In-silico Evaluation of Novel Honokiol Derivatives against Breast Cancer Target Protein LKB1

  • Autores: Shahid I.1, Shoaib M.2, Raza R.3, Jahangir M.4, Abbasi S.5, Riasat A.6, Akbar A.7, Mehnaz S.8
  • Afiliações:
    1. Department of Biotechnology, Faculty of Science and Technology,, University of Central Punjab
    2. Department of Pharmacology, Nishtar Medical University
    3. NUMS Department of Biological Sciences, Faculty of Multidisciplinary Studies,, National University of Medical Sciences
    4. Food and Biotechnology Research Center, Pakistan Council of Scientific and Industrial Research, PCSIR Laboratories Complex
    5. NUMS Department of Biological Sciences, Faculty of Multidisciplinary Studies, National University of Medical Sciences
    6. Department of Biochemistry, Government College University, Faisalabad
    7. Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab
    8. School of Biological Sciences, University of the Punjab, Quaid-e- Azam Campus
  • Edição: Volume 23, Nº 12 (2023)
  • Páginas: 1388-1396
  • Seção: Oncology
  • URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694310
  • DOI: https://doi.org/10.2174/1871520623666230330083630
  • ID: 694310

Citar

Texto integral

Resumo

Background: Breast cancer is characterized by uncontrolled cell growth in the breast tissue and is a leading cause of death globally. Cytotoxic effects and reduced efficacy of currently used therapeutics insist to look for new chemo-preventive strategies against breast cancer. LKB1 gene has recently been categorized as a tumor suppressor gene where its inactivation can cause sporadic carcinomas in various tissues. Mutations in the highly conserved LKB1 catalytic domain lead to the loss of function and subsequently elevated expression of pluripotency factors in breast cancer.

Objectives: The utilization of drug-likeness filters and molecular simulation has helped evaluate the pharmacological activity and binding abilities of selected drug candidates to the target proteins in many cancer studies.

Methods: The current in silico study provides a pharmacoinformatic approach to decipher the potential of novel honokiol derivatives as therapeutic agents against breast cancer. AutoDock Vina was used for molecular docking of the molecules. A 100 nano second (ns) molecular dynamics simulation of the lowest energy posture of 3'-formylhonokiol- LKB1, resulting from docking studies, was carried out using the AMBER 18.

Results: Among the three honokiol derivatives, ligand-protein binding energy of 3' formylhonokiol with LKB1 protein was found to be the highest via molecular docking. Moreover, the stability and compactness inferred for 3'- formylhonokiol with LKB1 are suggestive of 3' formylhonokiol being an effective activator of LKB1 via simulation studies.

Conclusion: It was further established that 3'- formylhonokiol displays an excellent profile of distribution, metabolism, and absorption, indicating it is an anticipated future drug candidate.

Sobre autores

Izzah Shahid

Department of Biotechnology, Faculty of Science and Technology,, University of Central Punjab

Autor responsável pela correspondência
Email: info@benthamscience.net

Muhammad Shoaib

Department of Pharmacology, Nishtar Medical University

Email: info@benthamscience.net

Rabail Raza

NUMS Department of Biological Sciences, Faculty of Multidisciplinary Studies,, National University of Medical Sciences

Email: info@benthamscience.net

Muhammad Jahangir

Food and Biotechnology Research Center, Pakistan Council of Scientific and Industrial Research, PCSIR Laboratories Complex

Email: info@benthamscience.net

Sumra Abbasi

NUMS Department of Biological Sciences, Faculty of Multidisciplinary Studies, National University of Medical Sciences

Email: info@benthamscience.net

Areej Riasat

Department of Biochemistry, Government College University, Faisalabad

Email: info@benthamscience.net

Ansa Akbar

Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab

Email: info@benthamscience.net

Samina Mehnaz

School of Biological Sciences, University of the Punjab, Quaid-e- Azam Campus

Email: info@benthamscience.net

Bibliografia

  1. Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis, 2010, 31(1), 100-110. doi: 10.1093/carcin/bgp263 PMID: 19934210
  2. Chaudhari, S.K.; Arshad, S.; Amjad, M.S.; Akhtar, M.S. Natural compounds extracted from medicinal plants and their applications. In: Natural Bio-active Compounds; Springer: Singapore, 2019; pp. 193-207. doi: 10.1007/978-981-13-7154-7_7
  3. Bai, X.; Cerimele, F.; Ushio-Fukai, M.; Waqas, M.; Campbell, P.M.; Govindarajan, B.; Der, C.J.; Battle, T.; Frank, D.A.; Ye, K.; Murad, E.; Dubiel, W.; Soff, G.; Arbiser, J.L. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J. Biol. Chem., 2003, 278(37), 35501-35507. doi: 10.1074/jbc.M302967200 PMID: 12816951
  4. Wang, J.; Liu, D.; Guan, S.; Zhu, W.; Fan, L.; Zhang, Q.; Cai, D. Hyaluronic acid-modified liposomal honokiol nanocarrier: Enhance anti-metastasis and antitumor efficacy against breast cancer. Carbohydr. Polym., 2020, 235, 115981. doi: 10.1016/j.carbpol.2020.115981 PMID: 32122511
  5. Katiyar, S. Emerging phytochemicals for the prevention and treatment of head and neck cancer. Molecules, 2016, 21(12), 1610. doi: 10.3390/molecules21121610 PMID: 27886147
  6. Pan, J.; Lee, Y.; Wang, Y.; You, M. Honokiol targets mitochondria to halt cancer progression and metastasis. Mol. Nutr. Food Res., 2016, 60(6), 1383-1395. doi: 10.1002/mnfr.201501007 PMID: 27276215
  7. Vaahtomeri, K.; Mäkelä, T.P. Molecular mechanisms of tumor suppression by LKB1. FEBS Lett., 2011, 585(7), 944-951. doi: 10.1016/j.febslet.2010.12.034 PMID: 21192934
  8. Sengupta, S.; Nagalingam, A.; Muniraj, N.; Bonner, M.Y.; Mistriotis, P.; Afthinos, A.; Kuppusamy, P.; Lanoue, D.; Cho, S.; Korangath, P.; Shriver, M.; Begum, A.; Merino, V.F.; Huang, C-Y.; Arbiser, J.L.; Matsui, W.; Győrffy, B.; Konstantopoulos, K.; Sukumar, S.; Marignani, P.A.; Saxena, N.K.; Sharma, D. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene, 2017, 36(41), 5709-5721. doi: 10.1038/onc.2017.164 PMID: 28581518
  9. Fried, L.E.; Arbiser, J.L. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid. Redox Signal., 2009, 11(5), 1139-1148. doi: 10.1089/ars.2009.2440 PMID: 19203212
  10. Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods, 2010, 7(4), 248-249. doi: 10.1038/nmeth0410-248 PMID: 20354512
  11. Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc., 2016, 11(1), 1-9. doi: 10.1038/nprot.2015.123 PMID: 26633127
  12. Capriotti, E.; Fariselli, P. PhD-SNPg: A webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Res., 2017, 45(W1), W247-W252. doi: 10.1093/nar/gkx369 PMID: 28482034
  13. Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; Mooney, S.D.; Radivojac, P. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun., 2020, 11(1), 5918. doi: 10.1038/s41467-020-19669-x PMID: 33219223
  14. Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res., 2005, 33, W306-W310. doi: 10.1093/nar/gki375 PMID: 15980478
  15. Choi, Y.; Chan, A.P.; Qin, B.; Zhang, Y.; Liu, X.S. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 2015, 31(16), 2745-2747. doi: 10.1093/bioinformatics/btv195 PMID: 25851949
  16. Buchan, D.W.A.; Minneci, F.; Nugent, T.C.O.; Bryson, K.; Jones, D.T. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res., 2013, 41(W1), W349-W357. doi: 10.1093/nar/gkt381 PMID: 23748958
  17. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40. doi: 10.1186/1471-2105-9-40 PMID: 18215316
  18. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
  19. Kolpakov, F.A.; Babenko, V.N. Computer system MGL: Tool for sample generation, visualization, and analysis of regulatory genomic sequences. Mol. Biol., 1997, 31, 540-547.
  20. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J.; Jiang, S.; Zhou, Y.; Du, L. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367. doi: 10.1093/nar/gky473 PMID: 29860391
  21. Yuan, S.; Chan, H.C.S.; Hu, Z. Using PYMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1298. doi: 10.1002/wcms.1298
  22. Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33, W363-W367. doi: 10.1093/nar/gki481 PMID: 15980490
  23. Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M.; Damore, M.A.; Boedigheimer, M.; Blomme, E.; Ciurlionis, R. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534. doi: 10.1093/nar/gkab294 PMID: 33950214
  24. Case, D.A.; Darden, T.A.; Cheatham, T.E.; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Crowley, M.R.; Walker, R.C.; Zhang, W.; Merz, K.M. AMBER 10; University of California; San Francisco , 2008.
  25. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2016.
  26. Eggimann, B.L.; Sunnarborg, A.J.; Stern, H.D.; Bliss, A.P.; Siepmann, J.I. An online parameter and property database for the TraPPE force field. Mol. Simul., 2014, 40(1-3), 101-105. doi: 10.1080/08927022.2013.842994
  27. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65(3), 712-725. doi: 10.1002/prot.21123 PMID: 16981200
  28. Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R., Jr; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688. doi: 10.1002/jcc.20290 PMID: 16200636
  29. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935. doi: 10.1063/1.445869
  30. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092. doi: 10.1063/1.464397
  31. Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321. doi: 10.1021/ct300418h PMID: 26605738
  32. Mermelstein, D.J.; Lin, C.; Nelson, G.; Kretsch, R.; McCammon, J.A.; Walker, R.C. Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package. J. Comput. Chem., 2018, 39(19), 1354-1358. doi: 10.1002/jcc.25187 PMID: 29532496
  33. Liu, H.; Zang, C.; Emde, A.; Planas-Silva, M.D.; Rosche, M.; Kühnl, A.; Schulz, C.O.; Elstner, E.; Possinger, K.; Eucker, J. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur. J. Pharmacol., 2008, 591(1-3), 43-51. doi: 10.1016/j.ejphar.2008.06.026 PMID: 18588872
  34. Nagalingam, A.; Arbiser, J.L.; Bonner, M.Y.; Saxena, N.K.; Sharma, D. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Res., 2012, 14(1), R35. doi: 10.1186/bcr3128 PMID: 22353783
  35. Wang, W.; Shang, Y.; Li, Y.; Chen, S. Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharmacol. Sin., 2019, 40(9), 1219-1227. doi: 10.1038/s41401-019-0240-x PMID: 31235819
  36. Haggag, Y.A.; Ibrahim, R.R.; Hafiz, A.A. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int. J. Nanomedicine, 2020, 15, 1625-1642. doi: 10.2147/IJN.S241428 PMID: 32210557
  37. Yousuf, Z.; Iman, K.; Iftikhar, N.; Mirza, M. Structure-based virtual screening and molecular docking for the identification of potential multi-targeted inhibitors against breast cancer. Breast Cancer, 2017, 9, 447-459. doi: 10.2147/BCTT.S132074 PMID: 28652811
  38. Abdel-Mohsen, H.T.; Abd El-Meguid, E.A.; El Kerdawy, A.M.; Mahmoud, A.E.E.; Ali, M.M. Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch. Pharm., 2020, 353(4), 1900340. doi: 10.1002/ardp.201900340 PMID: 32045054
  39. Elshal, M.; Eid, N.; El-Sayed, I.; El-Sayed, W.; Al-Karmalawy, A.A. Concanavalin-A shows synergistic cytotoxicity with tamoxifen via inducing apoptosis in estrogen receptor-positive breast cancer: In vitro and molecular docking studies. Ulum-i Daruyi, 2021, 28, 76-85. doi: 10.34172/PS.2021.22
  40. Idris, M.O.; Adeniji, S.E.; Habib, K.; Adeiza, A.A. Molecular docking of some novel quinoline derivatives as potent inhibitors of human breast cancer cell line. Lab-in-Silico, 2021, 2, 30-37. doi: 10.22034/labinsilico21021030
  41. Acharya, R.; Chacko, S.; Bose, P.; Lapenna, A.; Pattanayak, S.P. Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci. Rep., 2019, 9(1), 15743. doi: 10.1038/s41598-019-52162-0 PMID: 31673107

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023