. Sci., 2015, 16(3), 259-265. doi: 10.2174/1389203716666150227162803 PMID: 25723549
- Gupta, S.; DMello, R.; Chance, M.R. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 14882-14887. doi: 10.1073/pnas.1209060109 PMID: 22927377
- Schoenborn, B.P.; Garcia, A.; Knott, R. Hydration in protein crystallography. Prog. Biophys. Mol. Biol., 1995, 64(2-3), 105-119. doi: 10.1016/0079-6107(95)00012-7 PMID: 8987380
- Zhou, J.; Yang, T.; Peng, B.; Shan, B.; Ding, M.; Zhang, K. Structural water molecules confined in soft and hard nanocavities as bright color emitters. ACS Phy. Chem. Au, 2022, 2(1), 47-58. doi: 10.1021/acsphyschemau.1c00020 PMID: 36855578
- Vukovic, S.; Brennan, P.E.; Huggins, D.J. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites. J. Phys. Condens. Matter, 2016, 28(34), 344007. doi: 10.1088/0953-8984/28/34/344007 PMID: 27367338
- Benkaidali, L.; André, F.; Maouche, B.; Siregar, P.; Benyettou, M.; Maurel, F.; Petitjean, M. Computing cavities, channels, pores and pockets in proteins from non-spherical ligands models. Bioinformatics, 2014, 30(6), 792-800. doi: 10.1093/bioinformatics/btt644 PMID: 24202541
- Bauer, M.R.; Mackey, M.D. Electrostatic complementarity as a fast and effective tool to optimize binding and selectivity of proteinligand complexes. J. Med. Chem., 2019, 62(6), 3036-3050. doi: 10.1021/acs.jmedchem.8b01925 PMID: 30807144
- Lin, F-Y.; MacKerell, A.D. Force fields for small molecules. Methods Mol. Biol., 2019, 2022, 21-54. doi: 10.1007/978-1-4939-9608-7_2
- Biswal, J.; Jayaprakash, P.; Rangaswamy, R.; Jeyakanthan, J. Synergistic effects of hydration sites in protein stability: A theoretical water thermodynamics approach. In: Frontiers in Protein Structure, Function, and Dynamics; Singh, D.B.; Tripathi, T., Eds.; Springer: Singapore, 2020; pp. 187-212. doi: 10.1007/978-981-15-5530-5_8
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157. doi: 10.2174/157340911795677602 PMID: 21534921
- Bello, M.; Martínez-Archundia, M.; Correa-Basurto, J. Automated docking for novel drug discovery. Expert Opin. Drug Discov., 2013, 8(7), 821-834. doi: 10.1517/17460441.2013.794780 PMID: 23642085
- Fischer, A.; Smieko, M.; Sellner, M.; Lill, M.A. Decision making in structure-based drug discovery: Visual inspection of docking results. J. Med. Chem., 2021, 64(5), 2489-2500. doi: 10.1021/acs.jmedchem.0c02227 PMID: 33617246
- ten Brink, T.; Exner, T.E. Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results. J. Chem. Inf. Model., 2009, 49(6), 1535-1546. doi: 10.1021/ci800420z PMID: 19453150
- Shoichet, B.K.; Leach, A.R.; Kuntz, I.D. Ligand solvation in molecular docking. Proteins, 1999, 34(1), 4-16. doi: 10.1002/(SICI)1097-0134(19990101)34:13.0.CO;2-6 PMID: 10336382
- Jones, D.; Kim, H.; Zhang, X.; Zemla, A.; Stevenson, G.; Bennett, W.F.D.; Kirshner, D.; Wong, S.E.; Lightstone, F.C.; Allen, J.E. Improved proteinligand binding affinity prediction with structure-based deep fusion inference. J. Chem. Inf. Model., 2021, 61(4), 1583-1592. doi: 10.1021/acs.jcim.0c01306 PMID: 33754707
- Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; Shoichet, B.K. A practical guide to large-scale docking. Nat. Protoc., 2021, 16(10), 4799-4832. doi: 10.1038/s41596-021-00597-z PMID: 34561691
- Reichert, N.; Choukrallah, M.A.; Matthias, P. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell. Mol. Life Sci., 2012, 69(13), 2173-2187. doi: 10.1007/s00018-012-0921-9 PMID: 22286122
- Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem., 2020, 63(21), 12460-12484. doi: 10.1021/acs.jmedchem.0c00830 PMID: 32608981
- Porter, N.J.; Christianson, D.W. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr. Opin. Struct. Biol., 2019, 59, 9-18. doi: 10.1016/j.sbi.2019.01.004 PMID: 30743180
- Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25. doi: 10.1016/j.molonc.2007.01.001 PMID: 19383284
- Weichert, W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett., 2009, 280(2), 168-176. doi: 10.1016/j.canlet.2008.10.047 PMID: 19103471
- Chakrabarti, A.; Melesina, J.; Kolbinger, F.R.; Oehme, I.; Senger, J.; Witt, O.; Sippl, W.; Jung, M. Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med. Chem., 2016, 8(13), 1609-1634. doi: 10.4155/fmc-2016-0117 PMID: 27572818
- Chakrabarti, A.; Oehme, I.; Witt, O.; Oliveira, G.; Sippl, W.; Romier, C.; Pierce, R.J.; Jung, M. HDAC8: A multifaceted target for therapeutic interventions. Trends Pharmacol. Sci., 2015, 36(7), 481-492. doi: 10.1016/j.tips.2015.04.013 PMID: 26013035
- Wang, D. Computational studies on the histone deacetylases and the design of selective histone deacetylase inhibitors. Curr. Top. Med. Chem., 2009, 9(3), 241-256. doi: 10.2174/156802609788085287 PMID: 19355989
- Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B.C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334. doi: 10.1016/j.str.2004.04.012 PMID: 15242608
- Brunsteiner, M.; Petukhov, P.A. Insights from comprehensive multiple receptor docking to HDAC8. J. Mol. Model., 2012, 18(8), 3927-3939. doi: 10.1007/s00894-011-1297-8 PMID: 22431224
- Bermúdez-Lugo, J.A.; Perez-Gonzalez, O.; Rosales-Hernández, M.C.; Ilizaliturri-Flores, I.; Trujillo-Ferrara, J.; Correa-Basurto, J. Exploration of the valproic acid binding site on histone deacetylase 8 using docking and molecular dynamic simulations. J. Mol. Model., 2012, 18(6), 2301-2310. doi: 10.1007/s00894-011-1240-z PMID: 21968575
- Sixto-López, Y.; Gómez-Vidal, J.A.; de Pedro, N.; Bello, M.; Rosales-Hernández, M.C.; Correa-Basurto, J. Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Sci. Rep., 2020, 10(1), 10462. doi: 10.1038/s41598-020-67112-4 PMID: 32591593
- Luna-Palencia, G.; Martinez-Ramos, F.; Vasquez-Moctezuma, I.; Fragoso-Vazquez, M.; Mendieta-Wejebe, J.; Padilla-Martínez, I.; Sixto-Lopez, Y.; Mendez-Luna, D.; Trujillo-Ferrara, J.; Meraz-Rios, M.; Fonseca-Sabater, Y.; Correa-Basurto, J. Three amino acid derivatives of valproic acid: Design, synthesis, theoretical and experimental evaluation as anticancer agents. Anticancer. Agents Med. Chem., 2014, 14(7), 984-993. doi: 10.2174/1871520614666140127113218
- Prestegui-Martel, B.; Bermúdez-Lugo, J. A.; Chávez-Blanco, A.; Dueñas-González, A.; García-Sánchez, J. R.; Pérez-González, O. A.; Padilla-Martínez, I. I.; Fragoso-Vázquez, M. J.; Mendieta-Wejebe, J. E.; Correa-Basurto, A. M.; Méndez-Luna, D.; Trujillo-Ferrara, J.; Correa-Basurto, J. N N-(2-Hydroxyphenyl)-2-Propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in hela, rhabdomyosarcoma and breast cancer cells. J. Enzyme Inhib. Med. Chem., 2016, 31(sup 3), 140-149. doi: 10.1080/14756366.2016.1210138
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian, Inc., Wallingford CT; GaussView 5.0. Wallingford, E.U.A., 2016.
- Morris, Garrett M. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
- Welker Leng, K.R.; Castañeda, C.A.; Decroos, C.; Islam, B.; Haider, S.M.; Christianson, D.W.; Fierke, C.A. Phosphorylation of histone deacetylase 8: Structural and mechanistic analysis of the phosphomimetic S39E mutant. Biochemistry, 2019, 58(45), 4480-4493. doi: 10.1021/acs.biochem.9b00653 PMID: 31633931
- Decroos, C.; Bowman, C.M.; Moser, J.A.S.; Christianson, K.E.; Deardorff, M.A.; Christianson, D.W. Compromised structure and function of HDAC8 mutants identified in Cornelia de Lange Syndrome spectrum disorders. ACS Chem. Biol., 2014, 9(9), 2157-2164. doi: 10.1021/cb5003762 PMID: 25075551
- Osko, J.D.; Porter, N.J.; Decroos, C.; Lee, M.S.; Watson, P.R.; Raible, S.E.; Krantz, I.D.; Deardorff, M.A.; Christianson, D.W. Structural analysis of histone deacetylase 8 mutants associated with Cornelia de Lange Syndrome spectrum disorders. J. Struct. Biol., 2021, 213(1), 107681. doi: 10.1016/j.jsb.2020.107681 PMID: 33316326
- Santos-Martins, D.; Forli, S.; Ramos, M.J.; Olson, A.J. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J. Chem. Inf. Model., 2014, 54(8), 2371-2379. doi: 10.1021/ci500209e PMID: 24931227
- Garrido González, F.P.; Mancilla Percino, T. Synthesis, docking study and inhibitory activity of 2,6-diketopiperazines derived from α-amino acids on HDAC8. Bioorg. Chem., 2020, 102, 104080. doi: 10.1016/j.bioorg.2020.104080 PMID: 32683182
- Amin, S.A.; Adhikari, N.; Jha, T. Exploration of histone deacetylase 8 inhibitors through classification QSAR study: Part II. J. Mol. Struct., 2020, 1204, 127529. doi: 10.1016/j.molstruc.2019.127529
- Rajaraman, S.; Balakrishnan, R.; Deshmukh, D.; Ganorkar, A.; Biswas, S.; Pulya, S.; Ghosh, B. HDAC8 as an emerging target in drug discovery with special emphasis on medicinal chemistry. Future Med. Chem., 2023, 15(10), 885-908. doi: 10.4155/fmc-2023-0054 PMID: 37227732
- Luna-Palencia, G.R.; Correa-Basurto, J.; Trujillo-Ferrara, J.; Meraz-Ríos, M.A.; Vásquez-Moctezuma, I. Epigenetic evaluation of N-(2-hydroxyphenyl)-2-Propylpentanamide, a valproic acid aryl derivative with activity against hela cells. Curr. Mol. Pharmacol., 2021, 14(4), 570-578. doi: 10.2174/1874467213666200730113828 PMID: 32744980
- Sixto-López, Y.; Rosales-Hernández, M.C.; Contis-Montes de Oca, A.; Fragoso-Morales, L.G.; Mendieta-Wejebe, J.E.; Correa-Basurto, A.M.; Abarca-Rojano, E.; Correa-Basurto, J. N-(2′-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) inhibits HDAC1 and increases the translocation of HMGB1 levels in human cervical cancer cells. Int. J. Mol. Sci., 2020, 21(16), 5873. doi: 10.3390/ijms21165873 PMID: 32824279
- Esther Rubavathy, S.M.; Palanisamy, K.; Priyankha, S.; Thilagavathi, R.; Prakash, M.; Selvam, C. Discovery of novel HDAC8 inhibitors from natural compounds by in silico high throughput screening. J. Biomol. Struct. Dyn., 2023, 41(19), 9492-9502. doi: 10.1080/07391102.2022.2142668 PMID: 36369945
- Zagni, C.; Citarella, A.; Oussama, M.; Rescifina, A.; Maugeri, A.; Navarra, M.; Scala, A.; Piperno, A.; Micale, N. Hydroxamic acid-based histone deacetylase (HDAC) inhibitors bearing a pyrazole scaffold and a cinnamoyl linker. Int. J. Mol. Sci., 2019, 20(4), 945. doi: 10.3390/ijms20040945 PMID: 30795625
- Lukac, I.; Wyatt, P.G.; Gilbert, I.H.; Zuccotto, F. Ligand binding: Evaluating the contribution of the water molecules network using the fragment molecular orbital method. J. Comput. Aided Mol. Des., 2021, 35(10), 1025-1036. doi: 10.1007/s10822-021-00416-3 PMID: 34458939
- Lionta, E.; Spyrou, G.; Vassilatis, D.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938. doi: 10.2174/1568026614666140929124445 PMID: 25262799
- Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2016, 2(3), e1501240. doi: 10.1126/sciadv.1501240 PMID: 27051863
- Tse, C.; Wickstrom, L.; Kvaratskhelia, M.; Gallicchio, E.; Levy, R.; Deng, N. Exploring the free-energy landscape and thermodynamics of protein-protein association. Biophys. J., 2020, 119(6), 1226-1238. doi: 10.1016/j.bpj.2020.08.005 PMID: 32877664
- Stoddard, V. In silico design of novel histone deacetylase 4 inhibitors: Design guidelines for improved binding affinity. Int. J. Mol. Sci., 2020, 21(1), 219. doi: 10.3390/ijms21010219 PMID: 33379337
- Du, J.; Li, W.; Liu, B.; Zhang, Y.; Yu, J.; Hou, X.; Fang, H. An in silico mechanistic insight into HDAC8 activation facilitates the discovery of new small-molecule activators. Bioorg. Med. Chem., 2020, 28(16), 115607. doi: 10.1016/j.bmc.2020.115607 PMID: 32690262
Қосымша файлдар
