Glioblastoma as a Novel Drug Repositioning Target: Updated State
- Авторы: Hosseinalizadeh H.1, Ebrahimi A.2, Tavakoli A.3, Monavari S.4
-
Учреждения:
- Department of Medical Biotechnology, Faculty of Paramedicine,, Guilan University of Medical Sciences
- Department of Biomedical Sciences, University of Lausanne
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences
- Department of Virology, School of Medicine, Iran University of Medical Sciences
- Выпуск: Том 23, № 11 (2023)
- Страницы: 1253-1264
- Раздел: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694296
- DOI: https://doi.org/10.2174/1871520623666230202163112
- ID: 694296
Цитировать
Полный текст
Аннотация
Glioblastoma multiforme (GBM) is an aggressive form of adult brain tumor that can arise from a low-grade astrocytoma. In recent decades, several new conventional therapies have been developed that have significantly improved the prognosis of patients with GBM. Nevertheless, most patients have a limited long-term response to these treatments and survivp < 0 year. Therefore, innovative anti-cancer drugs that can be rapidly approved for patient use are urgently needed. One way to achieve accelerated approval is drug repositioning, extending the use of existing drugs for new therapeutic purposes, as it takes less time to validate their biological activity as well as their safety in preclinical models. In this review, a comprehensive analysis of the literature search was performed to list drugs with antiviral, antiparasitic, and antidepressant properties that may be effective in GBM and their putative anti-tumor mechanisms in GBM cells.
Ключевые слова
Об авторах
Hamed Hosseinalizadeh
Department of Medical Biotechnology, Faculty of Paramedicine,, Guilan University of Medical Sciences
Email: info@benthamscience.net
Ammar Ebrahimi
Department of Biomedical Sciences, University of Lausanne
Email: info@benthamscience.net
Ahmad Tavakoli
Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences
Email: info@benthamscience.net
Seyed Monavari
Department of Virology, School of Medicine, Iran University of Medical Sciences
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Ghaffari, H.; Tavakoli, A.; Faranoush, M.; Naderi, A.; Kiani, S.J.; Sadeghipour, A.; Javanmard, D.; Farahmand, M.; Ghorbani, S.; Seda-ghati, F.; Monavari, S.H. Molecular investigation of human cytomegalovirus and epstein-barr virus in glioblastoma brain tumor: A case-control study in iran. Iran. Biomed. J., 2021, 25(6), 426-433. doi: 10.52547/ibj.25.6.426 PMID: 34696577
- Zavala-Vega, S.; Palma-Lara, I.; Ortega-Soto, E.; Trejo-Solis, C.; de Arellano, I.T.R.; Ucharima-Corona, L.E.; Garcia-Chacón, G.; Ochoa, S.A.; Xicohtencatl-Cortes, J.; Cruz-Córdova, A.; Luna-Pineda, V.M.; Jiménez-Hernández, E.; Vázquez-Meraz, E.; Mejía-Aranguré, J.M.; Guzmán-Bucio, S.; Rembao-Bojorquez, D.; Sánchez-Gómez, C.; Salazar-Garcia, M.; Arellano-Galindo, J. Role of Epstein-barr virus in gli-oblastoma. Crit. Rev. Oncog., 2019, 24(4), 307-338. doi: 10.1615/CritRevOncog.2019032655 PMID: 32421988
- Sadeghi, F.; Bokharaei-Salim, F.; Salehi-Vaziri, M.; Monavari, S.H.; Alavian, S.M.; Salimi, S.; Vahabpour, R.; Keyvani, H. Associations between human TRIM22 gene expression and the response to combination therapy with Peg-IFNα-2a and ribavirin in Iranian patients with chronic hepatitis C. J. Med. Virol., 2014, 86(9), 1499-1506. doi: 10.1002/jmv.23985 PMID: 24889558
- Salehi-Vaziri, M.; Sadeghi, F.; Bokharaei-Salim, F.; Younesi, S.; Alinaghi, S.; Monavari, S.H.; Keyvani, H. The prevalence and genotype distribution of human papillomavirus in the genital tract of males in Iran. Jundishapur J. Microbiol., 2015, 8(12), e21912. doi: 10.5812/jjm.21912 PMID: 26862386
- Moghoofei, M.; Keshavarz, M.; Ghorbani, S.; Babaei, F.; Nahand, J.S.; Tavakoli, A.; Mortazavi, H.S.; Marjani, A.; Mostafaei, S.; Monava-ri, S.H. Association between human Papillomavirus infection and prostate cancer: A global systematic review and meta‐analysis. Asia Pac. J. Clin. Oncol., 2019, 15(5), e59-e67. doi: 10.1111/ajco.13124 PMID: 30740893
- Fateh, A.; Aghasadeghi, M.; Siadat, S.D.; Vaziri, F.; Sadeghi, F.; Fateh, R.; Keyvani, H.; Tasbiti, A.H.; Yari, S.; Ataei-Pirkooh, A.; Monava-ri, S.H. Comparison of three different methods for detection of IL28 rs12979860 polymorphisms as a predictor of treatment outcome in patients with hepatitis C virus. Osong Public Health Res. Perspect., 2016, 7(2), 83-89. doi: 10.1016/j.phrp.2015.11.004 PMID: 27169005
- Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; O'Kelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110. doi: 10.1016/j.ccr.2009.12.020 PMID: 20129251
- Clarke, J.; Penas, C.; Pastori, C.; Komotar, R.J.; Bregy, A.; Shah, A.H.; Wahlestedt, C.; Ayad, N.G. Epigenetic pathways and glioblastoma treatment. Epigenetics, 2013, 8(8), 785-795. doi: 10.4161/epi.25440 PMID: 23807265
- Park, S.H.; Kim, M.J.; Jung, H.H.; Chang, W.S.; Choi, H.S.; Rachmilevitch, I.; Zadicario, E.; Chang, J.W. One-year outcome of multiple bloodbrain barrier disruptions with temozolomide for the treatment of glioblastoma. Front. Oncol., 2020, 10, 1663. doi: 10.3389/fonc.2020.01663 PMID: 33014832
- Jain, K.K. A critical overview of targeted therapies for glioblastoma. Front. Oncol., 2018, 8, 419. doi: 10.3389/fonc.2018.00419 PMID: 30374421
- Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657. doi: 10.1016/j.trci.2017.10.005 PMID: 29255791
- Tan, S.K.; Jermakowicz, A.; Mookhtiar, A.K.; Nemeroff, C.B.; Schürer, S.C.; Ayad, N.G. Drug repositioning in glioblastoma: A pathway perspective. Front. Pharmacol., 2018, 9, 218. doi: 10.3389/fphar.2018.00218 PMID: 29615902
- Yadavalli, S.; Yenugonda, V.M.; Kesari, S. Repurposed drugs in treating glioblastoma multiforme: Clinical trials update. Cancer J., 2019, 25(2), 139-146. doi: 10.1097/PPO.0000000000000365 PMID: 30896537
- Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifirò, G. Challenges for drug repurposing in the COVID-19 pandemic era. Front. Pharmacol., 2020, 11, 588654. doi: 10.3389/fphar.2020.588654 PMID: 33240091
- Chu, C.W.; Ko, H.J.; Chou, C.H.; Cheng, T.S.; Cheng, H.W.; Liang, Y.H.; Lai, Y.L.; Lin, C.Y.; Wang, C.; Loh, J.K.; Cheng, J.T.; Chiou, S.J.; Su, C.L.; Huang, C.Y.F.; Hong, Y.R. Thioridazine enhances P62-mediated autophagy and apoptosis through Wnt/β-catenin signaling path-way in glioma cells. Int. J. Mol. Sci., 2019, 20(3), 473. doi: 10.3390/ijms20030473 PMID: 30678307
- Rahman, M.; Dastmalchi, F.; Karachi, A.; Mitchell, D. The role of CMV in glioblastoma and implications for immunotherapeutic strategies. OncoImmunology, 2019, 8(1), e1514921. doi: 10.1080/2162402X.2018.1514921 PMID: 30546954
- Peng, C.; Wang, J.; Tanksley, J.P.; Mobley, B.C.; Ayers, G.D.; Moots, P.L.; Clark, S.W. Valganciclovir and bevacizumab for recurrent glioblastoma: A single-institution experience. Mol. Clin. Oncol., 2016, 4(2), 154-158. doi: 10.3892/mco.2015.692 PMID: 26893852
- Cobbs, C.S. Does valganciclovir have a role in glioblastoma therapy? Neuro-oncol., 2014, 16(3), 330-331. doi: 10.1093/neuonc/nou009 PMID: 24523453
- Stragliotto, G.; Pantalone, M.R.; Rahbar, A.; Söderberg-Nauclér, C. Valganciclovir as add-on to standard therapy in secondary glioblasto-ma. Microorganisms, 2020, 8(10), 1471. doi: 10.3390/microorganisms8101471 PMID: 32987955
- Ding, D.; Zhao, A.; Sun, Z.; Zuo, L.; Wu, A.; Sun, J. Is the presence of HCMV components in CNS tumors a glioma-specific phenome-non? Virol. J., 2019, 16(1), 96. doi: 10.1186/s12985-019-1198-5 PMID: 31370833
- Dey, M.; Ahmed, A.U.; Lesniak, M.S. Cytomegalovirus and glioma: Putting the cart before the horse. J. Neurol. Neurosurg. Psychiatry, 2015, 86(2), 191-199. doi: 10.1136/jnnp-2014-307727 PMID: 24906494
- ClinicalTrials.gov. Efficacy and safety of valcyte® as an add-on therapy in patients with Malignant Glioblastoma and Cytomegalovirus (CMV) infection., 2006. Available from: https://ClinicalTrials.gov/show/NCT00400322
- Stragliotto, G.; Pantalone, M.R.; Rahbar, A.; Bartek, J.; Söderberg-Naucler, C. Valganciclovir as add-on to standard therapy in glioblastoma patients. Clin. Cancer Res., 2020, 26(15), 4031-4039. doi: 10.1158/1078-0432.CCR-20-0369 PMID: 32423968
- Kohli, A.; Shaffer, A.; Sherman, A.; Kottilil, S. Treatment of hepatitis C: A systematic review. JAMA, 2014, 312(6), 631-640. doi: 10.1001/jama.2014.7085 PMID: 25117132
- Borden, K.L.B.; Culjkovic-Kraljacic, B. Ribavirin as an anti-cancer therapy: Acute myeloid leukemia and beyond? Leuk. Lymphoma, 2010, 51(10), 1805-1815. doi: 10.3109/10428194.2010.496506 PMID: 20629523
- Kentsis, A.; Topisirovic, I.; Culjkovic, B.; Shao, L.; Borden, K.L.B. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc. Natl. Acad. Sci., 2004, 101(52), 18105-18110. doi: 10.1073/pnas.0406927102 PMID: 15601771
- De La, C.H.E.; Medina-Franco, J.L.; Trujillo, J.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Perez-Cardenas, E.; Gonzalez-Fierro, A.; Taja-Chayeb, L.; Dueñas-Gonzalez, A. Ribavirin as a tri-targeted antitumor repositioned drug. Oncol. Rep., 2015, 33(5), 2384-2392. doi: 10.3892/or.2015.3816 PMID: 25738706
- Ochiai, Y.; Sumi, K.; Sano, E.; Yoshimura, S.; Yamamuro, S.; Ogino, A.; Ueda, T.; Suzuki, Y.; Nakayama, T.; Hara, H.; Katayama, Y.; Yoshino, A. Antitumor effects of ribavirin in combination with TMZ and IFN β in malignant glioma cells. Oncol. Lett., 2020, 20(5), 1. doi: 10.3892/ol.2020.12039 PMID: 32934745
- Volpin, F.; Casaos, J.; Sesen, J.; Mangraviti, A.; Choi, J.; Gorelick, N.; Frikeche, J.; Lott, T.; Felder, R.; Scotland, S.J.; Eisinger-Mathason, T.S.K.; Brem, H.; Tyler, B.; Skuli, N. Use of an anti-viral drug, Ribavirin, as an anti-glioblastoma therapeutic. Oncogene, 2017, 36(21), 3037-3047. doi: 10.1038/onc.2016.457 PMID: 27941882
- Tan, K.; Culjkovic, B.; Amri, A.; Borden, K.L.B. Ribavirin targets eIF4E dependent Akt survival signaling. Biochem. Biophys. Res. Commun., 2008, 375(3), 341-345. doi: 10.1016/j.bbrc.2008.07.163 PMID: 18706892
- Urtishak, K.A.; Wang, L.S.; Culjkovic-Kraljacic, B.; Davenport, J.W.; Porazzi, P.; Vincent, T.L.; Teachey, D.T.; Tasian, S.K.; Moore, J.S.; Seif, A.E.; Jin, S.; Barrett, J.S.; Robinson, B.W.; Chen, I.M.L.; Harvey, R.C.; Carroll, M.P.; Carroll, A.J.; Heerema, N.A.; Devidas, M.; Dreyer, Z.E.; Hilden, J.M.; Hunger, S.P.; Willman, C.L.; Borden, K.L.B.; Felix, C.A. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene, 2019, 38(13), 2241-2262. doi: 10.1038/s41388-018-0567-7 PMID: 30478448
- Robinson, J.P.; Vanbrocklin, M.W.; McKinney, A.J.; Gach, H.M.; Holmen, S.L. Akt signaling is required for glioblastoma maintenance in vivo. Am. J. Cancer Res., 2011, 1(2), 155-167. PMID: 21796274
- Ge, Y.; Zhou, F.; Chen, H.; Cui, C.; Liu, D.; Li, Q.; Yang, Z.; Wu, G.; Sun, S.; Gu, J.; Wei, Y.; Jiang, J. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells. Biochem. Biophys. Res. Commun., 2010, 397(4), 711-717. doi: 10.1016/j.bbrc.2010.06.015 PMID: 20537983
- Carrasco-Garcia, E.; Santos, J.C.; Garcia, I.; Brianti, M.; García-Puga, M.; Pedrazzoli, J., Jr; Matheu, A.; Ribeiro, M.L. Paradoxical role of SOX2 in gastric cancer. Am. J. Cancer Res., 2016, 6(4), 701-713. PMID: 27186426
- Velcheti, V.; Schalper, K.; Yao, X.; Cheng, H.; Kocoglu, M.; Dhodapkar, K.; Deng, Y.; Gettinger, S.; Rimm, D.L. High SOX2 levels predict better outcome in non-small cell lung carcinomas. PLoS One, 2013, 8(4), e61427. doi: 10.1371/journal.pone.0061427 PMID: 23620753
- Li, Y.Q.; Zheng, Z.; Liu, Q.X.; Lu, X.; Zhou, D.; Zhang, J.; Zheng, H.; Dai, J.G. Repositioning of antiparasitic drugs for tumor treatment. Front. Oncol., 2021, 11, 670804. doi: 10.3389/fonc.2021.670804 PMID: 33996598
- Arora, N.; Kaur, R.; Anjum, F.; Tripathi, S.; Mishra, A.; Kumar, R.; Prasad, A. Neglected agent eminent disease: Linking human helminthic infection, inflammation, and malignancy. Front. Cell. Infect. Microbiol., 2019, 9, 402. doi: 10.3389/fcimb.2019.00402 PMID: 31867284
- van Tong, H.; Brindley, P.J.; Meyer, C.G.; Velavan, T.P. Parasite infection, carcinogenesis and human malignancy. EBioMedicine, 2017, 15, 12-23. doi: 10.1016/j.ebiom.2016.11.034 PMID: 27956028
- Bai, R.Y.; Staedtke, V.; Wanjiku, T.; Rudek, M.A.; Joshi, A.; Gallia, G.L.; Riggins, G.J. Brain penetration and efficacy of different meben-dazole polymorphs in a mouse brain tumor model. Clin. Cancer Res., 2015, 21(15), 3462-3470. doi: 10.1158/1078-0432.CCR-14-2681 PMID: 25862759
- Bai, R.Y.; Staedtke, V.; Aprhys, C.M.; Gallia, G.L.; Riggins, G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-oncol., 2011, 13(9), 974-982. doi: 10.1093/neuonc/nor077 PMID: 21764822
- Sasaki, J.; Ramesh, R.; Chada, S.; Gomyo, Y.; Roth, J.A.; Mukhopadhyay, T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther., 2002, 1(13), 1201-1209. PMID: 12479701
- De Witt, M.; Gamble, A.; Hanson, D.; Markowitz, D.; Powell, C.; Al Dimassi, S.; Atlas, M.; Boockvar, J.; Ruggieri, R.; Symons, M. Repur-posing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol. Med., 2017, 23(1), 50-56. doi: 10.2119/molmed.2017.00011 PMID: 28386621
- Gallia, G.L.; Holdhoff, M.; Brem, H.; Joshi, A.D.; Hann, C.L.; Bai, R.Y.; Staedtke, V.; Blakeley, J.O.; Sengupta, S.; Jarrell, T.C.; Wollett, J.; Szajna, K.; Helie, N.; Mattox, A.K.; Ye, X.; Rudek, M.A.; Riggins, G.J. Mebendazole and temozolomide in patients with newly diagnosed high-grade gliomas: Results of a phase 1 clinical trial. Neurooncol. Adv., 2021, 3(1), vdaa154. doi: 10.1093/noajnl/vdaa154 PMID: 33506200
- ClinicalTrials.gov.Mebendazole in newly diagnosed high-grade glioma patients receiving temozolomide, 2021. Available from: https://ClinicalTrials.gov/show/NCT01729260
- A phase I study of mebendazole for the treatment of pediatric gliomas, 2022. Available from: https://ClinicalTrials.gov/show/NCT01837862
- Phase I study of mebendazole therapy for recurrent/progressive pediatric brain tumors, 2022. Available from: https://ClinicalTrials.gov/show/NCT02644291
- Lin, G.L.; Wilson, K.M.; Ceribelli, M.; Stanton, B.Z.; Woo, P.J.; Kreimer, S.; Qin, E.Y.; Zhang, X.; Lennon, J.; Nagaraja, S.; Morris, P.J.; Quezada, M.; Gillespie, S.M.; Duveau, D.Y.; Michalowski, A.M.; Shinn, P.; Guha, R.; Ferrer, M.; Klumpp-Thomas, C.; Michael, S.; McKnight, C.; Minhas, P.; Itkin, Z.; Raabe, E.H.; Chen, L.; Ghanem, R.; Geraghty, A.C.; Ni, L.; Andreasson, K.I.; Vitanza, N.A.; Warren, K.E.; Thomas, C.J.; Monje, M. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci. Transl. Med., 2019, 11(519), eaaw0064. doi: 10.1126/scitranslmed.aaw0064 PMID: 31748226
- Liu, Y.; Fang, S.; Sun, Q.; Liu, B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through induc-ing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2016, 480(3), 415-421. doi: 10.1016/j.bbrc.2016.10.064 PMID: 27771251
- Draganov, D.; Gopalakrishna-Pillai, S.; Chen, Y.R.; Zuckerman, N.; Moeller, S.; Wang, C.; Ann, D.; Lee, P.P. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci. Rep., 2015, 5(1), 16222. doi: 10.1038/srep16222 PMID: 26552848
- Song, D.; Liang, H.; Qu, B.; Li, Y.; Liu, J.; Zhang, Y.; Li, L.; Hu, L.; Zhang, X.; Gao, A. Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo. J. Cell. Biochem., 2019, 120(1), 622-633. doi: 10.1002/jcb.27420 PMID: 30596403
- Xie, Y.; Bergström, T.; Jiang, Y.; Johansson, P.; Marinescu, V.D.; Lindberg, N.; Segerman, A.; Wicher, G.; Niklasson, M.; Baskaran, S.; Sreedharan, S.; Everlien, I.; Kastemar, M.; Hermansson, A.; Elfineh, L.; Libard, S.; Holland, E.C.; Hesselager, G.; Alafuzoff, I.; Wester-mark, B.; Nelander, S.; Forsberg-Nilsson, K.; Uhrbom, L. The human glioblastoma cell culture resource: Validated cell models represent-ing all molecular subtypes. EBioMedicine, 2015, 2(10), 1351-1363. doi: 10.1016/j.ebiom.2015.08.026 PMID: 26629530
- Gao, C.F.; Xie, Q.; Su, Y.L.; Koeman, J.; Khoo, S.K.; Gustafson, M.; Knudsen, B.S.; Hay, R.; Shinomiya, N.; Woude, G.F.V. Proliferation and invasion: Plasticity in tumor cells. Proc. Natl. Acad. Sci., 2005, 102(30), 10528-10533. doi: 10.1073/pnas.0504367102 PMID: 16024725
- Gerstner, E.R.; Batchelor, T.T. Antiangiogenic therapy for glioblastoma. Cancer J., 2012, 18(1), 45-50. doi: 10.1097/PPO.0b013e3182431c6f PMID: 22290257
- Kalghatgi, S; Spina, CS; Costello, JC Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med., 2013, 5(192), 192ra85-ra85. doi: 10.1126/scitranslmed.3006055
- Maycotte, P.; Aryal, S.; Cummings, C.T.; Thorburn, J.; Morgan, M.J.; Thorburn, A. Chloroquine sensitizes breast cancer cells to chemo-therapy independent of autophagy. Autophagy, 2012, 8(2), 200-212. doi: 10.4161/auto.8.2.18554 PMID: 22252008
- Solomon, V.R.; Lee, H. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol., 2009, 625(1-3), 220-233. doi: 10.1016/j.ejphar.2009.06.063 PMID: 19836374
- Weyerhäuser, P.; Kantelhardt, S.R.; Kim, E.L. Re-purposing chloroquine for glioblastoma: Potential merits and confounding variables. Front. Oncol., 2018, 8, 335. doi: 10.3389/fonc.2018.00335 PMID: 30211116
- Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781. doi: 10.3332/ecancer.2017.781 PMID: 29225688
- Zhang, Y.; Li, Y.; Li, Y.; Li, R.; Ma, Y.; Wang, H.; Wang, Y. Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway. Mol. Med. Rep., 2015, 11(2), 1366-1371. doi: 10.3892/mmr.2014.2839 PMID: 25369757
- Chang, N.C. Autophagy and stem cells: Self-eating for self-renewal. Front. Cell Dev. Biol., 2020, 8, 138. doi: 10.3389/fcell.2020.00138 PMID: 32195258
- Kimura, T.; Takabatake, Y.; Takahashi, A.; Isaka, Y. Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Res., 2013, 73(1), 3-7. doi: 10.1158/0008-5472.CAN-12-2464 PMID: 23288916
- Viry, E.; Paggetti, J.; Baginska, J.; Mgrditchian, T.; Berchem, G.; Moussay, E.; Janji, B. Autophagy: An adaptive metabolic response to stress shaping the antitumor immunity. Biochem. Pharmacol., 2014, 92(1), 31-42. doi: 10.1016/j.bcp.2014.07.006 PMID: 25044308
- Zhang, Y.; Zhang, L.; Gao, J.; Wen, L. Pro-death or pro-survival: Contrasting paradigms on nanomaterial-induced autophagy and exploita-tions for cancer therapy. Acc. Chem. Res., 2019, 52(11), 3164-3176. doi: 10.1021/acs.accounts.9b00397 PMID: 31621285
- Lim, S.M.; Mohamad Hanif, E.A.; Chin, S.F. Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell Biosci., 2021, 11(1), 56. doi: 10.1186/s13578-021-00570-z PMID: 33743781
- Cheong, H. Integrating autophagy and metabolism in cancer. Arch. Pharm. Res., 2015, 38(3), 358-371. doi: 10.1007/s12272-015-0562-2 PMID: 25614051
- Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; Cattoretti, G.; Levine, B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest., 2003, 112(12), 1809-1820. doi: 10.1172/JCI20039 PMID: 14638851
- Menon, M.B.; Dhamija, S. Beclin 1 phosphorylation-at the center of autophagy regulation. Front. Cell Dev. Biol., 2018, 6, 137. doi: 10.3389/fcell.2018.00137 PMID: 30370269
- Homewood, C.A.; Warhurst, D.C.; Peters, W.; Baggaley, V.C. Lysosomes, pH and the anti-malarial action of chloroquine. Nature, 1972, 235(5332), 50-52. doi: 10.1038/235050a0 PMID: 4550396
- Slater, A.F.G. Chloroquine: Mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol. Ther., 1993, 57(2-3), 203-235. doi: 10.1016/0163-7258(93)90056-J PMID: 8361993
- ClinicalTrials.gov. The addition of chloroquine to chemoradiation for glioblastoma., 2020. Available from: https://ClinicalTrials.gov/show/NCT02378532
- ClinicalTrials.gov. Chloroquine for glioblastoma., 2021. Available from: https://ClinicalTrials.gov/show/NCT04772846
- ClinicalTrials.gov. Partial brain RT, temozolomide, chloroquine, and TTF therapy for the treatment of newly diagnosed glioblastoma., 2022. Available from: https://ClinicalTrials.gov/show/NCT04397679
- ClinicalTrials.gov. Chloroquine for Treatment of Glioblastoma Multiforme., 2009. Available from: https://ClinicalTrials.gov/show/NCT00224978
- Sotelo, J.; Briceño, E.; López-González, M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme: A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med., 2006, 144(5), 337-343. doi: 10.7326/0003-4819-144-5-200603070-00008 PMID: 16520474
- Biller, H.; Schachtschabel, D.O.; Leising, H.B.; Pfab, R.; Hess, F. Influence of x-rays and quinacrine (atebrine) or chloroquine (resochine) alone or in combination on growth and melanin formation of Harding-Passey melanoma cells in monolayer culture. Strahlentherapie, 1982, 158(7), 450-456. PMID: 7135443
- Briceño, E.; Reyes, S.; Sotelo, J. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg. Focus, 2003, 14(2), 1-6. doi: 10.3171/foc.2003.14.2.4 PMID: 15727424
- Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466. doi: 10.3390/ijms19113466 PMID: 30400561
- Bhutia, S.K.; Mukhopadhyay, S.; Sinha, N.; Das, D.N.; Panda, P.K.; Patra, S.K.; Maiti, T.K.; Mandal, M.; Dent, P.; Wang, X.Y.; Das, S.K.; Sarkar, D.; Fisher, P.B. Autophagy. Adv. Cancer Res., 2013, 118, 61-95. doi: 10.1016/B978-0-12-407173-5.00003-0 PMID: 23768510
- Tang, C.; Livingston, M.J.; Liu, Z.; Dong, Z. Autophagy in kidney homeostasis and disease. Nat. Rev. Nephrol., 2020, 16(9), 489-508. doi: 10.1038/s41581-020-0309-2 PMID: 32704047
- Isaka, Y.; Kimura, T.; Takabatake, Y. The protective role of autophagy against aging and acute ischemic injury in kidney proximal tubular cells. Autophagy, 2011, 7(9), 1085-1087. doi: 10.4161/auto.7.9.16465 PMID: 21606682
- Lyne, S.B.; Yamini, B. An alternative pipeline for glioblastoma therapeutics: A systematic review of drug repurposing in glioblastoma. Cancers, 2021, 13(8), 1953. doi: 10.3390/cancers13081953 PMID: 33919596
- Jeon, S.H.; Kim, S.H.; Kim, Y.; Kim, Y.S.; Lim, Y.; Lee, Y.H.; Shin, S.Y. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem. Biophys. Res. Commun., 2011, 413(2), 311-317. doi: 10.1016/j.bbrc.2011.08.093 PMID: 21889492
- Levkovitz, Y.; Gil-Ad, I.; Zeldich, E.; Dayag, M.; Weizman, A. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: Evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J. Mol. Neurosci., 2005, 27(1), 029-042. doi: 10.1385/JMN:27:1:029 PMID: 16055945
- Kamarudin, M.N.A.; Parhar, I. Emerging therapeutic potential of anti-psychotic drugs in the management of human glioma: A comprehen-sive review. Oncotarget, 2019, 10(39), 3952-3977. doi: 10.18632/oncotarget.26994 PMID: 31231472
- Beaney, R.P.; Gullan, R.W.; Pilkington, G.J. Therapeutic potential of antidepressants in malignant glioma: Clinical experience with clomi-pramine. J. Clin. Oncol., 2005, 23(Suppl. 16), 1535. doi: 10.1200/jco.2005.23.16_suppl.1535
- Abadi, B.; Shahsavani, Y.; Faramarzpour, M.; Rezaei, N.; Rahimi, H.R. Antidepressants with anti‐tumor potential in treating glioblastoma: A narrative review. Fundam. Clin. Pharmacol., 2022, 36(1), 35-48. doi: 10.1111/fcp.12712 PMID: 34212424
- Kong, R.; Liu, T.; Zhu, X.; Ahmad, S.; Williams, A.L.; Phan, A.T.; Zhao, H.; Scott, J.E.; Yeh, L.A.; Wong, S.T.C. Old drug new use amox-apine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity. Clin. Cancer Res., 2014, 20(13), 3521-3530. doi: 10.1158/1078-0432.CCR-14-0395 PMID: 24780296
- Magni, G.; Conlon, P.; Arsie, D. Tricyclic antidepressants in the treatment of cancer pain: A review. Pharmacopsychiatry, 1987, 20(4), 160-164. doi: 10.1055/s-2007-1017095 PMID: 3303068
- Shchors, K.; Massaras, A.; Hanahan, D. Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell, 2015, 28(4), 456-471. doi: 10.1016/j.ccell.2015.08.012 PMID: 26412325
- Hsu, F.T.; Chiang, I.T.; Wang, W.S. Induction of apoptosis through extrinsic/intrinsic pathways and suppression of ERK/NF‐κB signalling participate in anti‐glioblastoma of imipramine. J. Cell. Mol. Med., 2020, 24(7), 3982-4000. doi: 10.1111/jcmm.15022 PMID: 32149465
- Wang, Y.; Wang, X.; Wang, X.; Wu, D.; Qi, J.; Zhang, Y.; Wang, K.; Zhou, D.; Meng, Q.M.; Nie, E.; Wang, Q.; Yu, R.T.; Zhou, X.P. Imi-pramine impedes glioma progression by inhibiting YAP as a Hippo pathway independent manner and synergizes with temozolomide. J. Cell. Mol. Med., 2021, 25(19), 9350-9363. doi: 10.1111/jcmm.16874 PMID: 34469035
- Orr, B.A.; Bai, H.; Odia, Y.; Jain, D.; Anders, R.A.; Eberhart, C.G. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J. Neuropathol. Exp. Neurol., 2011, 70(7), 568-577. doi: 10.1097/NEN.0b013e31821ff8d8 PMID: 21666501
- Oldrini, B.; Vaquero-Siguero, N.; Mu, Q.; Kroon, P.; Zhang, Y.; Galán-Ganga, M.; Bao, Z.; Wang, Z.; Liu, H.; Sa, J.K.; Zhao, J.; Kim, H.; Rodriguez-Perales, S.; Nam, D.H.; Verhaak, R.G.W.; Rabadan, R.; Jiang, T.; Wang, J.; Squatrito, M. MGMT genomic rearrangements con-tribute to chemotherapy resistance in gliomas. Nat. Commun., 2020, 11(1), 3883. doi: 10.1038/s41467-020-17717-0 PMID: 32753598
- Hegi, M.E.; Diserens, A.C.; Godard, S.; Dietrich, P.Y.; Regli, L.; Ostermann, S.; Otten, P.; Van Melle, G.; de Tribolet, N.; Stupp, R. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res., 2004, 10(6), 1871-1874. doi: 10.1158/1078-0432.CCR-03-0384 PMID: 15041700
- ClinicalTrials.gov. Investigator-initiated study of imipramine hydrochloride and lomustine in recurrent glioblastoma., 2022. Available from: https://ClinicalTrials.gov/show/NCT04863950
- Clarke, M.F.; Dick, J.E.; Dirks, P.B.; Eaves, C.J.; Jamieson, C.H.M.; Jones, D.L.; Visvader, J.; Weissman, I.L.; Wahl, G.M. Cancer stem cells perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res., 2006, 66(19), 9339-9344. doi: 10.1158/0008-5472.CAN-06-3126 PMID: 16990346
- Safa, A.R.; Saadatzadeh, M.R.; Cohen-Gadol, A.A.; Pollok, K.E.; Bijangi-Vishehsaraei, K. Glioblastoma stem cells (GSCs) epigenetic plas-ticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis., 2015, 2(2), 152-163. doi: 10.1016/j.gendis.2015.02.001 PMID: 26137500
- Bielecka-Wajdman, A.M.; Lesiak, M.; Ludyga, T.; Sieroń, A.; Obuchowicz, E. Reversing glioma malignancy: A new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme. Cancer Chemother. Pharmacol., 2017, 79(6), 1249-1256. doi: 10.1007/s00280-017-3329-2 PMID: 28500556
- Seymour, T.; Nowak, A.; Kakulas, F. Targeting aggressive cancer stem cells in glioblastoma. Front. Oncol., 2015, 5, 159. doi: 10.3389/fonc.2015.00159 PMID: 26258069
- Parker, K.A.; Pilkington, G.J. Apoptosis of human malignant glioma-derived cell cultures treated with clomipramine hydrochloride, as detected by Annexin-V assay. Radiol. Oncol., 2006, 40(2)
- Higgins, S.C.; Pilkington, G.J. The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res., 2010, 30(2), 391-397. PMID: 20332444
- Lowry, O.H.; Berger, S.J.; Carter, J.G.; Chi, M.M.Y.; Manchester, J.K.; Knor, J.; Pusateri, M.E. Diversity of metabolic patterns in human brain tumors: enzymes of energy metabolism and related metabolites and cofactors. J. Neurochem., 1983, 41(4), 994-1010. doi: 10.1111/j.1471-4159.1983.tb09043.x PMID: 6619861
- Meixensberger, J.; Herting, B.; Roggendorf, W.; Reichmann, H. Metabolic patterns in malignant gliomas. J. Neurooncol., 1995, 24(2), 153-161. doi: 10.1007/BF01078485 PMID: 7562002
- Daley, E.; Wilkie, D.; Loesch, A.; Hargreaves, I.P.; Kendall, D.A.; Pilkington, G.J.; Bates, T.E. Chlorimipramine: A novel anticancer agent with a mitochondrial target. Biochem. Biophys. Res. Commun., 2005, 328(2), 623-632. doi: 10.1016/j.bbrc.2005.01.028 PMID: 15694394
- Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer's disease. Front. Pharmacol., 2016, 6, 321. doi: 10.3389/fphar.2015.00321 PMID: 26793112
- Tsuruo, T.; Iida, H.; Nojiri, M.; Tsukagoshi, S.; Sakurai, Y. Potentiation of chemotherapeutic effect of vincristine in vincristine resistant tumor bearing mice by calmodulin inhibitor clomipramine. J. Pharmacobiodyn., 1983, 6(2), 145-147. doi: 10.1248/bpb1978.6.145 PMID: 6864439
- Walker, A.J.; Card, T.; Bates, T.E.; Muir, K. Tricyclic antidepressants and the incidence of certain cancers: A study using the GPRD. Br. J. Cancer, 2011, 104(1), 193-197. doi: 10.1038/sj.bjc.6605996 PMID: 21081933
- Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through en-hanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res., 1981, 41(5), 1967-1972. PMID: 7214365
- Merry, S.; Hamilton, T.G.; Flanigan, P.; Ian Freshney, R.; Kaye, S.B. Circumvention of pleiotropic drug resistance in subcutaneous tu-mours in vivo with verapamil and clomipramine. Eur. J. Cancer Clin. Oncol., 1991, 27(1), 31-34. doi: 10.1016/0277-5379(91)90054-H PMID: 1826436
- Bongiorno-Borbone, L.; Giacobbe, A.; Compagnone, M.; Eramo, A.; De Maria, R.; Peschiaroli, A.; Melino, G. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget, 2015, 6(19), 16926-16938. doi: 10.18632/oncotarget.4700 PMID: 26219257
- Bielecka-Wajdman, A.M.; Ludyga, T.; Machnik, G.; Gołyszny, M.; Obuchowicz, E. Tricyclic antidepressants modulate stressed mito-chondria in glioblastoma multiforme cells. Cancer Contr., 2018, 25(1), 1-9. doi: 10.1177/1073274818798594 PMID: 30213208
- de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol., 2019, 9, 1143. doi: 10.3389/fonc.2019.01143 PMID: 31737570
- Haas, R.; Smith, J.; Rocher-Ros, V.; Nadkarni, S.; Montero-Melendez, T.; D'Acquisto, F.; Bland, E.J.; Bombardieri, M.; Pitzalis, C.; Perret-ti, M.; Marelli-Berg, F.M.; Mauro, C. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol., 2015, 13(7), e1002202. doi: 10.1371/journal.pbio.1002202 PMID: 26181372
- Czarnecka, A.M.; Czarnecki, J.S.; Kukwa, W.; Cappello, F.; Ścińska, A.; Kukwa, A. Molecular oncology focus. Is carcinogenesis a 'mito-chondriopathy'? J. Biomed. Sci., 2010, 17(1), 31. doi: 10.1186/1423-0127-17-31 PMID: 20055990
- Sarosiek, K.A.; Ni Chonghaile, T.; Letai, A. Mitochondria: Gatekeepers of response to chemotherapy. Trends Cell Biol., 2013, 23(12), 612-619. doi: 10.1016/j.tcb.2013.08.003 PMID: 24060597
- Vaupel, P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol., 2004, 14(3), 198-206. doi: 10.1016/j.semradonc.2004.04.008 PMID: 15254862
- Cruz, A.L.S.; Barreto, E.A.; Fazolini, N.P.B.; Viola, J.P.B.; Bozza, P.T. Lipid droplets: Platforms with multiple functions in cancer hall-marks. Cell Death Dis., 2020, 11(2), 105. doi: 10.1038/s41419-020-2297-3 PMID: 32029741
- Arismendi-Morillo, G. Electron microscopy morphology of the mitochondrial network in human cancer. Int. J. Biochem. Cell Biol., 2009, 41(10), 2062-2068. doi: 10.1016/j.biocel.2009.02.002 PMID: 19703662
- Hwang, J.; Zheng, L.T.; Ock, J.; Lee, M.G.; Kim, S.H.; Lee, H.W.; Lee, W.H.; Park, H.C.; Suk, K. Inhibition of glial inflammatory activa-tion and neurotoxicity by tricyclic antidepressants. Neuropharmacology, 2008, 55(5), 826-834. doi: 10.1016/j.neuropharm.2008.06.045 PMID: 18639562
- Pottegård, A.; García Rodríguez, L.A.; Rasmussen, L.; Damkier, P.; Friis, S.; Gaist, D. Use of tricyclic antidepressants and risk of glioma: A nationwide case-control study. Br. J. Cancer, 2016, 114(11), 1265-1268. doi: 10.1038/bjc.2016.109 PMID: 27115466
- Zhang, Z.; Du, X.; Zhao, C.; Cao, B.; Zhao, Y.; Mao, X. The antidepressant amitriptyline shows potent therapeutic activity against multiple myeloma. Anticancer Drugs, 2013, 24(8), 792-798. doi: 10.1097/CAD.0b013e3283628c21 PMID: 23708819
- Ban, T.A.; Wilson, W.H.; McEvoy, J.P. Amoxapine: A review of literature. Int. Pharmacopsychiatry, 1980, 15(3), 166-170. doi: 10.1159/000468433 PMID: 7016801
- Palmeira, A.; Rodrigues, F.; Sousa, E.; Pinto, M.; Vasconcelos, M.H.; Fernandes, M.X. New uses for old drugs: Pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. Chem. Biol. Drug Des., 2011, 78(1), 57-72. doi: 10.1111/j.1747-0285.2011.01089.x PMID: 21235729
- Jansen, W.J.M.; Hulscher, T.M.; van Ark-Otte, J.; Giaccone, G.; Pinedo, H.M.; Boven, E. CPT-11 sensitivity in relation to the expression of P170-glycoprotein and multidrug resistance-associated protein. Br. J. Cancer, 1998, 77(3), 359-365. doi: 10.1038/bjc.1998.58 PMID: 9472629
- Xu, Y.; Villalona-Calero, M.A. Irinotecan: Mechanisms of tumor resistance and novel strategies for modulating its activity. Ann. Oncol., 2002, 13(12), 1841-1851. doi: 10.1093/annonc/mdf337 PMID: 12453851
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J., 2008, 22(3), 659-661. doi: 10.1096/fj.07-9574LSF PMID: 17942826
- Abigerges, D.; Armand, J.P.; Chabot, G.G.; Costa, L.D.; Fadel, E.; Cote, C.; Hérait, P.; Gandia, D. Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J. Natl. Cancer Inst., 1994, 86(6), 446-449. doi: 10.1093/jnci/86.6.446 PMID: 8120919
- Tang, L.; Li, X.; Wan, L.; Xiao, Y.; Zeng, X.; Ding, H. Herbal medicines for irinotecan-induced diarrhea. Front. Pharmacol., 2019, 10, 182. doi: 10.3389/fphar.2019.00182 PMID: 30983992
- Wallace, B.D.; Wang, H.; Lane, K.T.; Scott, J.E.; Orans, J.; Koo, J.S.; Venkatesh, M.; Jobin, C.; Yeh, L.A.; Mani, S.; Redinbo, M.R. Allevi-ating cancer drug toxicity by inhibiting a bacterial enzyme. Science, 2010, 330(6005), 831-835. doi: 10.1126/science.1191175 PMID: 21051639
- Takasuna, K.; Hagiwara, T.; Hirohashi, M.; Kato, M.; Nomura, M.; Nagai, E.; Yokoi, T.; Kamataki, T. Involvement of β-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res., 1996, 56(16), 3752-3757. PMID: 8706020
- Ahmad, S.; Hughes, M.A.; Yeh, L.A.; Scott, J.E. Potential repurposing of known drugs as potent bacterial β-glucuronidase inhibitors. SLAS Discov., 2012, 17(7), 957-965. doi: 10.1177/1087057112444927 PMID: 22535688
Дополнительные файлы
