In-silico Evaluation of Novel Honokiol Derivatives against Breast Cancer Target Protein LKB1
- Autores: Shahid I.1, Shoaib M.2, Raza R.3, Jahangir M.4, Abbasi S.5, Riasat A.6, Akbar A.7, Mehnaz S.8
-
Afiliações:
- Department of Biotechnology, Faculty of Science and Technology,, University of Central Punjab
- Department of Pharmacology, Nishtar Medical University
- NUMS Department of Biological Sciences, Faculty of Multidisciplinary Studies,, National University of Medical Sciences
- Food and Biotechnology Research Center, Pakistan Council of Scientific and Industrial Research, PCSIR Laboratories Complex
- NUMS Department of Biological Sciences, Faculty of Multidisciplinary Studies, National University of Medical Sciences
- Department of Biochemistry, Government College University, Faisalabad
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab
- School of Biological Sciences, University of the Punjab, Quaid-e- Azam Campus
- Edição: Volume 23, Nº 12 (2023)
- Páginas: 1388-1396
- Seção: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694310
- DOI: https://doi.org/10.2174/1871520623666230330083630
- ID: 694310
Citar
Texto integral
Resumo
Background: Breast cancer is characterized by uncontrolled cell growth in the breast tissue and is a leading cause of death globally. Cytotoxic effects and reduced efficacy of currently used therapeutics insist to look for new chemo-preventive strategies against breast cancer. LKB1 gene has recently been categorized as a tumor suppressor gene where its inactivation can cause sporadic carcinomas in various tissues. Mutations in the highly conserved LKB1 catalytic domain lead to the loss of function and subsequently elevated expression of pluripotency factors in breast cancer.
Objectives: The utilization of drug-likeness filters and molecular simulation has helped evaluate the pharmacological activity and binding abilities of selected drug candidates to the target proteins in many cancer studies.
Methods: The current in silico study provides a pharmacoinformatic approach to decipher the potential of novel honokiol derivatives as therapeutic agents against breast cancer. AutoDock Vina was used for molecular docking of the molecules. A 100 nano second (ns) molecular dynamics simulation of the lowest energy posture of 3'-formylhonokiol- LKB1, resulting from docking studies, was carried out using the AMBER 18.
Results: Among the three honokiol derivatives, ligand-protein binding energy of 3' formylhonokiol with LKB1 protein was found to be the highest via molecular docking. Moreover, the stability and compactness inferred for 3'- formylhonokiol with LKB1 are suggestive of 3' formylhonokiol being an effective activator of LKB1 via simulation studies.
Conclusion: It was further established that 3'- formylhonokiol displays an excellent profile of distribution, metabolism, and absorption, indicating it is an anticipated future drug candidate.
Palavras-chave
Sobre autores
Izzah Shahid
Department of Biotechnology, Faculty of Science and Technology,, University of Central Punjab
Autor responsável pela correspondência
Email: info@benthamscience.net
Muhammad Shoaib
Department of Pharmacology, Nishtar Medical University
Email: info@benthamscience.net
Rabail Raza
NUMS Department of Biological Sciences, Faculty of Multidisciplinary Studies,, National University of Medical Sciences
Email: info@benthamscience.net
Muhammad Jahangir
Food and Biotechnology Research Center, Pakistan Council of Scientific and Industrial Research, PCSIR Laboratories Complex
Email: info@benthamscience.net
Sumra Abbasi
NUMS Department of Biological Sciences, Faculty of Multidisciplinary Studies, National University of Medical Sciences
Email: info@benthamscience.net
Areej Riasat
Department of Biochemistry, Government College University, Faisalabad
Email: info@benthamscience.net
Ansa Akbar
Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab
Email: info@benthamscience.net
Samina Mehnaz
School of Biological Sciences, University of the Punjab, Quaid-e- Azam Campus
Email: info@benthamscience.net
Bibliografia
- Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis, 2010, 31(1), 100-110. doi: 10.1093/carcin/bgp263 PMID: 19934210
- Chaudhari, S.K.; Arshad, S.; Amjad, M.S.; Akhtar, M.S. Natural compounds extracted from medicinal plants and their applications. In: Natural Bio-active Compounds; Springer: Singapore, 2019; pp. 193-207. doi: 10.1007/978-981-13-7154-7_7
- Bai, X.; Cerimele, F.; Ushio-Fukai, M.; Waqas, M.; Campbell, P.M.; Govindarajan, B.; Der, C.J.; Battle, T.; Frank, D.A.; Ye, K.; Murad, E.; Dubiel, W.; Soff, G.; Arbiser, J.L. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J. Biol. Chem., 2003, 278(37), 35501-35507. doi: 10.1074/jbc.M302967200 PMID: 12816951
- Wang, J.; Liu, D.; Guan, S.; Zhu, W.; Fan, L.; Zhang, Q.; Cai, D. Hyaluronic acid-modified liposomal honokiol nanocarrier: Enhance anti-metastasis and antitumor efficacy against breast cancer. Carbohydr. Polym., 2020, 235, 115981. doi: 10.1016/j.carbpol.2020.115981 PMID: 32122511
- Katiyar, S. Emerging phytochemicals for the prevention and treatment of head and neck cancer. Molecules, 2016, 21(12), 1610. doi: 10.3390/molecules21121610 PMID: 27886147
- Pan, J.; Lee, Y.; Wang, Y.; You, M. Honokiol targets mitochondria to halt cancer progression and metastasis. Mol. Nutr. Food Res., 2016, 60(6), 1383-1395. doi: 10.1002/mnfr.201501007 PMID: 27276215
- Vaahtomeri, K.; Mäkelä, T.P. Molecular mechanisms of tumor suppression by LKB1. FEBS Lett., 2011, 585(7), 944-951. doi: 10.1016/j.febslet.2010.12.034 PMID: 21192934
- Sengupta, S.; Nagalingam, A.; Muniraj, N.; Bonner, M.Y.; Mistriotis, P.; Afthinos, A.; Kuppusamy, P.; Lanoue, D.; Cho, S.; Korangath, P.; Shriver, M.; Begum, A.; Merino, V.F.; Huang, C-Y.; Arbiser, J.L.; Matsui, W.; Győrffy, B.; Konstantopoulos, K.; Sukumar, S.; Marignani, P.A.; Saxena, N.K.; Sharma, D. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene, 2017, 36(41), 5709-5721. doi: 10.1038/onc.2017.164 PMID: 28581518
- Fried, L.E.; Arbiser, J.L. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid. Redox Signal., 2009, 11(5), 1139-1148. doi: 10.1089/ars.2009.2440 PMID: 19203212
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods, 2010, 7(4), 248-249. doi: 10.1038/nmeth0410-248 PMID: 20354512
- Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc., 2016, 11(1), 1-9. doi: 10.1038/nprot.2015.123 PMID: 26633127
- Capriotti, E.; Fariselli, P. PhD-SNPg: A webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Res., 2017, 45(W1), W247-W252. doi: 10.1093/nar/gkx369 PMID: 28482034
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; Mooney, S.D.; Radivojac, P. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun., 2020, 11(1), 5918. doi: 10.1038/s41467-020-19669-x PMID: 33219223
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res., 2005, 33, W306-W310. doi: 10.1093/nar/gki375 PMID: 15980478
- Choi, Y.; Chan, A.P.; Qin, B.; Zhang, Y.; Liu, X.S. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 2015, 31(16), 2745-2747. doi: 10.1093/bioinformatics/btv195 PMID: 25851949
- Buchan, D.W.A.; Minneci, F.; Nugent, T.C.O.; Bryson, K.; Jones, D.T. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res., 2013, 41(W1), W349-W357. doi: 10.1093/nar/gkt381 PMID: 23748958
- Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40. doi: 10.1186/1471-2105-9-40 PMID: 18215316
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
- Kolpakov, F.A.; Babenko, V.N. Computer system MGL: Tool for sample generation, visualization, and analysis of regulatory genomic sequences. Mol. Biol., 1997, 31, 540-547.
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J.; Jiang, S.; Zhou, Y.; Du, L. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367. doi: 10.1093/nar/gky473 PMID: 29860391
- Yuan, S.; Chan, H.C.S.; Hu, Z. Using PYMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1298. doi: 10.1002/wcms.1298
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33, W363-W367. doi: 10.1093/nar/gki481 PMID: 15980490
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M.; Damore, M.A.; Boedigheimer, M.; Blomme, E.; Ciurlionis, R. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534. doi: 10.1093/nar/gkab294 PMID: 33950214
- Case, D.A.; Darden, T.A.; Cheatham, T.E.; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Crowley, M.R.; Walker, R.C.; Zhang, W.; Merz, K.M. AMBER 10; University of California; San Francisco , 2008.
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2016.
- Eggimann, B.L.; Sunnarborg, A.J.; Stern, H.D.; Bliss, A.P.; Siepmann, J.I. An online parameter and property database for the TraPPE force field. Mol. Simul., 2014, 40(1-3), 101-105. doi: 10.1080/08927022.2013.842994
- Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65(3), 712-725. doi: 10.1002/prot.21123 PMID: 16981200
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R., Jr; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688. doi: 10.1002/jcc.20290 PMID: 16200636
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935. doi: 10.1063/1.445869
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092. doi: 10.1063/1.464397
- Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321. doi: 10.1021/ct300418h PMID: 26605738
- Mermelstein, D.J.; Lin, C.; Nelson, G.; Kretsch, R.; McCammon, J.A.; Walker, R.C. Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package. J. Comput. Chem., 2018, 39(19), 1354-1358. doi: 10.1002/jcc.25187 PMID: 29532496
- Liu, H.; Zang, C.; Emde, A.; Planas-Silva, M.D.; Rosche, M.; Kühnl, A.; Schulz, C.O.; Elstner, E.; Possinger, K.; Eucker, J. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur. J. Pharmacol., 2008, 591(1-3), 43-51. doi: 10.1016/j.ejphar.2008.06.026 PMID: 18588872
- Nagalingam, A.; Arbiser, J.L.; Bonner, M.Y.; Saxena, N.K.; Sharma, D. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Res., 2012, 14(1), R35. doi: 10.1186/bcr3128 PMID: 22353783
- Wang, W.; Shang, Y.; Li, Y.; Chen, S. Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharmacol. Sin., 2019, 40(9), 1219-1227. doi: 10.1038/s41401-019-0240-x PMID: 31235819
- Haggag, Y.A.; Ibrahim, R.R.; Hafiz, A.A. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int. J. Nanomedicine, 2020, 15, 1625-1642. doi: 10.2147/IJN.S241428 PMID: 32210557
- Yousuf, Z.; Iman, K.; Iftikhar, N.; Mirza, M. Structure-based virtual screening and molecular docking for the identification of potential multi-targeted inhibitors against breast cancer. Breast Cancer, 2017, 9, 447-459. doi: 10.2147/BCTT.S132074 PMID: 28652811
- Abdel-Mohsen, H.T.; Abd El-Meguid, E.A.; El Kerdawy, A.M.; Mahmoud, A.E.E.; Ali, M.M. Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch. Pharm., 2020, 353(4), 1900340. doi: 10.1002/ardp.201900340 PMID: 32045054
- Elshal, M.; Eid, N.; El-Sayed, I.; El-Sayed, W.; Al-Karmalawy, A.A. Concanavalin-A shows synergistic cytotoxicity with tamoxifen via inducing apoptosis in estrogen receptor-positive breast cancer: In vitro and molecular docking studies. Ulum-i Daruyi, 2021, 28, 76-85. doi: 10.34172/PS.2021.22
- Idris, M.O.; Adeniji, S.E.; Habib, K.; Adeiza, A.A. Molecular docking of some novel quinoline derivatives as potent inhibitors of human breast cancer cell line. Lab-in-Silico, 2021, 2, 30-37. doi: 10.22034/labinsilico21021030
- Acharya, R.; Chacko, S.; Bose, P.; Lapenna, A.; Pattanayak, S.P. Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci. Rep., 2019, 9(1), 15743. doi: 10.1038/s41598-019-52162-0 PMID: 31673107
Arquivos suplementares
