Genotoxicity and Anticancer Effects of the Aminothiophene Derivatives SB-44, SB- 83, and SB-200 in Cancer Cells


Cite item

Full Text

Abstract

Introduction:Thiophene derivatives have been widely studied as promising options for the treatment of solid tumors. Previous studies have shown that thiophene derivatives have antileishmanial activity and cytotoxic activity against breast, colon, and ovarian cancer cells.

Methods: In our study, we evaluated the anticancer activities of three aminothiophene derivatives: SB-44, SB-83, and SB-200, in prostate and cervical adenocarcinoma cells. Several in vitro methods were performed, including cytotoxicity, clonogenic migration, mutagenic, and cleaved Poly (ADP-ribose) polymerase (PARP) assays and annexin V staining.

Results: Significant cytotoxicity was observed in cell lines with IC50 values less than 35 µM (15.38-34.04 µM). All aminothiophene derivatives significantly reduced clone formation but had no effect on cell motility. SB-83 and SB-44 induced a significant increase in the percentage of cells in the sub-G1 phase, while SB-200 derivatives significantly decreased the percentage of S/G2/M as well as induced apoptosis, with an increase of cleaved PARP. SBs compounds also showed significant mutagenic potential. Beyond that, in silico analyses revealed that all three thiophene derivatives fulfilled the criteria for oral druggability, which underscores the potential of using them in anticancer therapies.

Conclusion: Our findings show that the thiophene nucleus may be used to treat solid tumors, including prostate cancer and cervical adenocarcinoma.

About the authors

Eduardo da Silva

Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE)

Email: info@benthamscience.net

Flaviana dos Santos

Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE)

Email: info@benthamscience.net

Júlia de Oliveira

Laboratório de Biologia Celular e Mutagênese (LaBCeM), Campus Centro-Oeste, Universidade Federal de São João del Rei (UFSJ)

Email: info@benthamscience.net

Fabio dos Santos

Laboratório de Biologia Celular e Mutagênese (LaBCeM), Campus Centro-Oeste, Universidade Federal de São João del Rei (UFSJ)

Email: info@benthamscience.net

Francisco Jaime Junior

Laboratory Synthesis and Vectoring Molecules, Departament of Biological Sciences, State University of Paraíba (UFPB),

Email: info@benthamscience.net

Maria do Carmo Alves de Lima

Laboratory Synthesis and Vectoring Molecules, Departament of Biological Sciences,, State University of Paraíba (UFPB)

Email: info@benthamscience.net

Maira da Rocha Pitta

Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE)

Email: info@benthamscience.net

Moacyr de Jesus de Melo Rego

Núcleo de Pesquisa em Inovação Terapêutica,, Universidade Federal de Pernambuco (UFPE)

Email: info@benthamscience.net

Michelly Pereira

Núcleo de Pesquisa em Inovação Terapêutica,, Universidade Federal de Pernambuco (UFPE)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  2. Senapati, S.; Kumar, M.A.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Nature., 2018, 3(7), 01-19. doi: 10.1038/s41392-017-0004-3
  3. Cagan, R.; Meyer, P. Rethinking cancer: Current challenges and opportunities in cancer research. Dis. Model. Mech., 2017, 10(4), 349-352. doi: 10.1242/dmm.030007
  4. Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer creatment. Clin. Ther., 2016, 38(7), 1551-1566. doi: 10.1016/j.clinthera.2016.03.026 PMID: 27158009
  5. Swift, L.H.; Golsteyn, R.M. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int. J. Mol. Sci., 2014, 15(3), 3403-3431. doi: 10.3390/ijms15033403
  6. Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2021, 23(1), 74-88. doi: 10.1038/s41580-021-00404-3 PMID: 34508254
  7. Abedinifar, F.; Babazadeh, R.E.; Biglar, M.; Larijani, B.; Hamedifar, H.; Ansari, S.; Mahdavi, M. Recent strategies in the synthesis of thiophene derivatives: Highlights from the 2012-2020 literature. Mol. Divers., 2021, 25(4), 2571-2604. doi: 10.1007/s11030-020-10128-9 PMID: 32734589
  8. El-Sayed, N.N.E.; Abdelaziz, M.A.; Wardakhan, W.W.; Mohareb, R.M. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno2,3-dpyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids, 2016, 107, 98-111. doi: 10.1016/j.steroids.2015.12.023 PMID: 26772772
  9. Rodrigues, K.A.F.; Dias, C.N.S.; Néris, P.L.N.; Rocha, J.C.; Scotti, M.T.; Scotti, L.; Mascarenhas, S.R.; Veras, R.C.; Medeiros, I.A.; Keesen, T.S.L.; Oliveira, T.B.; Lima, M.C.A.; Balliano, T.L.; Aquino, T.M.; Moura, R.O.; Mendonça Junior, F.J.B.; Oliveira, M.R. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro. Eur. J. Med. Chem., 2015, 106, 1-14. doi: 10.1016/j.ejmech.2015.10.011 PMID: 26513640
  10. Bregoli, L.; Movia, D.; Gavigan-Imedio, J.D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine, 2016, 12(1), 81-103. doi: 10.1016/j.nano.2015.08.006 PMID: 26370707
  11. Mabkhot, Y.N.; Alatibi, F.; El-Sayed, N. Molecules antimicrobial activity of some novel armed thiophene derivatives and Petra/Osiris/Molinspiration (POM) analyses. Molecules., 2016, 21(2), 01-16. doi: 10.3390/molecules21020222 PMID: 26901173
  12. Mohareb, R.M.; Megally, A.N.Y.; Abdo, M. Synthesis and cytotoxic evaluation of pyran, dihydropyridine and thiophene derivatives of 3-Acetylcoumarin. Chem. Pharm. Bull., 2015, 63(9), 678-687. doi: 10.1248/cpb.c15-00115 PMID: 26329861
  13. Romagnoli, R.; Baraldi, P.G.; Salvador, M.K. Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzobthiophenes and thieno2,3-bpyridines as ew potent anticancer agents NIH public access. J. Med. Chem., 2013, 56(6), 2606-2618. doi: 10.1021/jm400043d PMID: 23445496
  14. Ghorab, M.M.; Bashandy, M.S.; Alsaid, M.S. Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents. Acta Pharm., 2014, 64(4), 419-431. doi: 10.2478/acph-2014-0035 PMID: 25531783
  15. Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça Junior, F.J.B.; de Lima, M.C.A.; Pitta, M.G.R.; Pitta, I.R.; de Melo Rêgo, M.J.B.; da Rocha Pitta, M.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs, 2018, 29(2), 157-166. doi: 10.1097/CAD.0000000000000581 PMID: 29256900
  16. Daina, A; Michielin, O; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep., 2017, Mar 3. 7, 42717. doi: 10.1038/srep42717 PMID: 28256516 PMCID: 5335600
  17. Valster, A.; Tran, N.L.; Nakada, M.; Berens, M.E.; Chan, A.Y.; Symons, M. Cell migration and invasion assays. Methods, 2005, 37(2), 208-215. doi: 10.1016/j.ymeth.2005.08.001 PMID: 16288884
  18. Fenech, M. Cytokinesis-block micronucleus cytome assay. Nature, 2016, 02(5), 1084-1104.
  19. de Oliveira, J.T.; Barbosa, M.C.S.; de Camargos, L.F.; da Silva, I.V.G.; Varotti, F.P.; da Silva, L.M.; Moreira, L.M.; Lyon, J.P.; dos Santos, V.J.S.V.; dos Santos, F.V. Digoxin reduces the mutagenic effects of Mitomycin C in human and rodent cell lines. Cytotechnology, 2017, 69(4), 699-710. doi: 10.1007/s10616-017-0078-3 PMID: 28321777
  20. Barbosa, M.C.S.; de Souza, B.C.; de Oliveira, J.T.; Moreira, N.C.S.; de Miranda, M.N.R.; Alves, G.G.K.; Caldeira, C.A.; Alves e Costa, M.L.; Martins, G.D.S.; Guimarães, L.; Nascimento, C.S., Jr; de Pilla Varotti, F.; Ribeiro, V.G.H.; Santos, F.V. Synthesis and evaluation of the mutagenicity of 3-alkylpyridine marine alkaloid analogues with anticancer potential. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 825, 31-39. doi: 10.1016/j.mrgentox.2017.11.006 PMID: 29307373
  21. Titenko-Holland, N.; Windham, G.; Kolachana, P.; Reinisch, F.; Parvatham, S.; Osorio, A.M.; Smith, M.T. Genotoxicity of malathion in human lymphocytes assessed using the micronucleus assay in vitro and in vivo: A study of malathion-exposed workers. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1997, 388(1), 85-95. doi: 10.1016/S1383-5718(96)00140-4 PMID: 9025795
  22. Eastmond, D.A.; Tucker, J.D. Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody. Environ. Mol. Mutagen., 1989, 13(1), 34-43. doi: 10.1002/em.2850130104 PMID: 2783409
  23. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
  24. Tao, Y.X.; Yuan, Z.H.; Xie, J. G protein-coupled receptors as regulators of energy homeostasis. Prog. Mol. Biol. Transl. Sci., 2013, 114, 1-43. doi: 10.1016/B978-0-12-386933-3.00001-7 PMID: 23317781
  25. Wang, W.; Chen, Z.X.; Guo, D.Y.; Tao, Y.X. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors. Pharmacol. Ther., 2018, 191, 135-147. doi: 10.1016/j.pharmthera.2018.06.005 PMID: 29909235
  26. Mudududdla, R.; Guru, S.K.; Wani, A.; Sharma, S.; Joshi, P.; Vishwakarma, R.A.; Kumar, A.; Bhushan, S.; Bharate, S.B. 3-(Benzod1,3dioxol-5-ylamino)-N-(4-fluorophenyl)thiophene-2-carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P-glycoprotein efflux pump activity. Org. Biomol. Chem., 2015, 13(14), 4296-4309. doi: 10.1039/C5OB00233H PMID: 25758415
  27. Gill, R.K.; Kaur, R.; Kumar, V.; Gupta, V.; Singh, G.; Bariwal, J. Design and microwave assisted synthesis of novel 2-phenyl/2-phenylethynyl-3-aroyl thiophenes as potent antiproliferative agents. MedChemComm, 2016, 7(10), 1966-1972. doi: 10.1039/C6MD00256K
  28. Romagnoli, R.; Baraldi, P.G.; Lopez-Cara, C.; Salvador, M.K.; Preti, D.; Tabrizi, M.A.; Balzarini, J.; Nussbaumer, P.; Bassetto, M.; Brancale, A.; Fu, X.H.; Yang-Gao; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents. Bioorg. Med. Chem., 2014, 22(18), 5097-5109. doi: 10.1016/j.bmc.2013.12.030 PMID: 24398384
  29. Liao, X.; Huang, J.; Lin, W.; Long, Z.; Xie, Y.; Ma, W. APTM, a thiophene heterocyclic compound, inhibits human colon cancer HCT116 cell proliferation through p53-dependent induction of apoptosis. DNA Cell Biol., 2018, 37(2), 70-77. doi: 10.1089/dna.2017.3962 PMID: 29215922
  30. Curtin, N.J.; Szabo, C. Poly(ADP-ribose) polymerase inhibition: Past, present and future. Nat. Rev. Drug Discov., 2020, 19(10), 711-736. doi: 10.1038/s41573-020-0076-6 PMID: 32884152
  31. Hwang, J; Qiu, X; Borgelt, L; Haacke, N; Kanis, L; Petroulia, S Synthesis and evaluation of RNase L-binding 2-aminothiophenes as anticancer agents. Bioorg. Med. Chem., 2022, 58, 01-15. doi: 10.1016/j.bmc.2022.116653 PMID: 35152173
  32. Romagnoli, R; Preti, D; Hamel, E Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzobthiophene derivatives as potent apoptosis-inducing agents. Bioorg. Chem., 2021, 112, 01-15. doi: 10.1016/j.bioorg.2021.104919 PMID: 33957538
  33. Amawi, H.; Hussein, N.; Boddu, S.H.S.; Karthikeyan, C.; Williams, F.E.; Ashby, C.R., Jr; Raman, D.; Trivedi, P.; Tiwari, A.K. Novel thienopyrimidine derivative, RP-010, inducesβ-catenin fragmentation and is Efficacious against prostate cancer cells. Cancers, 2019, 11(5), 711-729. doi: 10.3390/cancers11050711 PMID: 31126091
  34. Schmitt, A.C.; Ravazzolo, A.P.; von Poser, G.L. Investigation of some Hypericum species native to Southern of Brazil for antiviral activity. J. Ethnopharmacol., 2001, 77(2-3), 239-245. doi: 10.1016/S0378-8741(01)00314-2 PMID: 11535370
  35. Brambilla, G.; Mattioli, F.; Robbiano, L.; Martelli, A. Genotoxicity and carcinogenicity studies of bronchodilators and antiasthma drugs. Basic Clin. Pharmacol. Toxicol., 2013, 112(5), 302-313. doi: 10.1111/bcpt.12054 PMID: 23374861
  36. Nath, J.; Krishna, G.; Nath, J. Safety screening of drugs in cancer therapy. Acta Haematol., 1998, 99(3), 138-147. doi: 10.1159/000040828 PMID: 9587395
  37. He, L.; Jurs, P.C.; Custer, L.L.; Durham, S.K.; Pearl, G.M. Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers. Chem. Res. Toxicol., 2003, 16(12), 1567-1580. doi: 10.1021/tx030032a PMID: 14680371
  38. Snyder, R.D. Possible structural and functional determinants contributing to the clastogenicity of pharmaceuticals. Environ. Mol. Mutagen., 2010, 51(8-9), 800-814. doi: 10.1002/em.20626 PMID: 20872827
  39. Czajkowski, D.; Szmyd, R.; Gee, H.E. Impact of DNA damage response defects in cancer cells on response to immunotherapy and radiotherapy. J. Med. Imaging Radiat. Oncol., 2022, 66(4), 546-559. doi: 10.1111/1754-9485.13413 PMID: 35460184
  40. Shah, R; Verma, PK Therapeutic importance of synthetic thiophene. Chem. Cent. J., 2018, 12(1), 01-22. doi: 10.1186/s13065-018-0511-5
  41. Bolzán, A.D.; Bianchi, M.S. Genotoxicity of Streptozotocin. Mutat. Res. Rev. Mutat. Res., 2002, 512(2-3), 121-134. doi: 10.1016/S1383-5742(02)00044-3 PMID: 12464347
  42. Arbillaga, L.; Azqueta, A.; van Delft, J.H.M.; López de Cerain, A. In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicol. Appl. Pharmacol., 2007, 220(2), 216-224. doi: 10.1016/j.taap.2007.01.008 PMID: 17316727
  43. Kaur, B.; Singh, G.; Sharma, V.; Singh, I. Sulphur containing heterocyclic compounds as anticancer agents. Anticancer. Agents Med. Chem., 2022, 23(8), 869-881. Epub ahead of print.Epub ahead of print. doi: 10.2174/1871520623666221221143918 PMID: 36545721
  44. Mohareb, R.M.; Elmetwally, A.M.; Mohamed, A.A. Multi-component reactions of cyclohexan-1,3-dione: Synthesis of fused pyran, pyridine, thiophene and pyrazole derivatives with c-Met, Anti-proliferative activities. Anticancer. Agents Med. Chem., 2021, 21(17), 2443-2463. doi: 10.2174/1871520621666210112115128 PMID: 33438568
  45. Wardakhan, W.W.; Elmetwally, A.M.; Mohamed, A.A.; Mohareb, R.M. The uses of dimedone for the synthesis of thiophene, thiazole and annulated derivatives with antitumor, pim-1 kinase inhibitions, pains evaluations and molecular docking. Anticancer. Agents Med. Chem., 2021, 21(16), 2258-2277. doi: 10.2174/1871520621666210119092325 PMID: 33463476

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bentham Science Publishers