Glioblastoma as a Novel Drug Repositioning Target: Updated State


Цитировать

Полный текст

Аннотация

Glioblastoma multiforme (GBM) is an aggressive form of adult brain tumor that can arise from a low-grade astrocytoma. In recent decades, several new conventional therapies have been developed that have significantly improved the prognosis of patients with GBM. Nevertheless, most patients have a limited long-term response to these treatments and survivp < 0 year. Therefore, innovative anti-cancer drugs that can be rapidly approved for patient use are urgently needed. One way to achieve accelerated approval is drug repositioning, extending the use of existing drugs for new therapeutic purposes, as it takes less time to validate their biological activity as well as their safety in preclinical models. In this review, a comprehensive analysis of the literature search was performed to list drugs with antiviral, antiparasitic, and antidepressant properties that may be effective in GBM and their putative anti-tumor mechanisms in GBM cells.

Об авторах

Hamed Hosseinalizadeh

Department of Medical Biotechnology, Faculty of Paramedicine,, Guilan University of Medical Sciences

Email: info@benthamscience.net

Ammar Ebrahimi

Department of Biomedical Sciences, University of Lausanne

Email: info@benthamscience.net

Ahmad Tavakoli

Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences

Email: info@benthamscience.net

Seyed Monavari

Department of Virology, School of Medicine, Iran University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Ghaffari, H.; Tavakoli, A.; Faranoush, M.; Naderi, A.; Kiani, S.J.; Sadeghipour, A.; Javanmard, D.; Farahmand, M.; Ghorbani, S.; Seda-ghati, F.; Monavari, S.H. Molecular investigation of human cytomegalovirus and epstein-barr virus in glioblastoma brain tumor: A case-control study in iran. Iran. Biomed. J., 2021, 25(6), 426-433. doi: 10.52547/ibj.25.6.426 PMID: 34696577
  2. Zavala-Vega, S.; Palma-Lara, I.; Ortega-Soto, E.; Trejo-Solis, C.; de Arellano, I.T.R.; Ucharima-Corona, L.E.; Garcia-Chacón, G.; Ochoa, S.A.; Xicohtencatl-Cortes, J.; Cruz-Córdova, A.; Luna-Pineda, V.M.; Jiménez-Hernández, E.; Vázquez-Meraz, E.; Mejía-Aranguré, J.M.; Guzmán-Bucio, S.; Rembao-Bojorquez, D.; Sánchez-Gómez, C.; Salazar-Garcia, M.; Arellano-Galindo, J. Role of Epstein-barr virus in gli-oblastoma. Crit. Rev. Oncog., 2019, 24(4), 307-338. doi: 10.1615/CritRevOncog.2019032655 PMID: 32421988
  3. Sadeghi, F.; Bokharaei-Salim, F.; Salehi-Vaziri, M.; Monavari, S.H.; Alavian, S.M.; Salimi, S.; Vahabpour, R.; Keyvani, H. Associations between human TRIM22 gene expression and the response to combination therapy with Peg-IFNα-2a and ribavirin in Iranian patients with chronic hepatitis C. J. Med. Virol., 2014, 86(9), 1499-1506. doi: 10.1002/jmv.23985 PMID: 24889558
  4. Salehi-Vaziri, M.; Sadeghi, F.; Bokharaei-Salim, F.; Younesi, S.; Alinaghi, S.; Monavari, S.H.; Keyvani, H. The prevalence and genotype distribution of human papillomavirus in the genital tract of males in Iran. Jundishapur J. Microbiol., 2015, 8(12), e21912. doi: 10.5812/jjm.21912 PMID: 26862386
  5. Moghoofei, M.; Keshavarz, M.; Ghorbani, S.; Babaei, F.; Nahand, J.S.; Tavakoli, A.; Mortazavi, H.S.; Marjani, A.; Mostafaei, S.; Monava-ri, S.H. Association between human Papillomavirus infection and prostate cancer: A global systematic review and meta‐analysis. Asia Pac. J. Clin. Oncol., 2019, 15(5), e59-e67. doi: 10.1111/ajco.13124 PMID: 30740893
  6. Fateh, A.; Aghasadeghi, M.; Siadat, S.D.; Vaziri, F.; Sadeghi, F.; Fateh, R.; Keyvani, H.; Tasbiti, A.H.; Yari, S.; Ataei-Pirkooh, A.; Monava-ri, S.H. Comparison of three different methods for detection of IL28 rs12979860 polymorphisms as a predictor of treatment outcome in patients with hepatitis C virus. Osong Public Health Res. Perspect., 2016, 7(2), 83-89. doi: 10.1016/j.phrp.2015.11.004 PMID: 27169005
  7. Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; O'Kelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110. doi: 10.1016/j.ccr.2009.12.020 PMID: 20129251
  8. Clarke, J.; Penas, C.; Pastori, C.; Komotar, R.J.; Bregy, A.; Shah, A.H.; Wahlestedt, C.; Ayad, N.G. Epigenetic pathways and glioblastoma treatment. Epigenetics, 2013, 8(8), 785-795. doi: 10.4161/epi.25440 PMID: 23807265
  9. Park, S.H.; Kim, M.J.; Jung, H.H.; Chang, W.S.; Choi, H.S.; Rachmilevitch, I.; Zadicario, E.; Chang, J.W. One-year outcome of multiple blood–brain barrier disruptions with temozolomide for the treatment of glioblastoma. Front. Oncol., 2020, 10, 1663. doi: 10.3389/fonc.2020.01663 PMID: 33014832
  10. Jain, K.K. A critical overview of targeted therapies for glioblastoma. Front. Oncol., 2018, 8, 419. doi: 10.3389/fonc.2018.00419 PMID: 30374421
  11. Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657. doi: 10.1016/j.trci.2017.10.005 PMID: 29255791
  12. Tan, S.K.; Jermakowicz, A.; Mookhtiar, A.K.; Nemeroff, C.B.; Schürer, S.C.; Ayad, N.G. Drug repositioning in glioblastoma: A pathway perspective. Front. Pharmacol., 2018, 9, 218. doi: 10.3389/fphar.2018.00218 PMID: 29615902
  13. Yadavalli, S.; Yenugonda, V.M.; Kesari, S. Repurposed drugs in treating glioblastoma multiforme: Clinical trials update. Cancer J., 2019, 25(2), 139-146. doi: 10.1097/PPO.0000000000000365 PMID: 30896537
  14. Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifirò, G. Challenges for drug repurposing in the COVID-19 pandemic era. Front. Pharmacol., 2020, 11, 588654. doi: 10.3389/fphar.2020.588654 PMID: 33240091
  15. Chu, C.W.; Ko, H.J.; Chou, C.H.; Cheng, T.S.; Cheng, H.W.; Liang, Y.H.; Lai, Y.L.; Lin, C.Y.; Wang, C.; Loh, J.K.; Cheng, J.T.; Chiou, S.J.; Su, C.L.; Huang, C.Y.F.; Hong, Y.R. Thioridazine enhances P62-mediated autophagy and apoptosis through Wnt/β-catenin signaling path-way in glioma cells. Int. J. Mol. Sci., 2019, 20(3), 473. doi: 10.3390/ijms20030473 PMID: 30678307
  16. Rahman, M.; Dastmalchi, F.; Karachi, A.; Mitchell, D. The role of CMV in glioblastoma and implications for immunotherapeutic strategies. OncoImmunology, 2019, 8(1), e1514921. doi: 10.1080/2162402X.2018.1514921 PMID: 30546954
  17. Peng, C.; Wang, J.; Tanksley, J.P.; Mobley, B.C.; Ayers, G.D.; Moots, P.L.; Clark, S.W. Valganciclovir and bevacizumab for recurrent glioblastoma: A single-institution experience. Mol. Clin. Oncol., 2016, 4(2), 154-158. doi: 10.3892/mco.2015.692 PMID: 26893852
  18. Cobbs, C.S. Does valganciclovir have a role in glioblastoma therapy? Neuro-oncol., 2014, 16(3), 330-331. doi: 10.1093/neuonc/nou009 PMID: 24523453
  19. Stragliotto, G.; Pantalone, M.R.; Rahbar, A.; Söderberg-Nauclér, C. Valganciclovir as add-on to standard therapy in secondary glioblasto-ma. Microorganisms, 2020, 8(10), 1471. doi: 10.3390/microorganisms8101471 PMID: 32987955
  20. Ding, D.; Zhao, A.; Sun, Z.; Zuo, L.; Wu, A.; Sun, J. Is the presence of HCMV components in CNS tumors a glioma-specific phenome-non? Virol. J., 2019, 16(1), 96. doi: 10.1186/s12985-019-1198-5 PMID: 31370833
  21. Dey, M.; Ahmed, A.U.; Lesniak, M.S. Cytomegalovirus and glioma: Putting the cart before the horse. J. Neurol. Neurosurg. Psychiatry, 2015, 86(2), 191-199. doi: 10.1136/jnnp-2014-307727 PMID: 24906494
  22. ClinicalTrials.gov. Efficacy and safety of valcyte® as an add-on therapy in patients with Malignant Glioblastoma and Cytomegalovirus (CMV) infection., 2006. Available from: https://ClinicalTrials.gov/show/NCT00400322
  23. Stragliotto, G.; Pantalone, M.R.; Rahbar, A.; Bartek, J.; Söderberg-Naucler, C. Valganciclovir as add-on to standard therapy in glioblastoma patients. Clin. Cancer Res., 2020, 26(15), 4031-4039. doi: 10.1158/1078-0432.CCR-20-0369 PMID: 32423968
  24. Kohli, A.; Shaffer, A.; Sherman, A.; Kottilil, S. Treatment of hepatitis C: A systematic review. JAMA, 2014, 312(6), 631-640. doi: 10.1001/jama.2014.7085 PMID: 25117132
  25. Borden, K.L.B.; Culjkovic-Kraljacic, B. Ribavirin as an anti-cancer therapy: Acute myeloid leukemia and beyond? Leuk. Lymphoma, 2010, 51(10), 1805-1815. doi: 10.3109/10428194.2010.496506 PMID: 20629523
  26. Kentsis, A.; Topisirovic, I.; Culjkovic, B.; Shao, L.; Borden, K.L.B. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc. Natl. Acad. Sci., 2004, 101(52), 18105-18110. doi: 10.1073/pnas.0406927102 PMID: 15601771
  27. De La, C.H.E.; Medina-Franco, J.L.; Trujillo, J.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Perez-Cardenas, E.; Gonzalez-Fierro, A.; Taja-Chayeb, L.; Dueñas-Gonzalez, A. Ribavirin as a tri-targeted antitumor repositioned drug. Oncol. Rep., 2015, 33(5), 2384-2392. doi: 10.3892/or.2015.3816 PMID: 25738706
  28. Ochiai, Y.; Sumi, K.; Sano, E.; Yoshimura, S.; Yamamuro, S.; Ogino, A.; Ueda, T.; Suzuki, Y.; Nakayama, T.; Hara, H.; Katayama, Y.; Yoshino, A. Antitumor effects of ribavirin in combination with TMZ and IFN β in malignant glioma cells. Oncol. Lett., 2020, 20(5), 1. doi: 10.3892/ol.2020.12039 PMID: 32934745
  29. Volpin, F.; Casaos, J.; Sesen, J.; Mangraviti, A.; Choi, J.; Gorelick, N.; Frikeche, J.; Lott, T.; Felder, R.; Scotland, S.J.; Eisinger-Mathason, T.S.K.; Brem, H.; Tyler, B.; Skuli, N. Use of an anti-viral drug, Ribavirin, as an anti-glioblastoma therapeutic. Oncogene, 2017, 36(21), 3037-3047. doi: 10.1038/onc.2016.457 PMID: 27941882
  30. Tan, K.; Culjkovic, B.; Amri, A.; Borden, K.L.B. Ribavirin targets eIF4E dependent Akt survival signaling. Biochem. Biophys. Res. Commun., 2008, 375(3), 341-345. doi: 10.1016/j.bbrc.2008.07.163 PMID: 18706892
  31. Urtishak, K.A.; Wang, L.S.; Culjkovic-Kraljacic, B.; Davenport, J.W.; Porazzi, P.; Vincent, T.L.; Teachey, D.T.; Tasian, S.K.; Moore, J.S.; Seif, A.E.; Jin, S.; Barrett, J.S.; Robinson, B.W.; Chen, I.M.L.; Harvey, R.C.; Carroll, M.P.; Carroll, A.J.; Heerema, N.A.; Devidas, M.; Dreyer, Z.E.; Hilden, J.M.; Hunger, S.P.; Willman, C.L.; Borden, K.L.B.; Felix, C.A. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene, 2019, 38(13), 2241-2262. doi: 10.1038/s41388-018-0567-7 PMID: 30478448
  32. Robinson, J.P.; Vanbrocklin, M.W.; McKinney, A.J.; Gach, H.M.; Holmen, S.L. Akt signaling is required for glioblastoma maintenance in vivo. Am. J. Cancer Res., 2011, 1(2), 155-167. PMID: 21796274
  33. Ge, Y.; Zhou, F.; Chen, H.; Cui, C.; Liu, D.; Li, Q.; Yang, Z.; Wu, G.; Sun, S.; Gu, J.; Wei, Y.; Jiang, J. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells. Biochem. Biophys. Res. Commun., 2010, 397(4), 711-717. doi: 10.1016/j.bbrc.2010.06.015 PMID: 20537983
  34. Carrasco-Garcia, E.; Santos, J.C.; Garcia, I.; Brianti, M.; García-Puga, M.; Pedrazzoli, J., Jr; Matheu, A.; Ribeiro, M.L. Paradoxical role of SOX2 in gastric cancer. Am. J. Cancer Res., 2016, 6(4), 701-713. PMID: 27186426
  35. Velcheti, V.; Schalper, K.; Yao, X.; Cheng, H.; Kocoglu, M.; Dhodapkar, K.; Deng, Y.; Gettinger, S.; Rimm, D.L. High SOX2 levels predict better outcome in non-small cell lung carcinomas. PLoS One, 2013, 8(4), e61427. doi: 10.1371/journal.pone.0061427 PMID: 23620753
  36. Li, Y.Q.; Zheng, Z.; Liu, Q.X.; Lu, X.; Zhou, D.; Zhang, J.; Zheng, H.; Dai, J.G. Repositioning of antiparasitic drugs for tumor treatment. Front. Oncol., 2021, 11, 670804. doi: 10.3389/fonc.2021.670804 PMID: 33996598
  37. Arora, N.; Kaur, R.; Anjum, F.; Tripathi, S.; Mishra, A.; Kumar, R.; Prasad, A. Neglected agent eminent disease: Linking human helminthic infection, inflammation, and malignancy. Front. Cell. Infect. Microbiol., 2019, 9, 402. doi: 10.3389/fcimb.2019.00402 PMID: 31867284
  38. van Tong, H.; Brindley, P.J.; Meyer, C.G.; Velavan, T.P. Parasite infection, carcinogenesis and human malignancy. EBioMedicine, 2017, 15, 12-23. doi: 10.1016/j.ebiom.2016.11.034 PMID: 27956028
  39. Bai, R.Y.; Staedtke, V.; Wanjiku, T.; Rudek, M.A.; Joshi, A.; Gallia, G.L.; Riggins, G.J. Brain penetration and efficacy of different meben-dazole polymorphs in a mouse brain tumor model. Clin. Cancer Res., 2015, 21(15), 3462-3470. doi: 10.1158/1078-0432.CCR-14-2681 PMID: 25862759
  40. Bai, R.Y.; Staedtke, V.; Aprhys, C.M.; Gallia, G.L.; Riggins, G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-oncol., 2011, 13(9), 974-982. doi: 10.1093/neuonc/nor077 PMID: 21764822
  41. Sasaki, J.; Ramesh, R.; Chada, S.; Gomyo, Y.; Roth, J.A.; Mukhopadhyay, T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther., 2002, 1(13), 1201-1209. PMID: 12479701
  42. De Witt, M.; Gamble, A.; Hanson, D.; Markowitz, D.; Powell, C.; Al Dimassi, S.; Atlas, M.; Boockvar, J.; Ruggieri, R.; Symons, M. Repur-posing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol. Med., 2017, 23(1), 50-56. doi: 10.2119/molmed.2017.00011 PMID: 28386621
  43. Gallia, G.L.; Holdhoff, M.; Brem, H.; Joshi, A.D.; Hann, C.L.; Bai, R.Y.; Staedtke, V.; Blakeley, J.O.; Sengupta, S.; Jarrell, T.C.; Wollett, J.; Szajna, K.; Helie, N.; Mattox, A.K.; Ye, X.; Rudek, M.A.; Riggins, G.J. Mebendazole and temozolomide in patients with newly diagnosed high-grade gliomas: Results of a phase 1 clinical trial. Neurooncol. Adv., 2021, 3(1), vdaa154. doi: 10.1093/noajnl/vdaa154 PMID: 33506200
  44. ClinicalTrials.gov.Mebendazole in newly diagnosed high-grade glioma patients receiving temozolomide, 2021. Available from: https://ClinicalTrials.gov/show/NCT01729260
  45. A phase I study of mebendazole for the treatment of pediatric gliomas, 2022. Available from: https://ClinicalTrials.gov/show/NCT01837862
  46. Phase I study of mebendazole therapy for recurrent/progressive pediatric brain tumors, 2022. Available from: https://ClinicalTrials.gov/show/NCT02644291
  47. Lin, G.L.; Wilson, K.M.; Ceribelli, M.; Stanton, B.Z.; Woo, P.J.; Kreimer, S.; Qin, E.Y.; Zhang, X.; Lennon, J.; Nagaraja, S.; Morris, P.J.; Quezada, M.; Gillespie, S.M.; Duveau, D.Y.; Michalowski, A.M.; Shinn, P.; Guha, R.; Ferrer, M.; Klumpp-Thomas, C.; Michael, S.; McKnight, C.; Minhas, P.; Itkin, Z.; Raabe, E.H.; Chen, L.; Ghanem, R.; Geraghty, A.C.; Ni, L.; Andreasson, K.I.; Vitanza, N.A.; Warren, K.E.; Thomas, C.J.; Monje, M. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci. Transl. Med., 2019, 11(519), eaaw0064. doi: 10.1126/scitranslmed.aaw0064 PMID: 31748226
  48. Liu, Y.; Fang, S.; Sun, Q.; Liu, B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through induc-ing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2016, 480(3), 415-421. doi: 10.1016/j.bbrc.2016.10.064 PMID: 27771251
  49. Draganov, D.; Gopalakrishna-Pillai, S.; Chen, Y.R.; Zuckerman, N.; Moeller, S.; Wang, C.; Ann, D.; Lee, P.P. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci. Rep., 2015, 5(1), 16222. doi: 10.1038/srep16222 PMID: 26552848
  50. Song, D.; Liang, H.; Qu, B.; Li, Y.; Liu, J.; Zhang, Y.; Li, L.; Hu, L.; Zhang, X.; Gao, A. Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo. J. Cell. Biochem., 2019, 120(1), 622-633. doi: 10.1002/jcb.27420 PMID: 30596403
  51. Xie, Y.; Bergström, T.; Jiang, Y.; Johansson, P.; Marinescu, V.D.; Lindberg, N.; Segerman, A.; Wicher, G.; Niklasson, M.; Baskaran, S.; Sreedharan, S.; Everlien, I.; Kastemar, M.; Hermansson, A.; Elfineh, L.; Libard, S.; Holland, E.C.; Hesselager, G.; Alafuzoff, I.; Wester-mark, B.; Nelander, S.; Forsberg-Nilsson, K.; Uhrbom, L. The human glioblastoma cell culture resource: Validated cell models represent-ing all molecular subtypes. EBioMedicine, 2015, 2(10), 1351-1363. doi: 10.1016/j.ebiom.2015.08.026 PMID: 26629530
  52. Gao, C.F.; Xie, Q.; Su, Y.L.; Koeman, J.; Khoo, S.K.; Gustafson, M.; Knudsen, B.S.; Hay, R.; Shinomiya, N.; Woude, G.F.V. Proliferation and invasion: Plasticity in tumor cells. Proc. Natl. Acad. Sci., 2005, 102(30), 10528-10533. doi: 10.1073/pnas.0504367102 PMID: 16024725
  53. Gerstner, E.R.; Batchelor, T.T. Antiangiogenic therapy for glioblastoma. Cancer J., 2012, 18(1), 45-50. doi: 10.1097/PPO.0b013e3182431c6f PMID: 22290257
  54. Kalghatgi, S; Spina, CS; Costello, JC Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med., 2013, 5(192), 192ra85-ra85. doi: 10.1126/scitranslmed.3006055
  55. Maycotte, P.; Aryal, S.; Cummings, C.T.; Thorburn, J.; Morgan, M.J.; Thorburn, A. Chloroquine sensitizes breast cancer cells to chemo-therapy independent of autophagy. Autophagy, 2012, 8(2), 200-212. doi: 10.4161/auto.8.2.18554 PMID: 22252008
  56. Solomon, V.R.; Lee, H. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol., 2009, 625(1-3), 220-233. doi: 10.1016/j.ejphar.2009.06.063 PMID: 19836374
  57. Weyerhäuser, P.; Kantelhardt, S.R.; Kim, E.L. Re-purposing chloroquine for glioblastoma: Potential merits and confounding variables. Front. Oncol., 2018, 8, 335. doi: 10.3389/fonc.2018.00335 PMID: 30211116
  58. Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781. doi: 10.3332/ecancer.2017.781 PMID: 29225688
  59. Zhang, Y.; Li, Y.; Li, Y.; Li, R.; Ma, Y.; Wang, H.; Wang, Y. Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway. Mol. Med. Rep., 2015, 11(2), 1366-1371. doi: 10.3892/mmr.2014.2839 PMID: 25369757
  60. Chang, N.C. Autophagy and stem cells: Self-eating for self-renewal. Front. Cell Dev. Biol., 2020, 8, 138. doi: 10.3389/fcell.2020.00138 PMID: 32195258
  61. Kimura, T.; Takabatake, Y.; Takahashi, A.; Isaka, Y. Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Res., 2013, 73(1), 3-7. doi: 10.1158/0008-5472.CAN-12-2464 PMID: 23288916
  62. Viry, E.; Paggetti, J.; Baginska, J.; Mgrditchian, T.; Berchem, G.; Moussay, E.; Janji, B. Autophagy: An adaptive metabolic response to stress shaping the antitumor immunity. Biochem. Pharmacol., 2014, 92(1), 31-42. doi: 10.1016/j.bcp.2014.07.006 PMID: 25044308
  63. Zhang, Y.; Zhang, L.; Gao, J.; Wen, L. Pro-death or pro-survival: Contrasting paradigms on nanomaterial-induced autophagy and exploita-tions for cancer therapy. Acc. Chem. Res., 2019, 52(11), 3164-3176. doi: 10.1021/acs.accounts.9b00397 PMID: 31621285
  64. Lim, S.M.; Mohamad Hanif, E.A.; Chin, S.F. Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell Biosci., 2021, 11(1), 56. doi: 10.1186/s13578-021-00570-z PMID: 33743781
  65. Cheong, H. Integrating autophagy and metabolism in cancer. Arch. Pharm. Res., 2015, 38(3), 358-371. doi: 10.1007/s12272-015-0562-2 PMID: 25614051
  66. Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; Cattoretti, G.; Levine, B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest., 2003, 112(12), 1809-1820. doi: 10.1172/JCI20039 PMID: 14638851
  67. Menon, M.B.; Dhamija, S. Beclin 1 phosphorylation-at the center of autophagy regulation. Front. Cell Dev. Biol., 2018, 6, 137. doi: 10.3389/fcell.2018.00137 PMID: 30370269
  68. Homewood, C.A.; Warhurst, D.C.; Peters, W.; Baggaley, V.C. Lysosomes, pH and the anti-malarial action of chloroquine. Nature, 1972, 235(5332), 50-52. doi: 10.1038/235050a0 PMID: 4550396
  69. Slater, A.F.G. Chloroquine: Mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol. Ther., 1993, 57(2-3), 203-235. doi: 10.1016/0163-7258(93)90056-J PMID: 8361993
  70. ClinicalTrials.gov. The addition of chloroquine to chemoradiation for glioblastoma., 2020. Available from: https://ClinicalTrials.gov/show/NCT02378532
  71. ClinicalTrials.gov. Chloroquine for glioblastoma., 2021. Available from: https://ClinicalTrials.gov/show/NCT04772846
  72. ClinicalTrials.gov. Partial brain RT, temozolomide, chloroquine, and TTF therapy for the treatment of newly diagnosed glioblastoma., 2022. Available from: https://ClinicalTrials.gov/show/NCT04397679
  73. ClinicalTrials.gov. Chloroquine for Treatment of Glioblastoma Multiforme., 2009. Available from: https://ClinicalTrials.gov/show/NCT00224978
  74. Sotelo, J.; Briceño, E.; López-González, M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme: A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med., 2006, 144(5), 337-343. doi: 10.7326/0003-4819-144-5-200603070-00008 PMID: 16520474
  75. Biller, H.; Schachtschabel, D.O.; Leising, H.B.; Pfab, R.; Hess, F. Influence of x-rays and quinacrine (atebrine) or chloroquine (resochine) alone or in combination on growth and melanin formation of Harding-Passey melanoma cells in monolayer culture. Strahlentherapie, 1982, 158(7), 450-456. PMID: 7135443
  76. Briceño, E.; Reyes, S.; Sotelo, J. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg. Focus, 2003, 14(2), 1-6. doi: 10.3171/foc.2003.14.2.4 PMID: 15727424
  77. Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466. doi: 10.3390/ijms19113466 PMID: 30400561
  78. Bhutia, S.K.; Mukhopadhyay, S.; Sinha, N.; Das, D.N.; Panda, P.K.; Patra, S.K.; Maiti, T.K.; Mandal, M.; Dent, P.; Wang, X.Y.; Das, S.K.; Sarkar, D.; Fisher, P.B. Autophagy. Adv. Cancer Res., 2013, 118, 61-95. doi: 10.1016/B978-0-12-407173-5.00003-0 PMID: 23768510
  79. Tang, C.; Livingston, M.J.; Liu, Z.; Dong, Z. Autophagy in kidney homeostasis and disease. Nat. Rev. Nephrol., 2020, 16(9), 489-508. doi: 10.1038/s41581-020-0309-2 PMID: 32704047
  80. Isaka, Y.; Kimura, T.; Takabatake, Y. The protective role of autophagy against aging and acute ischemic injury in kidney proximal tubular cells. Autophagy, 2011, 7(9), 1085-1087. doi: 10.4161/auto.7.9.16465 PMID: 21606682
  81. Lyne, S.B.; Yamini, B. An alternative pipeline for glioblastoma therapeutics: A systematic review of drug repurposing in glioblastoma. Cancers, 2021, 13(8), 1953. doi: 10.3390/cancers13081953 PMID: 33919596
  82. Jeon, S.H.; Kim, S.H.; Kim, Y.; Kim, Y.S.; Lim, Y.; Lee, Y.H.; Shin, S.Y. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem. Biophys. Res. Commun., 2011, 413(2), 311-317. doi: 10.1016/j.bbrc.2011.08.093 PMID: 21889492
  83. Levkovitz, Y.; Gil-Ad, I.; Zeldich, E.; Dayag, M.; Weizman, A. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: Evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J. Mol. Neurosci., 2005, 27(1), 029-042. doi: 10.1385/JMN:27:1:029 PMID: 16055945
  84. Kamarudin, M.N.A.; Parhar, I. Emerging therapeutic potential of anti-psychotic drugs in the management of human glioma: A comprehen-sive review. Oncotarget, 2019, 10(39), 3952-3977. doi: 10.18632/oncotarget.26994 PMID: 31231472
  85. Beaney, R.P.; Gullan, R.W.; Pilkington, G.J. Therapeutic potential of antidepressants in malignant glioma: Clinical experience with clomi-pramine. J. Clin. Oncol., 2005, 23(Suppl. 16), 1535. doi: 10.1200/jco.2005.23.16_suppl.1535
  86. Abadi, B.; Shahsavani, Y.; Faramarzpour, M.; Rezaei, N.; Rahimi, H.R. Antidepressants with anti‐tumor potential in treating glioblastoma: A narrative review. Fundam. Clin. Pharmacol., 2022, 36(1), 35-48. doi: 10.1111/fcp.12712 PMID: 34212424
  87. Kong, R.; Liu, T.; Zhu, X.; Ahmad, S.; Williams, A.L.; Phan, A.T.; Zhao, H.; Scott, J.E.; Yeh, L.A.; Wong, S.T.C. Old drug new use amox-apine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity. Clin. Cancer Res., 2014, 20(13), 3521-3530. doi: 10.1158/1078-0432.CCR-14-0395 PMID: 24780296
  88. Magni, G.; Conlon, P.; Arsie, D. Tricyclic antidepressants in the treatment of cancer pain: A review. Pharmacopsychiatry, 1987, 20(4), 160-164. doi: 10.1055/s-2007-1017095 PMID: 3303068
  89. Shchors, K.; Massaras, A.; Hanahan, D. Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell, 2015, 28(4), 456-471. doi: 10.1016/j.ccell.2015.08.012 PMID: 26412325
  90. Hsu, F.T.; Chiang, I.T.; Wang, W.S. Induction of apoptosis through extrinsic/intrinsic pathways and suppression of ERK/NF‐κB signalling participate in anti‐glioblastoma of imipramine. J. Cell. Mol. Med., 2020, 24(7), 3982-4000. doi: 10.1111/jcmm.15022 PMID: 32149465
  91. Wang, Y.; Wang, X.; Wang, X.; Wu, D.; Qi, J.; Zhang, Y.; Wang, K.; Zhou, D.; Meng, Q.M.; Nie, E.; Wang, Q.; Yu, R.T.; Zhou, X.P. Imi-pramine impedes glioma progression by inhibiting YAP as a Hippo pathway independent manner and synergizes with temozolomide. J. Cell. Mol. Med., 2021, 25(19), 9350-9363. doi: 10.1111/jcmm.16874 PMID: 34469035
  92. Orr, B.A.; Bai, H.; Odia, Y.; Jain, D.; Anders, R.A.; Eberhart, C.G. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J. Neuropathol. Exp. Neurol., 2011, 70(7), 568-577. doi: 10.1097/NEN.0b013e31821ff8d8 PMID: 21666501
  93. Oldrini, B.; Vaquero-Siguero, N.; Mu, Q.; Kroon, P.; Zhang, Y.; Galán-Ganga, M.; Bao, Z.; Wang, Z.; Liu, H.; Sa, J.K.; Zhao, J.; Kim, H.; Rodriguez-Perales, S.; Nam, D.H.; Verhaak, R.G.W.; Rabadan, R.; Jiang, T.; Wang, J.; Squatrito, M. MGMT genomic rearrangements con-tribute to chemotherapy resistance in gliomas. Nat. Commun., 2020, 11(1), 3883. doi: 10.1038/s41467-020-17717-0 PMID: 32753598
  94. Hegi, M.E.; Diserens, A.C.; Godard, S.; Dietrich, P.Y.; Regli, L.; Ostermann, S.; Otten, P.; Van Melle, G.; de Tribolet, N.; Stupp, R. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res., 2004, 10(6), 1871-1874. doi: 10.1158/1078-0432.CCR-03-0384 PMID: 15041700
  95. ClinicalTrials.gov. Investigator-initiated study of imipramine hydrochloride and lomustine in recurrent glioblastoma., 2022. Available from: https://ClinicalTrials.gov/show/NCT04863950
  96. Clarke, M.F.; Dick, J.E.; Dirks, P.B.; Eaves, C.J.; Jamieson, C.H.M.; Jones, D.L.; Visvader, J.; Weissman, I.L.; Wahl, G.M. Cancer stem cells perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res., 2006, 66(19), 9339-9344. doi: 10.1158/0008-5472.CAN-06-3126 PMID: 16990346
  97. Safa, A.R.; Saadatzadeh, M.R.; Cohen-Gadol, A.A.; Pollok, K.E.; Bijangi-Vishehsaraei, K. Glioblastoma stem cells (GSCs) epigenetic plas-ticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis., 2015, 2(2), 152-163. doi: 10.1016/j.gendis.2015.02.001 PMID: 26137500
  98. Bielecka-Wajdman, A.M.; Lesiak, M.; Ludyga, T.; Sieroń, A.; Obuchowicz, E. Reversing glioma malignancy: A new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme. Cancer Chemother. Pharmacol., 2017, 79(6), 1249-1256. doi: 10.1007/s00280-017-3329-2 PMID: 28500556
  99. Seymour, T.; Nowak, A.; Kakulas, F. Targeting aggressive cancer stem cells in glioblastoma. Front. Oncol., 2015, 5, 159. doi: 10.3389/fonc.2015.00159 PMID: 26258069
  100. Parker, K.A.; Pilkington, G.J. Apoptosis of human malignant glioma-derived cell cultures treated with clomipramine hydrochloride, as detected by Annexin-V assay. Radiol. Oncol., 2006, 40(2)
  101. Higgins, S.C.; Pilkington, G.J. The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res., 2010, 30(2), 391-397. PMID: 20332444
  102. Lowry, O.H.; Berger, S.J.; Carter, J.G.; Chi, M.M.Y.; Manchester, J.K.; Knor, J.; Pusateri, M.E. Diversity of metabolic patterns in human brain tumors: enzymes of energy metabolism and related metabolites and cofactors. J. Neurochem., 1983, 41(4), 994-1010. doi: 10.1111/j.1471-4159.1983.tb09043.x PMID: 6619861
  103. Meixensberger, J.; Herting, B.; Roggendorf, W.; Reichmann, H. Metabolic patterns in malignant gliomas. J. Neurooncol., 1995, 24(2), 153-161. doi: 10.1007/BF01078485 PMID: 7562002
  104. Daley, E.; Wilkie, D.; Loesch, A.; Hargreaves, I.P.; Kendall, D.A.; Pilkington, G.J.; Bates, T.E. Chlorimipramine: A novel anticancer agent with a mitochondrial target. Biochem. Biophys. Res. Commun., 2005, 328(2), 623-632. doi: 10.1016/j.bbrc.2005.01.028 PMID: 15694394
  105. Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer's disease. Front. Pharmacol., 2016, 6, 321. doi: 10.3389/fphar.2015.00321 PMID: 26793112
  106. Tsuruo, T.; Iida, H.; Nojiri, M.; Tsukagoshi, S.; Sakurai, Y. Potentiation of chemotherapeutic effect of vincristine in vincristine resistant tumor bearing mice by calmodulin inhibitor clomipramine. J. Pharmacobiodyn., 1983, 6(2), 145-147. doi: 10.1248/bpb1978.6.145 PMID: 6864439
  107. Walker, A.J.; Card, T.; Bates, T.E.; Muir, K. Tricyclic antidepressants and the incidence of certain cancers: A study using the GPRD. Br. J. Cancer, 2011, 104(1), 193-197. doi: 10.1038/sj.bjc.6605996 PMID: 21081933
  108. Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through en-hanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res., 1981, 41(5), 1967-1972. PMID: 7214365
  109. Merry, S.; Hamilton, T.G.; Flanigan, P.; Ian Freshney, R.; Kaye, S.B. Circumvention of pleiotropic drug resistance in subcutaneous tu-mours in vivo with verapamil and clomipramine. Eur. J. Cancer Clin. Oncol., 1991, 27(1), 31-34. doi: 10.1016/0277-5379(91)90054-H PMID: 1826436
  110. Bongiorno-Borbone, L.; Giacobbe, A.; Compagnone, M.; Eramo, A.; De Maria, R.; Peschiaroli, A.; Melino, G. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget, 2015, 6(19), 16926-16938. doi: 10.18632/oncotarget.4700 PMID: 26219257
  111. Bielecka-Wajdman, A.M.; Ludyga, T.; Machnik, G.; Gołyszny, M.; Obuchowicz, E. Tricyclic antidepressants modulate stressed mito-chondria in glioblastoma multiforme cells. Cancer Contr., 2018, 25(1), 1-9. doi: 10.1177/1073274818798594 PMID: 30213208
  112. de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol., 2019, 9, 1143. doi: 10.3389/fonc.2019.01143 PMID: 31737570
  113. Haas, R.; Smith, J.; Rocher-Ros, V.; Nadkarni, S.; Montero-Melendez, T.; D'Acquisto, F.; Bland, E.J.; Bombardieri, M.; Pitzalis, C.; Perret-ti, M.; Marelli-Berg, F.M.; Mauro, C. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol., 2015, 13(7), e1002202. doi: 10.1371/journal.pbio.1002202 PMID: 26181372
  114. Czarnecka, A.M.; Czarnecki, J.S.; Kukwa, W.; Cappello, F.; Ścińska, A.; Kukwa, A. Molecular oncology focus. Is carcinogenesis a 'mito-chondriopathy'? J. Biomed. Sci., 2010, 17(1), 31. doi: 10.1186/1423-0127-17-31 PMID: 20055990
  115. Sarosiek, K.A.; Ni Chonghaile, T.; Letai, A. Mitochondria: Gatekeepers of response to chemotherapy. Trends Cell Biol., 2013, 23(12), 612-619. doi: 10.1016/j.tcb.2013.08.003 PMID: 24060597
  116. Vaupel, P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol., 2004, 14(3), 198-206. doi: 10.1016/j.semradonc.2004.04.008 PMID: 15254862
  117. Cruz, A.L.S.; Barreto, E.A.; Fazolini, N.P.B.; Viola, J.P.B.; Bozza, P.T. Lipid droplets: Platforms with multiple functions in cancer hall-marks. Cell Death Dis., 2020, 11(2), 105. doi: 10.1038/s41419-020-2297-3 PMID: 32029741
  118. Arismendi-Morillo, G. Electron microscopy morphology of the mitochondrial network in human cancer. Int. J. Biochem. Cell Biol., 2009, 41(10), 2062-2068. doi: 10.1016/j.biocel.2009.02.002 PMID: 19703662
  119. Hwang, J.; Zheng, L.T.; Ock, J.; Lee, M.G.; Kim, S.H.; Lee, H.W.; Lee, W.H.; Park, H.C.; Suk, K. Inhibition of glial inflammatory activa-tion and neurotoxicity by tricyclic antidepressants. Neuropharmacology, 2008, 55(5), 826-834. doi: 10.1016/j.neuropharm.2008.06.045 PMID: 18639562
  120. Pottegård, A.; García Rodríguez, L.A.; Rasmussen, L.; Damkier, P.; Friis, S.; Gaist, D. Use of tricyclic antidepressants and risk of glioma: A nationwide case-control study. Br. J. Cancer, 2016, 114(11), 1265-1268. doi: 10.1038/bjc.2016.109 PMID: 27115466
  121. Zhang, Z.; Du, X.; Zhao, C.; Cao, B.; Zhao, Y.; Mao, X. The antidepressant amitriptyline shows potent therapeutic activity against multiple myeloma. Anticancer Drugs, 2013, 24(8), 792-798. doi: 10.1097/CAD.0b013e3283628c21 PMID: 23708819
  122. Ban, T.A.; Wilson, W.H.; McEvoy, J.P. Amoxapine: A review of literature. Int. Pharmacopsychiatry, 1980, 15(3), 166-170. doi: 10.1159/000468433 PMID: 7016801
  123. Palmeira, A.; Rodrigues, F.; Sousa, E.; Pinto, M.; Vasconcelos, M.H.; Fernandes, M.X. New uses for old drugs: Pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. Chem. Biol. Drug Des., 2011, 78(1), 57-72. doi: 10.1111/j.1747-0285.2011.01089.x PMID: 21235729
  124. Jansen, W.J.M.; Hulscher, T.M.; van Ark-Otte, J.; Giaccone, G.; Pinedo, H.M.; Boven, E. CPT-11 sensitivity in relation to the expression of P170-glycoprotein and multidrug resistance-associated protein. Br. J. Cancer, 1998, 77(3), 359-365. doi: 10.1038/bjc.1998.58 PMID: 9472629
  125. Xu, Y.; Villalona-Calero, M.A. Irinotecan: Mechanisms of tumor resistance and novel strategies for modulating its activity. Ann. Oncol., 2002, 13(12), 1841-1851. doi: 10.1093/annonc/mdf337 PMID: 12453851
  126. Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J., 2008, 22(3), 659-661. doi: 10.1096/fj.07-9574LSF PMID: 17942826
  127. Abigerges, D.; Armand, J.P.; Chabot, G.G.; Costa, L.D.; Fadel, E.; Cote, C.; Hérait, P.; Gandia, D. Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J. Natl. Cancer Inst., 1994, 86(6), 446-449. doi: 10.1093/jnci/86.6.446 PMID: 8120919
  128. Tang, L.; Li, X.; Wan, L.; Xiao, Y.; Zeng, X.; Ding, H. Herbal medicines for irinotecan-induced diarrhea. Front. Pharmacol., 2019, 10, 182. doi: 10.3389/fphar.2019.00182 PMID: 30983992
  129. Wallace, B.D.; Wang, H.; Lane, K.T.; Scott, J.E.; Orans, J.; Koo, J.S.; Venkatesh, M.; Jobin, C.; Yeh, L.A.; Mani, S.; Redinbo, M.R. Allevi-ating cancer drug toxicity by inhibiting a bacterial enzyme. Science, 2010, 330(6005), 831-835. doi: 10.1126/science.1191175 PMID: 21051639
  130. Takasuna, K.; Hagiwara, T.; Hirohashi, M.; Kato, M.; Nomura, M.; Nagai, E.; Yokoi, T.; Kamataki, T. Involvement of β-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res., 1996, 56(16), 3752-3757. PMID: 8706020
  131. Ahmad, S.; Hughes, M.A.; Yeh, L.A.; Scott, J.E. Potential repurposing of known drugs as potent bacterial β-glucuronidase inhibitors. SLAS Discov., 2012, 17(7), 957-965. doi: 10.1177/1087057112444927 PMID: 22535688

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2023