Lupiwighteone as an Antitumor Agent Reverses Multidrug Resistance in K562/ADR Cells by Regulating Cellular Prion Protein-Oct4 Axis


Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction:One of the many reasons for cancer treatment failure and recurrence is acquired Multidrug Resistance (MDR). Overcoming cancer drug resistance has been the focus of researchers' studies. Cellular prion protein (PrPC) is a glycophosphatidylinositol-anchored cell-surface glycoprotein that has been implicated in tumor behavior, including proliferation, apoptosis, invasion, metastasis, and chemoresistance.

Methods:Lupiwighteone (Lup), a natural isoflavone found in the root of Glycyrrhiza glabra, has anticancer activity against prostate cancer cells, neuroblastoma cells, and human breast cancer cells. However, its pharmacological effects and mechanisms in drug-resistant cancer cells have not been reported. In this study, we used an adriamycin- resistant leukemia K562 cell model, and for the first time, we investigated the reversal effect of Lup on its MDR and the potential mechanism.

Results:The results indicated that Lup could induce apoptosis through the mitochondrial pathway while upregulating the expression of related apoptotic proteins, such as Bax, Cyto C, Caspase-3, and PARP1. Autophagy is commonly recognized as a protective mechanism that mediates MDR during treatment. We found that Lup induced cellular autophagy while upregulating the expression of related autophagy proteins such as Beclin 1 and LC3 II.

Conclusion:In addition, when Lup was combined with adriamycin, Lup decreased the IC50 of K562/ADR cells; moreover, Lup can downregulate the expression of drug-resistant proteins, suggesting that Lup can reverse drug resistance. Further studies have shown that Lup can downregulate the expression of PrPC-PI3K-Akt axis proteins and PrPC-Oct4 axis proteins. This study demonstrated that Lup has the potential to inhibit the proliferation of K562/ADR cells by targeting PrPC, and further study of the signaling pathway associated with PrPC may provide the experimental basis for the treatment of drug-resistant leukemia.

Негізгі сөздер

Авторлар туралы

Kun Hu

School of Pharmacy, Changzhou University

Email: info@benthamscience.net

Jinling Zhang

School of Pharmacy,, Changzhou University,

Email: info@benthamscience.net

Yanan Zhang

School of Pharmacy, Changzhou University

Email: info@benthamscience.net

Xinyuan Wu

School of Pharmacy, Changzhou University

Email: info@benthamscience.net

Xueyi Jin

School of Pharmacy, Changzhou University

Email: info@benthamscience.net

Shuxia Mao

School of Pharmacy, Changzhou University

Email: info@benthamscience.net

Pengcheng Ding

School of Pharmacy, Changzhou University

Email: info@benthamscience.net

Shaojun Wu

School of Pharmacy, Changzhou University

Email: info@benthamscience.net

Jie Ren

School of Pharmacy, Changzhou University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Surguchov, A.; Bernal, L.; Surguchev, A.A. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules, 2021, 11(5), 624. doi: 10.3390/biom11050624 PMID: 33922207
  2. Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell., 2004, 116(2), 281-297. doi: 10.1016/s0092-8674(04)00045-5 PMID: 14744438
  3. Kumari, A.; Ahuja, S.; Bajaj, S.; Zaheer, S.; Chaitanya, V.; Agarwal, Y.; Gupta, R.; Ranga, S. Cytomorphological findings in drug defaulters of Tuberculous lymphadenitis. Cytojournal, 2023, 20, 31. doi: 10.25259/Cytojournal_16_2023 PMID: 37810436
  4. Narayanan, S.; Cai, C.Y.; Assaraf, Y.G.; Guo, H.Q.; Cui, Q.; Wei, L.; Huang, J.J.; Ashby, C.R., Jr; Chen, Z.S. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist. Updat., 2020, 48, 100663. doi: 10.1016/j.drup.2019.100663 PMID: 31785545
  5. Cao, Y.X.; Wen, F.; Luo, Z.Y.; Long, X.X.; Luo, C.; Liao, P.; Li, J.J. Downregulation of microRNA let‐7f mediated the Adriamycin resistance in leukemia cell line. J. Cell. Biochem., 2020, 121(10), 4022-4033. doi: 10.1002/jcb.29541 PMID: 31793054
  6. Jayappa, K.D.; Tran, B.; Gordon, V.L.; Morris, C.; Saha, S.; Farrington, C.C.; O’Connor, C.M.; Zawacki, K.P.; Isaac, K.M.; Kester, M.; Bender, T.P.; Williams, M.E.; Portell, C.A.; Weber, M.J.; Narla, G. PP2A modulation overcomes multidrug resistance in chronic lymphocytic leukemia via mPTP-dependent apoptosis. J. Clin. Invest., 2023, 133(13), e155938. doi: 10.1172/JCI155938 PMID: 37166997
  7. Li, J.M.; Li, X.; Chan, L.W.C.; Hu, R.; Zheng, T.; Li, H.; Yang, S. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice. Diabetologia, 2023, 66(12), 2368-2386. doi: 10.1007/s00125-023-05992-7 PMID: 37615690
  8. Luo, G.; Zhou, Z.; Huang, C.; Zhang, P.; Sun, N.; Chen, W.; Deng, C.; Li, X.; Wu, P.; Tang, J.; Qing, L. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps. Heliyon, 2023, 9(7), e17909. doi: 10.1016/j.heliyon.2023.e17909 PMID: 37456049
  9. Messina, M. A brief historical overview of the past two decades of soy and isoflavone research. J. Nutr., 2010, 140(7), 1350S-1354S. doi: 10.3945/jn.109.118315 PMID: 20484551
  10. Xie, B.; Zhao, L.; Zhang, Z.; Zhou, C.; Tian, Y.; Kang, Y.; Chen, J.; Wei, H.; Li, L. CADM1 impairs the effect of miR-1246 on promoting cell cycle progression in chemo-resistant leukemia cells. BMC Cancer, 2023, 23(1), 955. doi: 10.1186/s12885-023-11458-1 PMID: 37814227
  11. Ghelli Luserna di Rorà, A.; Jandoubi, M.; Martinelli, G.; Simonetti, G. Targeting proliferation signals and the cell cycle machinery in acute leukemias: Novel molecules on the horizon. Molecules, 2023, 28(3), 1224. doi: 10.3390/molecules28031224 PMID: 36770891
  12. Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122. doi: 10.1186/gb4184 PMID: 25180339
  13. Narasimha, A.M.; Kaulich, M.; Shapiro, G.S.; Choi, Y.J.; Sicinski, P.; Dowdy, S.F. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife, 2014, 3, e02872. doi: 10.7554/eLife.02872 PMID: 24876129
  14. Cha, S.; Sin, M.J.; Kim, M.J.; Kim, H.J.; Kim, Y.S.; Choi, E.K.; Kim, M.Y. Involvement of cellular prion protein in invasion and metastasis of lung cancer by inducing treg cell development. Biomolecules, 2021, 11(2), 285. doi: 10.3390/biom11020285 PMID: 33671884
  15. Han, H.; Bearss, D.J.; Browne, L.W.; Calaluce, R.; Nagle, R.B.; Von Hoff, D.D. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res., 2002, 62(10), 2890-2896. PMID: 12019169
  16. Go, G.; Lee, S.H. The cellular prion protein: A promising therapeutic target for cancer. Int. J. Mol. Sci., 2020, 21(23), 9208. doi: 10.3390/ijms21239208 PMID: 33276687
  17. Domingues, P.H.; Nanduri, L.S.Y.; Seget, K.; Venkateswaran, S.V.; Agorku, D.; Viganó, C.; von Schubert, C.; Nigg, E.A.; Swanton, C.; Sotillo, R.; Bosio, A.; Storchová, Z.; Hardt, O. Cellular prion protein PrPC and Ecto-5′-Nucleotidase are markers of the cellular stress response to aneuploidy. Cancer Res., 2017, 77(11), 2914-2926. doi: 10.1158/0008-5472.CAN-16-3052 PMID: 28377454
  18. Lee, J.H.; Yun, C.W.; Han, Y.S.; Kim, S.; Jeong, D.; Kwon, H.Y.; Kim, H.; Baek, M.J.; Lee, S.H. Melatonin and 5‐fluorouracil co‐suppress colon cancer stem cells by regulating cellular prion protein‐Oct4 axis. J. Pineal Res., 2018, 65(4), e12519. doi: 10.1111/jpi.12519 PMID: 30091203
  19. Vassallo, N.; Herms, J.; Behrens, C.; Krebs, B.; Saeki, K.; Onodera, T.; Windl, O.; Kretzschmar, H.A. Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem. Biophys. Res. Commun., 2005, 332(1), 75-82. doi: 10.1016/j.bbrc.2005.04.099 PMID: 15896301
  20. Weise, J.; Sandau, R.; Schwarting, S.; Crome, O.; Wrede, A.; Schulz-Schaeffer, W.; Zerr, I.; Bähr, M. Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke, 2006, 37(5), 1296-1300. doi: 10.1161/01.STR.0000217262.03192.d4 PMID: 16574930
  21. Puig, B.; Yang, D.; Brenna, S.; Altmeppen, H.C.; Magnus, T. Show me your friends and I tell you who you are: The many facets of prion protein in stroke. Cells, 2020, 9(7), 1609. doi: 10.3390/cells9071609 PMID: 32630841
  22. Savova, M.S.; Mihaylova, L.V.; Tews, D.; Wabitsch, M.; Georgiev, M.I. Targeting PI3K/AKT signaling pathway in obesity. Biomed. Pharmacother., 2023, 159, 114244. doi: 10.1016/j.biopha.2023.114244 PMID: 36638594
  23. Yuan, Y.; Long, H.; Zhou, Z.; Fu, Y.; Jiang, B. PI3K–AKT-Targeting breast cancer treatments: Natural products and synthetic compounds. Biomolecules, 2023, 13(1), 93. doi: 10.3390/biom13010093 PMID: 36671478
  24. Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci., 2020, 21(7), 2346. doi: 10.3390/ijms21072346 PMID: 32231094
  25. Yang, M.H.; Baek, S.H.; Hwang, S.T.; Um, J.Y.; Ahn, K.S. Corilagin exhibits differential anticancer effects through the modulation of STAT3/5 and MAPKs in human gastric cancer cells. Phytother. Res., 2022, 36(6), 2449-2462. doi: 10.1002/ptr.7419 PMID: 35234310
  26. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell., 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  27. Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
  28. Kim, C.; Kim, B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients, 2018, 10(8), 1021. doi: 10.3390/nu10081021 PMID: 30081573
  29. Gambardella, J.; Fiordelisi, A.; Santulli, G.; Ciccarelli, M.; Cerasuolo, F.A.; Sala, M.; Sommella, E.; Campiglia, P.; Illario, M.; Iaccarino, G.; Sorriento, D. Exploiting GRK2 inhibition as a therapeutic option in experimental cancer treatment: Role of p53-induced mitochondrial apoptosis. Cancers (Basel), 2020, 12(12), 3530. doi: 10.3390/cancers12123530 PMID: 33256128
  30. Buschhaus, J.M.; Humphries, B.; Luker, K.E.; Luker, G.D. A caspase-3 reporter for fluorescence lifetime imaging of single-cell apoptosis. Cells, 2018, 7(6), 57-67. doi: 10.3390/cells7060057 PMID: 30720785
  31. Nichani, K.; Li, J.; Suzuki, M.; Houston, J.P. Evaluation of caspase‐3 activity during apoptosis with fluorescence lifetime‐based cytometry measurements and phasor analyses. Cytometry A, 2020, 97(12), 1265-1275. doi: 10.1002/cyto.a.24207 PMID: 32790129
  32. Das, S.; Shukla, N.; Singh, S.S.; Kushwaha, S.; Shrivastava, R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis, 2021, 26(9-10), 512-533. doi: 10.1007/s10495-021-01687-9 PMID: 34510317
  33. Das, T.; Anand, U.; Pandey, S.K.; Ashby, C.R., Jr; Assaraf, Y.G.; Chen, Z.S.; Dey, A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist. Updat., 2021, 55, 100754. doi: 10.1016/j.drup.2021.100754 PMID: 33691261
  34. Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464. doi: 10.1038/s41568-018-0005-8 PMID: 29643473
  35. Go, G.; Yun, C.W.; Yoon, Y.M.; Lim, J.H.; Lee, J.H.; Lee, S.H. Role of PrP C in cancer stem cell characteristics and drug resistance in colon cancer cells. Anticancer Res., 2020, 40(10), 5611-5620. doi: 10.21873/anticanres.14574 PMID: 32988885
  36. Du, J.; Pan, Y.; Shi, Y.; Guo, C.; Jin, X.; Sun, L.; Liu, N.; Qiao, T.; Fan, D. Overexpression and significance of prion protein in gastric cancer and multidrug‐resistant gastric carcinoma cell line SGC7901/ADR. Int. J. Cancer, 2005, 113(2), 213-220. doi: 10.1002/ijc.20570 PMID: 15386405
  37. Oliveira, B.R.; Figueiredo, M.A.; Trindade, G.S.; Marins, L.F. OCT4 mutations in human erythroleukemic cells: Implications for multiple drug resistance (MDR) phenotype. Mol. Cell. Biochem., 2015, 400(1-2), 41-50. doi: 10.1007/s11010-014-2260-7 PMID: 25355160
  38. Zhang, Z.; Chen, W.; Zhang, S.; Bai, J.; Liu, B.; Yung, K.K.L.; Ko, J.K.S. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy. Phytomedicine, 2022, 106, 154406. doi: 10.1016/j.phymed.2022.154406 PMID: 36029643
  39. Hamid, A.; Rajab, N.F.; Charmagne, Y.; Awang, N.; Jufri, N.F.; Rasli, N.R. Cellular and DNA toxicity study of triphenyltin ethyl phenyl dithiocarbamate and triphenyltin butyl phenyl dithiocarbamate on K562, leukemia cell line. Anticancer. Agents Med. Chem., 2024, 24(1), 58-65. doi: 10.2174/0118715206266851231025054446 PMID: 37921147
  40. Thol, F.; Döhner, H.; Ganser, A. How I treat refractory and relapsed acute myeloid leukemia. Blood, 2024, 143(1), 11-20. doi: 10.1182/blood.2023022481 PMID: 37944143
  41. Huang, Y.; Wan, C.L.; Dai, H.; Xue, S. Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma. Ann. Hematol., 2023, 102(8), 2001-2013. doi: 10.1007/s00277-023-05286-3 PMID: 37227492
  42. Sauerer, T.; Velázquez, G.F.; Schmid, C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: Immune escape mechanisms and current implications for therapy. Mol. Cancer, 2023, 22(1), 180. doi: 10.1186/s12943-023-01889-6 PMID: 37951964
  43. Su, X.; Li, Y.; Wang, P.; Wang, X.; Liu, Q. Protoporphyrin IX-mediated sonodynamic action induces apoptosis of K562 cells. Ultrasonics, 2014, 54(1), 275-284. doi: 10.1016/j.ultras.2013.07.015 PMID: 23978616
  44. Sekeres, M.A.; Montesinos, P.; Novak, J.; Wang, J.; Jeyakumar, D.; Tomlinson, B.; Mayer, J.; Jou, E.; Robak, T.; Taussig, D.C.; Dombret, H.; Merchant, A.; Shaik, N.; O’Brien, T.; Roh, W.; Liu, X.; Ma, W.; DiRienzo, C.G.; Chan, G.; Cortes, J.E. Glasdegib plus intensive or non-intensive chemotherapy for untreated acute myeloid leukemia: Results from the randomized, phase 3 BRIGHT AML 1019 trial. Leukemia, 2023, 37(10), 2017-2026. doi: 10.1038/s41375-023-02001-z PMID: 37604981
  45. Bolaman, A.Z.; Eroğlu Küçükdiler, A.H.; Yavaşoğlu, İ. Disseminated scabies during induction chemotherapy for acute promyelocytic leukemia. Turkiye Parazitol. Derg., 2023, 47(2), 127-128. doi: 10.4274/tpd.galenos.2023.27136 PMID: 37249118
  46. Zheng, C.; Zhu, Z.; Weng, S.; Zhang, Q.; Fu, Y.; Cai, X.; Liu, Z.; Shi, Y. NOD2 silencing promotes cell apoptosis and inhibits drug resistance in chronic lymphocytic leukemia by inhibiting the NF‐κB signaling pathway. J. Biochem. Mol. Toxicol., 2023, 37(12), e23510. doi: 10.1002/jbt.23510 PMID: 37700718
  47. Li, Z.; Ma, R.; Tang, H.; Guo, J.; Shah, Z.; Zhang, J.; Liu, N.; Cao, S.; Marcucci, G.; Artis, D.; Caligiuri, M.A.; Yu, J. Therapeutic application of human type 2 innate lymphoid cells via induction of granzyme B-mediated tumor cell death. Cell, 2024, 187(3), 624-641.e23. doi: 10.1016/j.cell.2023.12.015 PMID: 38211590
  48. Rausch, J.; Dzama, M.M.; Dolgikh, N.; Stiller, H.L.; Bohl, S.R.; Lahrmann, C.; Kunz, K.; Kessler, L.; Echchannaoui, H.; Chen, C.W.; Kindler, T.; Döhner, K.; Burrows, F.; Theobald, M.; Sasca, D.; Kühn, M.W.M. Menin inhibitor ziftomenib (KO-539) synergizes with drugs targeting chromatin regulation or apoptosis and sensitizes acute myeloid leukemia with MLL rearrangement or NPM1 mutation to venetoclax. Haematologica, 2023, 108(10), 2837-2843. doi: 10.3324/haematol.2022.282160 PMID: 37102614
  49. Long, H.; Huang, Q.; Yu, Y.; Zhang, Z.; Yao, Z.; Chen, H.; Feng, J. Dehydrocostus lactone inhibits in vitro gastrinoma cancer cell growth through apoptosis induction, sub-G1 cell cycle arrest, DNA damage and loss of mitochondrial membrane potential. Arch. Med. Sci., 2019, 15(3), 765-773. doi: 10.5114/aoms.2018.73128 PMID: 31110544
  50. Gu, Y.Y.; Chen, M.H.; May, B.H.; Liao, X.Z.; Liu, J.H.; Tao, L.T.; Man-yuen Sze, D.; Zhang, A.L.; Mo, S.L. Matrine induces apoptosis in multiple colorectal cancer cell lines in vitro and inhibits tumour growth with minimum side effects in vivo via Bcl-2 and caspase-3. Phytomedicine, 2018, 51, 214-225. doi: 10.1016/j.phymed.2018.10.004 PMID: 30466620
  51. Wang, M.; Sun, X.; Jiang, Y.; Tan, Z. NET-1 promotes invasion, adhesion and growth of hepatocellular carcinoma by regulating the expression of BAX, caspase 3, caspase 8 and BCL2. Cell. Mol. Biol., 2018, 64(12), 37-41. doi: 10.14715/cmb/2018.64.12.8 PMID: 30301500
  52. da Silva Sergio, L.P.; Côrtes Thomé, A.M.; da Silva Neto Trajano, L.A.; Mencalha, A.L.; de Souza da Fonseca, A.; de Paoli, F. Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochem. Photobiol. Sci., 2018, 17(7), 975-983. doi: 10.1039/c8pp00109j PMID: 29922788
  53. Yousaf, S.; Ahmad, M.; Wu, S.; Zia, M.A.; Ahmed, I.; Iqbal, H.M.N.; Liu, Q.; Rehman, S. Cellular prion protein role in cancer biology: Is it a potential therapeutic target? Biomedicines, 2022, 10(11), 2833. doi: 10.3390/biomedicines10112833 PMID: 36359353
  54. Limone, A.; Maggisano, V.; Sarnataro, D.; Bulotta, S. Emerging roles of the cellular prion protein (PrPC) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell. Mol. Life Sci., 2023, 80(8), 207. doi: 10.1007/s00018-023-04844-2 PMID: 37452879
  55. Cheng, Q.; Zheng, H.; Li, M.; Wang, H.; Guo, X.; Zheng, Z.; Chen, C.; Liu, J.; Zhan, T.; Li, Z.; Wu, H.; Han, J.; Liu, L.; Tang, T.; Chen, Q.; Du, L. LGR4 cooperates with PrPC to endow the stemness of colorectal cancer stem cells contributing to tumorigenesis and liver metastasis. Cancer Lett., 2022, 540, 215725. doi: 10.1016/j.canlet.2022.215725 PMID: 35561877
  56. Wang, H.; Li, X.; Xia, B.; Zhang, Q.; He, J.; Yang, L. Amelioration of chronic prostatitis by fractions of Mongolian medicine Hosta plantaginea flowers via inhibition of NF-κB, MAPKs, JAK-STAT, and PI3K-Akt signaling pathways in rats. J. Ethnopharmacol., 2023, 307, 116245. doi: 10.1016/j.jep.2023.116245 PMID: 36746294
  57. Lim, J.H.; Go, G.; Lee, S.H. PrPC regulates the cancer stem cell properties via interaction with c-Met in colorectal cancer cells. Anticancer Res., 2021, 41(7), 3459-3470. doi: 10.21873/anticanres.15133 PMID: 34230141
  58. Wang, Y.J.; Herlyn, M. The emerging roles of Oct4 in tumor-initiating cells. Am. J. Physiol. Cell Physiol., 2015, 309(11), C709-C718. doi: 10.1152/ajpcell.00212.2015 PMID: 26447206
  59. Yang, C.C.; Sung, P.H.; Chen, K.H.; Chai, H.T.; Chiang, J.Y.; Ko, S.F.; Lee, F.Y.; Yip, H.K. Valsartan- and melatonin-supported adipose-derived mesenchymal stem cells preserve renal function in chronic kidney disease rat through upregulation of prion protein participated in promoting PI3K-Akt-mTOR signaling and cell proliferation. Biomed. Pharmacother., 2022, 146, 112551. doi: 10.1016/j.biopha.2021.112551 PMID: 34923336
  60. Tazzari, P.L.; Cappellini, A.; Ricci, F.; Evangelisti, C.; Papa, V.; Grafone, T.; Martinelli, G.; Conte, R.; Cocco, L.; McCubrey, J.A.; Martelli, A.M. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia, 2007, 21(3), 427-438. doi: 10.1038/sj.leu.2404523 PMID: 17215852
  61. Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer, 2017, 36(1), 52. doi: 10.1186/s40880-017-0219-2 PMID: 28646911
  62. Zeng, T.; Xu, M.; Zhang, W.; Gu, X.; Zhao, F.; Liu, X.; Zhang, X. Autophagy inhibition and microRNA 199a 5p upregulation in paclitaxel resistant A549/T lung cancer cells. Oncol. Rep., 2021, 46(1), 149. doi: 10.3892/or.2021.8100 PMID: 34080652
  63. Zhang, X.; Chen, X.; Guo, Y.; Jia, H.R.; Jiang, Y.W.; Wu, F.G. Endosome/lysosome-detained supramolecular nanogels as an efflux retarder and autophagy inhibitor for repeated photodynamic therapy of multidrug-resistant cancer. Nanoscale Horiz., 2020, 5(3), 481-487. doi: 10.1039/C9NH00643E PMID: 32118218
  64. Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2007, 8(9), 741-752. doi: 10.1038/nrm2239 PMID: 17717517
  65. Zhao, Q.; Peng, C.; Zheng, C.; He, X.H.; Huang, W.; Han, B. Recent advances in characterizing natural products that regulate autophagy. Anticancer. Agents Med. Chem., 2020, 19(18), 2177-2196. doi: 10.2174/1871520619666191015104458 PMID: 31749434
  66. Ryter, S.W.; Mizumura, K.; Choi, A.M.K. The impact of autophagy on cell death modalities. Int. J. Cell Biol., 2014, 2014, 1-12. doi: 10.1155/2014/502676 PMID: 24639873
  67. Jing, K.; Lim, K. Why is autophagy important in human diseases? Exp. Mol. Med., 2012, 44(2), 69-72. doi: 10.3858/emm.2012.44.2.028 PMID: 22257881
  68. Gump, J.M.; Thorburn, A. Autophagy and apoptosis: What is the connection? Trends Cell Biol., 2011, 21(7), 387-392. doi: 10.1016/j.tcb.2011.03.007 PMID: 21561772
  69. Su, M.; Mei, Y.; Sinha, S. Role of the crosstalk between autophagy and apoptosis in cancer. J. Oncol., 2013, 2013, 1-14. doi: 10.1155/2013/102735 PMID: 23840208
  70. Mariño, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 81-94. doi: 10.1038/nrm3735 PMID: 24401948

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024