The Cell Death and Signal Transduction Mechanisms in Colorectal Carcinogenesis: Recent Advances


Citar

Texto integral

Resumo

In underdeveloped nations, colorectal carcinogenesis (CRC) is a significant health issue. It is the third most common outcome of cancer death. Despite a variety of therapy options, new medications are needed to lessen the severity of this condition. In the colon, adenomatous polyps are the most common cause of CRC, occurring in 45 percent of cases, particularly in patients over 60 years old. Inflammatory polyps are acquiring popularity in CRC, as well as inflammation appears to exert a function in the disease, according to mounting research. The azoxymethane, dimethyl hydrazine, APCmin/+ mouse model, and a combination of sulfated polysaccharides composed of dextran and sulfated and dimethylhydrazine are among the experimental models used to study CRC in animals. Numerous signal transduction pathways are engaged as CRC progresses. The p53, TGF-β, Delta-Notch, Salvador-Warts-Hippo (SWH), and Kelch-like ECH associated protein 1 pathways are among the key signal transduction pathways. To decide cell destiny, several signalling pathways work in tandem with the death of cell modalities, such as autophagy, necroptosis, and apoptosis. In our lab, we have spent a lot of time looking into the cell signalling and mechanisms of cell death in CRC. The pathogenesis of CRC, as well as the associated cell death and cell signalling pathways, are summarised in this study.

Sobre autores

Monu Kashyap

Faculty of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University

Email: info@benthamscience.net

Akash Ved

Department of Pharmaceutical,, Goel Institute Of Pharmaceutical Sciences

Autor responsável pela correspondência
Email: info@benthamscience.net

Rajiv Yadav

Department of Emergency Medicine, Dr Ram Manohar Lohia Institute of Medical Sciences

Email: info@benthamscience.net

Akhand Singh

Department of Science, Maharashi University of Information Technology

Email: info@benthamscience.net

Mahima Kushwaha

Department of Pharmaceutical, Goel Institute Of Pharmaceutical Sciences

Email: info@benthamscience.net

Karuna Shukla

Department of Pharmaceutical, Goel Institute Of Pharmaceutical Sciences

Email: info@benthamscience.net

Bibliografia

  1. Soofiyani, S.R.; Ahangari, H.; Soleimanian, A.; Babaei, G.; Ghasemnejad, T.; Safavi, S.E.; Eyvazi, S.; Tarhriz, V. The role of circadian genes in the pathogenesis of colorectal cancer. Gene, 2021, (804), 145-194.
  2. Tang, S.; Cai, S.; Ji, S.; Yan, X.; Zhang, W.; Qiao, X.; Zhang, H.; Ye, M.; Yu, S. Isoangustone A induces autophagic cell death in colorectal cancer cells by activating AMPK signaling. Fitoterapia, 2021, 152, 104935. doi: 10.1016/j.fitote.2021.104935 PMID: 34004245
  3. Tamas, K.; Walenkamp, A.M.E.; de Vries, E.G.E.; van Vugt, M.A.T.M.; Beets-Tan, R.G.; van Etten, B.; de Groot, D.J.A.; Hospers, G.A.P. Rectal and colon cancer: Not just a different anatomic site. Cancer Treat. Rev., 2015, 41(8), 671-679. doi: 10.1016/j.ctrv.2015.06.007 PMID: 26145760
  4. Tariq, H.; Kamal, M.U.; Mehershahi, S.; Saad, M.; Azam, S.; Kumar, K.; Niazi, M.; Makker, J.; Daniel, M. A rare case of colonic metastases from tonsillar carcinoma: Case report and review of literature. World J. Oncol., 2018, 9(1), 35-37. doi: 10.14740/wjon1073w PMID: 29581814
  5. Center, M.M.; Jemal, A.; Smith, R.A.; Ward, E. Worldwide variations in colorectal cancer. CA Cancer J. Clin., 2009, 59(6), 366-378. doi: 10.3322/caac.20038 PMID: 19897840
  6. Chatenoud, L.; Bertuccio, P.; Bosetti, C.; Malvezzi, M.; Levi, F.; Negri, E.; La Vecchia, C. Trends in mortality from major cancers in the Americas: 1980–2010. Ann. Oncol., 2014, 25(9), 1843-1853. doi: 10.1093/annonc/mdu206 PMID: 24907637
  7. Deng, Y. Rectal cancer in Asian vs. Western countries: Why the variation in incidence? Curr. Treat. Options Oncol., 2017, 18(10), 64. doi: 10.1007/s11864-017-0500-2 PMID: 28948490
  8. Pan, W.; Zhao, J.; Zhang, S.; Chen, X.; Liang, W.; Li, Q. Towards exertion of immunotherapeutics in the treatment of colorectal cancer; Adverse sides, challenges, and future directions. Int. Immunopharmacol., 2021, 101(Pt B), 108337. doi: 10.1016/j.intimp.2021.108337 PMID: 34775366
  9. Marquesvidal, P.; Ravasco, P.; Ermelindacamilo, M. Foodstuffs and colorectal cancer risk: A review. Clin. Nutr., 2006, 25(1), 14-36. doi: 10.1016/j.clnu.2005.09.008 PMID: 16290272
  10. Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Laure Preterre, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Boeing, H.; Schlesinger, S. Food groups and risk of colorectal cancer. Int. J. Cancer, 2018, 142(9), 1748-1758. doi: 10.1002/ijc.31198 PMID: 29210053
  11. Stappenbeck, T.S.; Mills, J.C.; Gordon, J.I. Molecular features of adult mouse small intestinal epithelial progenitors. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1004-1009. doi: 10.1073/pnas.242735899 PMID: 12552106
  12. Ramachandran, A.; Madesh, M.; Balasubramanian, K.A. Apoptosis in the intestinal epithelium: Its relevance in normal and pathophysiological conditions. J. Gastroenterol. Hepatol., 2000, 15(2), 109-120. doi: 10.1046/j.1440-1746.2000.02059.x PMID: 10735533
  13. Pino, M.S.; Chung, D.C. The chromosomal instability pathway in colon cancer. Gastroenterology, 2010, 138(6), 2059-2072. doi: 10.1053/j.gastro.2009.12.065 PMID: 20420946
  14. Tegeder, I.; Pfeilschifter, J.; Geisslinger, G. Cyclooxygenaseindependent actions of cyclooxygenase inhibitors. FASEB J., 2001, 15(12), 2057-2072. doi: 10.1096/fj.01-0390rev PMID: 11641233
  15. Zhou, X. Exosomalnc RNAs facilitate interactive 'dialogue' between tumor cells and tumor-associated macrophages. Cancer Lett., 2022, (25), 215-275.
  16. Li, Z.; Si, W.; Jin, W.; Yuan, Z.; Chen, Y.; Fu, L. Targeting autophagy in colorectal cancer: An update on pharmacological small-molecule compounds. Drug Discov. Today, 2022, 27(8), 2373-2385. doi: 10.1016/j.drudis.2022.05.011 PMID: 35589015
  17. Edelmann, L.; Edelmann, W. Loss of DNA mismatch repair function and cancer predisposition in the mouse: Animal models for human hereditary nonpolyposis colorectal cancer. American J. Medical Genet. C. Semin. Med. Genet. Wiley Online Library, 2004, 129C(1), pp. 91-109. doi: 10.1002/ajmg.c.30021
  18. Shadbad, M.A.; Asadzadeh, Z.; Derakhshani, A.; Hosseinkhani, N.; Mokhtarzadeh, A.; Baghbanzadeh, A.; Hajiasgharzadeh, K.; Brunetti, O.; Argentiero, A.; Racanelli, V.; Silvestris, N.; Baradaran, B. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery. Biomed. Pharmacother., 2021, 143, 112213. doi: 10.1016/j.biopha.2021.112213 PMID: 34560556
  19. Conte, A.; Valente, V.; Paladino, S.; Pierantoni, G.M. HIPK2 in cancer biology and therapy: Recent findings and future perspectives. Cell. Signal., 2022, 2022, 110-191. PMID: 36241057
  20. Reichling, T.; Goss, K.H.; Carson, D.J.; Holdcraft, R.W.; Ley-Ebert, C.; Witte, D.; Aronow, B.J.; Groden, J. Transcriptional profiles of intestinal tumors in Apcmin mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors. Cancer Res., 2005, 65(1), 166-176. doi: 10.1158/0008-5472.166.65.1 PMID: 15665292
  21. Jin, D.; Liu, T.; Dong, W.; Zhang, Y.; Wang, S.; Xie, R.; Wang, B.; Cao, H. Dietary feeding of freeze-dried whole cranberry inhibits intestinal tumor development in Apcmin/+ mice. Oncotarget, 2017, 8(58), 97787-97800. doi: 10.18632/oncotarget.22081 PMID: 29228651
  22. Huang, G.; Khan, I.; Li, X.; Chen, L.; Leong, W.; Ho, L.T.; Hsiao, W.L.W. Ginsenosides Rb3 and Rd reduce polyps formation while reinstate the dysbiotic gut microbiota and the intestinal microenvironment in ApcMin/+ mice. Sci. Rep., 2017, 7(1), 12552. doi: 10.1038/s41598-017-12644-5 PMID: 28970547
  23. Bissahoyo, A.; Pearsall, R.S.; Hanlon, K.; Amann, V.; Hicks, D.; Godfrey, V.L.; Threadgill, D.W. Azoxymethane is a genetic background-dependent colorectal tumor initiator and promoter in mice: effects of dose, route, and diet. Toxicol. Sci., 2005, 88(2), 340-345. doi: 10.1093/toxsci/kfi313 PMID: 16150884
  24. Perše, M.; Cerar, A. Morphological and molecular alterations in 1, 2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J. Biomed. Biotechnol., 2010, 20, 11. PMID: 21253581
  25. Ashokkumar, P.; Sudhandiran, G. Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/β-catenin pathway. Invest. New Drugs, 2011, 29(2), 273-284. doi: 10.1007/s10637-009-9359-9 PMID: 20013030
  26. Liu, Y.; Cheuk-Hay, L.H.; Cheng, W.Y.; Yu, J. Gut microbiome in colorectal cancer: Clinical diagnosis and treatment. Genom. Proteomics Bioinform., 2022, S1672-0229(22), 00086-00089. doi: 10.1016/j.gpb.2022.07.002 PMID: 35914737
  27. Umesalma, S.; Sudhandiran, G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin. Pharmacol. Toxicol., 2010, 107(2), 650-655. doi: 10.1111/j.1742-7843.2010.00565.x PMID: 20406206
  28. Sivasakthi, P.; Sabarathinam, S.; Vijayakumar, T.M. Network pharmacology and in silico pharmacokinetic prediction of Ozanimod in the management of ulcerative colitis: A computational study. Health Sci. Rep., 2022, 5(1), e473. doi: 10.1002/hsr2.473 PMID: 35229041
  29. Kohno, H.; Suzuki, R.; Sugie, S.; Tanaka, T. β-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate. Cancer Sci., 2005, 96(2), 69-76. doi: 10.1111/j.1349-7006.2005.00020.x PMID: 15723650
  30. Jobst, K. Teratogenous changes and tumors in rats following treatment with methylnitroso-urea (MNU). Neoplasma, 1967, 14(4), 435-436. PMID: 6063014
  31. Haria, P.D.; Baheti, A.D.; Palsetia, D.; Ankathi, S.K.; Choudhari, A.; Guha, A.; Saklani, A.; Sinha, R. Follow-up of colorectal cancer and patterns of recurrence. Clin. Radiol., 2021, 76(12), 908-915. doi: 10.1016/j.crad.2021.07.016 PMID: 34474747
  32. Wang, Y.; Zhang, Z.; Sun, W.; Zhang, J.; Xu, Q.; Zhou, X.; Mao, L. Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomed. Pharmacother., 2022, 153(5), 113524. doi: 10.1016/j.biopha.2022.113524 PMID: 36076606
  33. Shao, X.; Chen, X.; Wang, Z.; Zhu, C.; Du, Y.; Tang, D.; Ji, S. Diprenylated flavonoids from licorice induce death of SW480 colorectal cancer cells by promoting autophagy: Activities of lupalbigenin and 6,8-diprenylgenistein. J. Ethnopharmacol., 2022, 296(11), 115488. doi: 10.1016/j.jep.2022.115488 PMID: 35728712
  34. Magalhães, B.; Peleteiro, B.; Lunet, N. Dietary patterns and colorectal cancer. Eur. J. Cancer Prev., 2012, 21(1), 15-23. doi: 10.1097/CEJ.0b013e3283472241 PMID: 21946864
  35. Qiao, C.; Wang, H.; Guan, Q.; Wei, M.; Li, Z. Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: Insights and future perspectives. Asian J. Pharmaceut. Sci., 2022, (4), 1-10.
  36. Newmark, H.L.; Yang, K.; Kurihara, N.; Fan, K.; Augenlicht, L.H.; Lipkin, M. Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: A preclinical model for human sporadic colon cancer. Carcinogenesis, 2008, 30(1), 88-92. doi: 10.1093/carcin/bgn229 PMID: 19017685
  37. Mahima, M.; Mahmood, T.; Ved, A.; Siddiqui, M.H.; Ahsan, F.; Shamim, A.; Ansari, V.A.; Ahmad, A.; Kashyap, M.K. An in-depth analysis of ovarian cancer: Pathogenesis and clinical manifestation. Drug Res., 2022, 72(8), 424-434. doi: 10.1055/a-1867-4654 PMID: 35760337
  38. Wang, D.; Peregrina, K.; Dhima, E.; Lin, E.Y.; Mariadason, J.M.; Augenlicht, L.H. Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer. Proc. Natl. Acad. Sci. USA, 2011, 108(25), 10272-10277. doi: 10.1073/pnas.1017668108 PMID: 21652773
  39. Abushukair, H.; Ababneh, O.; Zaitoun, S.; Saeed, A. Primary and secondary immune checkpoint inhibitors resistance in colorectal cancer: Key mechanisms and ways to overcome resistance. Cancer Treat. Res. Commun., 2022, 33, 100643. doi: 10.1016/j.ctarc.2022.100643 PMID: 36175334
  40. Subramaniam, R.; Mizoguchi, A.; Mizoguchi, E. Mechanistic roles of epithelial and immune cell signaling during the development of colitis-associated cancer. Cancer Res. Front., 2016, 2(1), 1-21. doi: 10.17980/2016.1 PMID: 27110580
  41. Al-Sohaily, S.; Biankin, A.; Leong, R.; Kohonen-Corish, M.; Warusavitarne, J. Molecular pathways in colorectal cancer. J. Gastroenterol. Hepatol., 2012, 27(9), 1423-1431. doi: 10.1111/j.1440-1746.2012.07200.x PMID: 22694276
  42. Fath, M.K.; Anjomrooz, M.; Taha, S.R.; Zadeh, M.S.; Sahraei, M.; Atbaei, R.; Naghibi, A.F.; Payandeh, Z.; Rahmani, Z.; Barati, G. The therapeutic effect of exosomes from mesenchymal stem cells on colorectal cancer: Toward cell-free therapy. Pathol. Res. Pract., 2022, 154, 10-24.
  43. Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379. doi: 10.1038/cdd.2015.158 PMID: 26794443
  44. Kroemer, G.; Perfettini, J.L. Entosis, a key player in cancer cell competition. Cell Res., 2014, 24(11), 1280-1281. doi: 10.1038/cr.2014.133 PMID: 25342563
  45. Fatokun, A.A.; Dawson, V.L.; Dawson, T.M. Parthanatos: Mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol., 2014, 171(8), 2000-2016. doi: 10.1111/bph.12416 PMID: 24684389
  46. Ben Nasr, M.; Bassi, R.; Usuelli, V.; Valderrama-Vasquez, A.; Tezza, S.; D'Addio, F.; Fiorina, P. The use of hematopoietic stem cells in autoimmune diseases. Regen. Med., 2016, 11(4), 395-405. doi: 10.2217/rme-2015-0057 PMID: 27165670
  47. Kim, K.H.; Lee, M.S. Autophagy-a key player in cellular and body metabolism. Nat. Rev. Endocrinol., 2014, 10(6), 322-337. doi: 10.1038/nrendo.2014.35 PMID: 24663220
  48. Galluzzi, L.; Bravo-San Pedro, J.M.; Kepp, O.; Kroemer, G.; Kroemer, G. Regulated cell death and adaptive stress responses. Cell. Mol. Life Sci., 2016, 73(11-12), 2405-2410. doi: 10.1007/s00018-016-2209-y PMID: 27048813
  49. Wong, J.J.L.; Hawkins, N.J.; Ward, R.L. Colorectal cancer: A model for epigenetic tumorigenesis. Gut, 2007, 56(1), 140-148. doi: 10.1136/gut.2005.088799 PMID: 16840508
  50. Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6(1), 479-507. doi: 10.1146/annurev-pathol-011110-130235 PMID: 21090969
  51. Marshman, E.; Ottewell, P.D.; Potten, C.S.; Watson, A.J.M. Caspase activation during spontaneous and radiation‐induced apoptosis in the murine intestine. J. Pathol., 2001, 195(3), 285-292. doi: 10.1002/path.967
  52. Manne, U.; Shanmugam, C.; Katkoori, V.R.; Bumpers, H.L.; Grizzle, W.E. Development and progression of colorectal neoplasia. Cancer Biomark., 2011, 9(1-6), 235-265. doi: 10.3233/CBM-2011-0160 PMID: 22112479
  53. Li, X.L.; Zhou, J.; Chen, Z.R.; Chng, W.J. P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J. Gastroenterol., 2015, 21(1), 84-93. doi: 10.3748/wjg.v21.i1.84 PMID: 25574081
  54. Kumar, M.; Kaur, V.; Kumar, S.; Kaur, S. Phytoconstituents as apoptosis inducing agents: Strategy to combat cancer. Cytotechnology, 2016, 68(4), 531-563. doi: 10.1007/s10616-015-9897-2 PMID: 26239338
  55. Pandurangan, A.K.; Dharmalingam, P.; Sadagopan, S.K.A.; Ramar, M.; Munusamy, A.; Ganapasam, S. Luteolin induces growth arrest in colon cancer cells through involvement of Wnt/β-catenin/GSK-3β signaling. J. Environ. Pathol. Toxicol. Oncol., 2013, 32(2), 131-139. doi: 10.1615/JEnvironPatholToxicolOncol.2013007522 PMID: 24099426
  56. Gerola, S.; Nittka, S.; Kähler, G.; Tao, S.; Brenner, H.; Binelli, G.; Eils, R.; Brors, B.; Neumaier, M. Genetic variants in apoptosis-related genes associated with colorectal hyperplasia. Genes Chrom Cancer, 2014, 53(9), 769-778. doi: 10.1002/gcc.22185 PMID: 24861865
  57. Sinicrope, F.A.; Hart, J.; Hsu, H.A.; Lemoine, M.; Michelassi, F.; Stephens, L.C. Apoptotic and mitotic indices predict survival rates in lymph node-negative colon carcinomas. Clin. Cancer Res., 1999, 5(7), 1793-1804. PMID: 10430084
  58. Danielsen, S.A.; Eide, P.W.; Nesbakken, A.; Guren, T.; Leithe, E.; Lothe, R.A. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim. Biophysica Acta, 2015, 1855(1), 104-121.
  59. Kenific, C.M.; Thorburn, A.; Debnath, J. Autophagy and metastasis: Another double-edged sword. Curr. Opin. Cell Biol., 2010, 22(2), 241-245. doi: 10.1016/j.ceb.2009.10.008 PMID: 19945838
  60. Chen, Z.; Li, Y.; Zhang, C.; Yi, H.; Wu, C.; Wang, J.; Liu, Y.; Tan, J.; Wen, J. Downregulation of Beclin 1 and impairment of autophagy in a small population of colorectal cancer. Dig. Dis. Sci., 2013, 58(10), 2887-2894. doi: 10.1007/s10620-013-2732-8 PMID: 23812859
  61. Moriwaki, K.; Bertin, J.; Gough, P.J.; Orlowski, G.M.; Chan, F.K. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis., 2015, 6(2), e1636. doi: 10.1038/cddis.2015.16 PMID: 25675296
  62. Xie, X.; Zhao, Y.; Ma, C.Y.; Xu, X.M.; Zhang, Y.Q.; Wang, C.G.; Jin, J.; Shen, X.; Gao, J.L.; Li, N.; Sun, Z.J.; Dong, D.L. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br. J. Pharmacol., 2015, 172(15), 3929-3943. doi: 10.1111/bph.13184 PMID: 25953698
  63. Oliver Metzig, M.; Fuchs, D.; Tagscherer, K.E.; Gröne, H-J.; Schirmacher, P.; Roth, W. Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB. Oncogene, 2016, 35(26), 3399-3409. doi: 10.1038/onc.2015.398 PMID: 26522725
  64. Katz, L.H.; Li, Y.; Chen, J.S.; Muñoz, N.M.; Majumdar, A.; Chen, J.; Mishra, L. Targeting TGF-β signaling in cancer. Expert Opin. Ther. Targets, 2013, 17(7), 743-760. doi: 10.1517/14728222.2013.782287 PMID: 23651053
  65. Goel, S.; Huang, J.; Klampfer, L. K-Ras, intestinal homeostasis and colon cancer. Curr. Clin. Pharmacol., 2015, 10(1), 73-81. doi: 10.2174/1574884708666131111204440 PMID: 24219000
  66. Karthika, C.; Hari, B.; Rahman, M.H.; Akter, R.; Najda, A.; Albadrani, G.M.; Sayed, A.A.; Akhtar, M.F.; Abdel-Daim, M.M. Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomed. Pharmacother., 2021, 140(140), 111704. doi: 10.1016/j.biopha.2021.111704 PMID: 34082400
  67. Kishore, C.; Bhadra, P. Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur. J. Pharmacol., 2021, 893(893), 173819. doi: 10.1016/j.ejphar.2020.173819 PMID: 33347822
  68. Ryan, L.; Wong, Y.; Dwyer, K.M.; Clarke, D.; Kyprian, L.; Craig, J.M. Coprocytobiology: A technical review of cytological colorectal cancer screening in fecal samples. SLAS Technol., 2021, 26(6), 591-604. doi: 10.1177/24726303211024562 PMID: 34219541
  69. Fevr, T.; Robine, S.; Louvard, D.; Huelsken, J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol., 2007, 27(21), 7551-7559. doi: 10.1128/MCB.01034-07 PMID: 17785439
  70. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
  71. Fortin, J.; Mak, T.W. Targeting PI3K signaling in cancer: A cautionary tale of two AKTs. Cancer Cell, 2016, 29(4), 429-431. doi: 10.1016/j.ccell.2016.03.020 PMID: 27070694
  72. Colakoglu, T.; Yildirim, S.; Kayaselcuk, F.; Nursal, T.Z.; Ezer, A.; Noyan, T.; Karakayali, H.; Haberal, M. Clinicopathological significance of PTEN loss and the phosphoinositide 3-kinase/Akt pathway in sporadic colorectal neoplasms: Is PTEN loss predictor of local recurrence? Am. J. Surg., 2008, 195(6), 719-725. doi: 10.1016/j.amjsurg.2007.05.061 PMID: 18440486
  73. Lin, M.C.; Wang, F.Y.; Kuo, Y.H.; Tang, F.Y. Cancer chemopreventive effects of lycopene: Suppression of MMP-7 expression and cell invasion in human colon cancer cells. J. Agric. Food Chem., 2011, 59(20), 11304-11318. doi: 10.1021/jf202433f PMID: 21923160
  74. Din, F.V.N.; Valanciute, A.; Houde, V.P.; Zibrova, D.; Green, K.A.; Sakamoto, K.; Alessi, D.R.; Dunlop, M.G. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology, 2012, 142(7), 1504-1515. doi: 10.1053/j.gastro.2012.02.050 PMID: 22406476
  75. Alexander, P.G.; McMillan, D.C.; Park, J.H. A meta-analysis of CD274 (PD-L1) assessment and prognosis in colorectal cancer and its role in predicting response to anti-PD-1 therapy. Crit. Rev. Oncol. Hematol., 2021, 157, 103147. doi: 10.1016/j.critrevonc.2020.103147 PMID: 33278675
  76. Kaklamani, V.G.; Pasche, B. Role of TGF-β in cancer and the potential for therapy and prevention. Expert Rev. Anticancer Ther., 2004, 4(4), 649-661. doi: 10.1586/14737140.4.4.649 PMID: 15270668
  77. Xu, Y.; Pasche, B. TGF-β signaling alterations and susceptibility to colorectal cancer. Hum. Mol. Genet., 2007, 16(R1), R14-R20. doi: 10.1093/hmg/ddl486 PMID: 17613544
  78. Leask, A.; Abraham, D.J. TGF‐β signaling and the fibrotic response. FASEB J., 2004, 18(7), 816-827. doi: 10.1096/fj.03-1273rev PMID: 15117886
  79. Zhao, Y.; Wang, C.; Goel, A. Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochim. Biophysica Acta, 2021, (1), 188-190.
  80. Letterio, J.J.; Roberts, A.B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol., 1998, 16(1), 137-161. doi: 10.1146/annurev.immunol.16.1.137 PMID: 9597127
  81. Gatza, C.E.; Holtzhausen, A.; Kirkbride, K.C.; Morton, A.; Gatza, M.L.; Datto, M.B.; Blobe, G.C. Type III TGF-β receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia, 2011, 13(8), 758-828. doi: 10.1593/neo.11528 PMID: 21847367
  82. Oshima, H.; Nakayama, M.; Han, T.S.; Naoi, K.; Ju, X.; Maeda, Y.; Robine, S.; Tsuchiya, K.; Sato, T.; Sato, H.; Taketo, M.M.; Oshima, M. Suppressing TGFβ signaling in regenerating epithelia in an inflammatory microenvironment is sufficient to cause invasive intestinal cancer. Cancer Res., 2015, 75(4), 766-776. doi: 10.1158/0008-5472.CAN-14-2036 PMID: 25687406
  83. Ruzzo, A.; Graziano, F.; Canestrari, E.; Magnani, M. Molecular predictors of efficacy to anti-EGFR agents in colorectal cancer patients. Curr. Cancer Drug Targ, 2010, 10(1), 68-79. doi: 10.2174/156800910790980205 PMID: 20088793
  84. Mendelsohn, J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer, 2001, 8(1), 3-9. doi: 10.1677/erc.0.0080003 PMID: 11350723
  85. Hsieh, J.S.; Lin, S.R.; Chang, M.Y.; Chen, F.M.; Lu, C.Y.; Huang, T.J.; Huang, Y.S.; Huang, C.J.; Wang, J.Y. APC, K-ras, and p53 gene mutations in colorectal cancer patients: Correlation to clinicopathologic features and postoperative surveillance. Am. Surg., 2005, 71(4), 336-343. doi: 10.1177/000313480507100413 PMID: 15943410
  86. Artavanis-Tsakonas, S.; Rand, M.D.; Lake, R.J. Notch signaling: Cell fate control and signal integration in development. Science, 1999, 284(5415), 770-776. doi: 10.1126/science.284.5415.770
  87. Schmitt, M.W.; Loeb, L.A.; Salk, J.J. The influence of subclonal resistance mutations on targeted cancer therapy. Nat. Rev. Clin. Oncol., 2016, 13(6), 335-347. doi: 10.1038/nrclinonc.2015.175 PMID: 26483300
  88. Mirone, G.; Perna, S.; Shukla, A.; Marfe, G. Involvement of Notch-1 in resistance to regorafenib in colon cancer cells. J. Cell. Physiol., 2016, 231(5), 1097-1105. doi: 10.1002/jcp.25206 PMID: 26419617
  89. Kranenburg, O. Prometastatic NOTCH signaling in colon cancer. Cancer Discov., 2015, 5(2), 115-117. doi: 10.1158/2159-8290.CD-14-1456 PMID: 25656897
  90. Rajendran, P.; Dashwood, W.M.; Li, L.; Kang, Y.; Kim, E.; Johnson, G.; Fischer, K.A.; Löhr, C.V.; Williams, D.E.; Ho, E.; Yamamoto, M.; Lieberman, D.A.; Dashwood, R.H. Nrf2 status affects tumor growth, HDAC3 gene promoter associations, and the response to sulforaphane in the colon. Clin. Epigenetics, 2015, 7(1), 102. doi: 10.1186/s13148-015-0132-y PMID: 26388957
  91. Lu, Y.; An, L.; Taylor, M.R.G.; Chen, Q.M. Nrf2 signaling in heart failure: Expression of Nrf2, Keap1, antioxidant and detoxification genes in dilated or ischemic cardiomyopathy. Physiologica. Genomics, 2022, 54(3), 115-127.
  92. Copple, I.M. The Keap1-Nrf2 cell defense pathway-a promising therapeutic target? Adv. Pharmacol., 2012, 63, 43-79. doi: 10.1016/B978-0-12-398339-8.00002-1 PMID: 22776639
  93. Manigandan, K.; Manimaran, D.; Jayaraj, R.L.; Elangovan, N.; Dhivya, V.; Kaphle, A. Taxifolin curbs NF-κB-mediated Wnt/β-catenin signaling via up-regulating Nrf2 pathway in experimental colon carcinogenesis. Biochimie, 2015, 119, 103-112. doi: 10.1016/j.biochi.2015.10.014 PMID: 26482805
  94. Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2-an update. Free Radic. Biol. Med., 2014, 66, 36-44. doi: 10.1016/j.freeradbiomed.2013.02.008 PMID: 23434765
  95. Katsuoka, F.; Otsuki, A.; Takahashi, M.; Ito, S.; Yamamoto, M. Direct and specific functional evaluation of the Nrf2 and MafG heterodimer by introducing a tethered dimer into small Maf-deficient cells. Mol. Cell. Biol., 2019, 39(20), e00273-e19. doi: 10.1128/MCB.00273-19 PMID: 31383749
  96. Wondrak, G.; Villeneuve, N.F.; Lamore, S.D.; Bause, A.S.; Jiang, T.; Zhang, D.D. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules, 2010, 15(5), 3338-3355. doi: 10.3390/molecules15053338 PMID: 20657484
  97. Romanucci, V.; Giordano, M.; Pagano, R.; Agarwal, C.; Agarwal, R.; Zarrelli, A.; Di Fabio, G. Solid-phase synthesis of curcumin mimics and their anticancer activity against human pancreatic, prostate, and colorectal cancer cell lines. Bioorg. Med. Chem., 2021, 42, 116249. doi: 10.1016/j.bmc.2021.116249 PMID: 34126286
  98. Irvine, K.D.; Harvey, K.F. Control of organ growth by patterning and hippo signaling in Drosophila. Cold Spring Harb. Perspect. Biol., 2015, 7(6), a019224. doi: 10.1101/cshperspect.a019224 PMID: 26032720
  99. Kosik, K.S.; Kowall, N.W.; McKee, A. Along the way to a neurofibrillary tangle: A look at the structure of tau. Ann. Med., 1989, 21(2), 109-112. doi: 10.3109/07853898909149195 PMID: 2504256
  100. Santucci, M.; Vignudelli, T.; Ferrari, S.; Mor, M.; Scalvini, L.; Bolognesi, M.L.; Uliassi, E.; Costi, M.P. The Hippo pathway and YAP/TAZ–TEAD protein–protein interaction as targets for regenerative medicine and cancer treatment. Miniperspective. J. Med. Chem., 2015, 58(12), 4857-4873. doi: 10.1021/jm501615v PMID: 25719868
  101. Nagashima, S.; Bao, Y.; Hata, Y. The Hippo pathway as drug targets in cancer therapy and regenerative medicine. Curr. Drug Targets, 2017, 18(4), 447-454. doi: 10.2174/1389450117666160112115641 PMID: 26758663
  102. Hansen, C.G.; Moroishi, T.; Guan, K.L. YAP and TAZ: A nexus for Hippo signaling and beyond. Trends Cell Biol., 2015, 25(9), 499-513. doi: 10.1016/j.tcb.2015.05.002 PMID: 26045258
  103. Liang, K.; Zhou, G.; Zhang, Q.; Li, J.; Zhang, C. Expression of hippo pathway in colorectal cancer. Saudi J. Gastroenterol., 2014, 20(3), 188.
  104. Konsavage, W.M., Jr; Kyler, S.L.; Rennoll, S.A.; Jin, G.; Yochum, G.S. Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J. Biol. Chem., 2012, 287(15), 11730-11739. doi: 10.1074/jbc.M111.327767 PMID: 22337891
  105. Mohamed, D.A.W.; Nabil, E.S.; Motaleb, F.I.A.; Aboushahba, R.M.; Abou-Zeid, A.A.A.; Mohamed, S.M. miR-34a-5p suppresses colorectal cancer cell proliferation through silencing Microtubule Actin Crosslinking Factor 1 (MACF1) gene. Gene Rep., 2021, 25, 101416. doi: 10.1016/j.genrep.2021.101416
  106. Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222. doi: 10.1038/nrd.2016.246 PMID: 28209991
  107. Xie, Q.; Li, Z.; Liu, Y.; Zhang, D.; Su, M.; Niitsu, H.; Lu, Y.; Coffey, R.J.; Bai, M. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater., 2021, 134(134), 716-729. doi: 10.1016/j.actbio.2021.07.052 PMID: 34329783
  108. Cao, L.; Liu, Y.; Wang, D.; Huang, L.; Li, F.; Liu, J.; Zhang, C.; Shen, Z.; Gao, Q.; Yuan, W.; Zhang, Y. miR-760 suppresses human colorectal cancer growth by targeting BATF3/AP-1/cyclinD1 signaling. J. Exp. Clin. Cancer Res., 2018, 37(1), 83. doi: 10.1186/s13046-018-0757-8 PMID: 29661228
  109. Zhang, W.; Sun, Z.; Su, L.; Wang, F.; Jiang, Y.; Yu, D.; Zhang, F.; Sun, Z.; Liang, W. miRNA-185 serves as a prognostic factor and suppresses migration and invasion through Wnt1 in colon cancer. Eur. J. Pharmacol., 2018, 825, 75-84. doi: 10.1016/j.ejphar.2018.02.019 PMID: 29454608
  110. Noffsinger, A.E. Serrated polyps and colorectal cancer: New pathway to malignancy. Annu. Rev. Pathol., 2009, 4(1), 343-364. doi: 10.1146/annurev.pathol.4.110807.092317 PMID: 19400693
  111. Martín, M.J.; Azcona, P.; Lassalle, V.; Gentili, C. Doxorubicin delivery by magnetic nanotheranostics enhances the cell death in chemoresistant colorectal cancer-derived cells. Eur. J. Pharm. Sci., 2021, 158(158), 105681. doi: 10.1016/j.ejps.2020.105681 PMID: 33347979
  112. Lindor, N.M. Hereditary colorectal cancer: MYH-associated polyposis and other newly identified disorders. Best Pract. Res. Clin. Gastroenterol., 2009, 23(1), 75-87. doi: 10.1016/j.bpg.2008.11.013 PMID: 19258188
  113. Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; Chapelle, A.; Rüschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; Hamilton, S.R.; Hiatt, R.A.; Jass, J.; Lindblom, A.; Lynch, H.T.; Peltomaki, P.; Ramsey, S.D.; Rodriguez-Bigas, M.A.; Vasen, H.F.A.; Hawk, E.T.; Barrett, J.C.; Freedman, A.N.; Srivastava, S. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl. Cancer Inst., 2004, 96(4), 261-268. doi: 10.1093/jnci/djh034 PMID: 14970275
  114. Miao, X.; Zhang, Y.; Li, Z.; Huang, L.; Xin, T.; Shen, R.; Wang, T. Inhibition of indoleamine 2,3-dioxygenase 1 synergizes with oxaliplatin for efficient colorectal cancer therapy. Mol. Ther. Methods Clin. Dev., 2021, 20, 442-450. doi: 10.1016/j.omtm.2020.12.013 PMID: 33665222
  115. Brabletz, T.; Hlubek, F.; Spaderna, S.; Schmalhofer, O.; Hiendlmeyer, E.; Jung, A.; Kirchner, T. Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymalepithelial transition, stem cells and β-catenin. Cells Tissues Organs, 2005, 179(1-2), 56-65. doi: 10.1159/000084509 PMID: 15942193
  116. Iwatsuki, M.; Mimori, K.; Yokobori, T.; Ishi, H.; Beppu, T.; Nakamori, S.; Baba, H.; Mori, M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci., 2010, 101(2), 293-299. doi: 10.1111/j.1349-7006.2009.01419.x PMID: 19961486
  117. Cano, A.; Pérez-Moreno, M.A.; Rodrigo, I.; Locascio, A.; Blanco, M.J.; del Barrio, M.G.; Portillo, F.; Nieto, M.A. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2000, 2(2), 76-83. doi: 10.1038/35000025 PMID: 10655586
  118. Wang, S.; Wang, L.; Zhou, Z.; Deng, Q.; Li, L.; Zhang, M.; Liu, L.; Li, Y. Leucovorin enhances the anti-cancer effect of bortezomib in colorectal cancer cells. Sci. Rep., 2017, 7(1), 682. doi: 10.1038/s41598-017-00839-9 PMID: 28386133
  119. Zhang, N.; Ng, A.S.; Cai, S.; Li, Q.; Yang, L.; Kerr, D. Novel therapeutic strategies: Targeting epithelial–mesenchymal transition in colorectal cancer. Lancet Oncol., 2021, 22(8), e358-e368. doi: 10.1016/S1470-2045(21)00343-0 PMID: 34339656
  120. Battaglin, F.; Dadduzio, V.; Bergamo, F.; Manai, C.; Schirripa, M.; Lonardi, S.; Zagonel, V.; Loupakis, F. Anti-EGFR monoclonal antibody panitumumab for the treatment of patients with metastatic colorectal cancer: An overview of current practice and future perspectives. Expert Opin. Biol. Ther., 2017, 17(10), 1297-1308. doi: 10.1080/14712598.2017.1356815 PMID: 28752777
  121. Dickey, M.S.R.; Raina, A.J.; Gilbar, P.J.; Wisniowski, B.L.; Collins, J.T.; Karki, B.; Nguyen, A.D.K. Pembrolizumab-induced thrombotic thrombocytopenic purpura. J. Oncol. Pharm. Pract., 2020, 26(5), 1237-1240. doi: 10.1177/1078155219887212 PMID: 31718453
  122. dos Reis, P.E.D.; Ciol, M.A.; de Melo, N.S.; Figueiredo, P.T.S.; Leite, A.F.; Manzi, N.M. Chamomile infusion cryotherapy to prevent oral mucositis induced by chemotherapy: A pilot study. Support. Care Cancer, 2016, 24(10), 4393-4398. doi: 10.1007/s00520-016-3279-y PMID: 27189615
  123. Tanaka, S.; Haruma, K.; Yoshihara, M.; Kajiyama, G.; Kira, K.; Amagase, H.; Chayama, K. Aged garlic extract has potential suppressive effect on colorectal adenomas in humans. J. Nutr., 2006, 136(Suppl. 3), 821S-826S. doi: 10.1093/jn/136.3.821S PMID: 16484573
  124. Ishikawa, H.; Saeki, T.; Otani, T.; Suzuki, T.; Shimozuma, K.; Nishino, H.; Fukuda, S.; Morimoto, K. Aged garlic extract prevents a decline of NK cell number and activity in patients with advanced cancer. J. Nutr., 2006, 136(Suppl. 3), 816S-820S. doi: 10.1093/jn/136.3.816S PMID: 16484572
  125. Marx, W.; McCarthy, A.; Ried, K.; McKavanagh, D.; Vitetta, L.; Sali, A.; Lohning, A.; Isenring, E. The effect of a standardized ginger extract on chemotherapy-induced nausea-related quality of life in patients undergoing moderately or highly emetogenic chemotherapy: A double blind, randomized, placebo controlled trial. Nutrients, 2017, 9(8), 867. doi: 10.3390/nu9080867 PMID: 28805667
  126. Nuñez-Sánchez, M.A.; González-Sarrías, A.; García-Villalba, R.; Monedero-Saiz, T.; García-Talavera, N.V.; Gómez-Sánchez, M.B.; Sánchez-Álvarez, C.; García-Albert, A.M.; Rodríguez-Gil, F.J.; Ruiz-Marín, M.; Pastor-Quirante, F.A.; Martínez-Díaz, F.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.T. Gene expression changes in colon tissues from colorectal cancer patients following the intake of an ellagitannin-containing pomegranate extract: A randomized clinical trial. J. Nutr. Biochem., 2017, 42, 126-133. doi: 10.1016/j.jnutbio.2017.01.014 PMID: 28183047
  127. Tajima, Y.; Ishida, H.; Yamamoto, A.; Chika, N.; Onozawa, H.; Matsuzawa, T.; Kumamoto, K.; Ishibashi, K.; Mochiki, E. Comparison of the risk of surgical site infection and feasibility of surgery between sennoside versus polyethylene glycol as a mechanical bowel preparation of elective colon cancer surgery: A randomized controlled trial. Surg. Today, 2016, 46(6), 735-740. doi: 10.1007/s00595-015-1239-7 PMID: 26319220
  128. Hashim, Y.Z.H.Y.; Worthington, J.; Allsopp, P.; Ternan, N.G.; Brown, E.M.; McCann, M.J.; Rowland, I.R.; Esposto, S.; Servili, M.; Gill, C.I.R. Virgin olive oil phenolics extract inhibit invasion of HT115 human colon cancer cells in vitro and in vivo. Food Funct., 2014, 5(7), 1513-1519. doi: 10.1039/c4fo00090k PMID: 24836598
  129. Agra, Y.; Sacristán, A.; González, M.; Ferrari, M.; Portugués, A.; Calvo, M.J. Efficacy of senna versus lactulose in terminal cancer patients treated with opioids. J. Pain Symptom Manage., 1998, 15(1), 1-7. doi: 10.1016/S0885-3924(97)00276-5 PMID: 9436336
  130. Tastekin, D.; Tambas, M.; Kilic, K.; Erturk, K.; Arslan, D. The efficacy of Pistacia Terebinthus soap in the treatment of cetuximab-induced skin toxicity. Invest. New Drugs, 2014, 32(6), 1295-1300. doi: 10.1007/s10637-014-0128-z PMID: 24930136
  131. Mutluay, Y.E.; Izgu, N.; Ozdemir, L.; Aslan, E.S.; Kartal, M. Sage tea–thyme–peppermint hydrosol oral rinse reduces chemotherapy-induced oral mucositis: A randomized controlled pilot study. Complement. Ther. Med., 2016, 27, 58-64. doi: 10.1016/j.ctim.2016.05.010 PMID: 27515877
  132. Zhang, N.; Hu, X.; Du, Y.; Du, J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed. Pharmacother., 2021, 134, 111099. doi: 10.1016/j.biopha.2020.111099 PMID: 33338745
  133. Alberts, D.S.; Einspahr, J.; Rees-McGee, S.; Ramanujam, P.; Buller, M.K.; Clark, L.; Ritenbaugh, C.; Atwood, J.; Pethigal, P.; Earnest, D.; Villar, H.; Phelps, J.; Lipkin, M.; Wargovich, M.; Meyskens, F.L. Effects of dietary wheat bran fiber on rectal epithelial cell proliferation in patients with resection for colorectal cancers. J. Natl. Cancer Inst., 1990, 82(15), 1280-1285. doi: 10.1093/jnci/82.15.1280 PMID: 2165179
  134. Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D'Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541. doi: 10.1038/s41418-017-0012-4 PMID: 29362479
  135. Linn, S.C.; Giaccone, G. MDR1/P-glycoprotein expression in colorectal cancer. Eur. J. Cancer, 1995, 31(7-8), 1291-1294. doi: 10.1016/0959-8049(95)00278-Q PMID: 7577038
  136. Hu, T.; Li, Z.; Gao, C.Y.; Cho, C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol., 2016, 22(30), 6876-6889. doi: 10.3748/wjg.v22.i30.6876 PMID: 27570424
  137. Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. multidrug resistance (mdr): A widespread phenomenon in pharmacological therapies. Molecules, 2022, 27(3), 616. doi: 10.3390/molecules27030616 PMID: 35163878

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023