Genotoxicity and Anticancer Effects of the Aminothiophene Derivatives SB-44, SB- 83, and SB-200 in Cancer Cells
- Authors: da Silva E.1, dos Santos F.1, de Oliveira J.2, dos Santos F.2, Junior F.J.3, do Carmo Alves de Lima M.4, da Rocha Pitta M.1, de Jesus de Melo Rego M.5, Pereira M.5
-
Affiliations:
- Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE)
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Campus Centro-Oeste, Universidade Federal de São João del Rei (UFSJ)
- Laboratory Synthesis and Vectoring Molecules, Departament of Biological Sciences, State University of Paraíba (UFPB),
- Laboratory Synthesis and Vectoring Molecules, Departament of Biological Sciences,, State University of Paraíba (UFPB)
- Núcleo de Pesquisa em Inovação Terapêutica,, Universidade Federal de Pernambuco (UFPE)
- Issue: Vol 23, No 12 (2023)
- Pages: 1447-1456
- Section: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694316
- DOI: https://doi.org/10.2174/1871520623666230321123950
- ID: 694316
Cite item
Full Text
Abstract
Introduction:Thiophene derivatives have been widely studied as promising options for the treatment of solid tumors. Previous studies have shown that thiophene derivatives have antileishmanial activity and cytotoxic activity against breast, colon, and ovarian cancer cells.
Methods: In our study, we evaluated the anticancer activities of three aminothiophene derivatives: SB-44, SB-83, and SB-200, in prostate and cervical adenocarcinoma cells. Several in vitro methods were performed, including cytotoxicity, clonogenic migration, mutagenic, and cleaved Poly (ADP-ribose) polymerase (PARP) assays and annexin V staining.
Results: Significant cytotoxicity was observed in cell lines with IC50 values less than 35 µM (15.38-34.04 µM). All aminothiophene derivatives significantly reduced clone formation but had no effect on cell motility. SB-83 and SB-44 induced a significant increase in the percentage of cells in the sub-G1 phase, while SB-200 derivatives significantly decreased the percentage of S/G2/M as well as induced apoptosis, with an increase of cleaved PARP. SBs compounds also showed significant mutagenic potential. Beyond that, in silico analyses revealed that all three thiophene derivatives fulfilled the criteria for oral druggability, which underscores the potential of using them in anticancer therapies.
Conclusion: Our findings show that the thiophene nucleus may be used to treat solid tumors, including prostate cancer and cervical adenocarcinoma.
Keywords
About the authors
Eduardo da Silva
Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE)
Email: info@benthamscience.net
Flaviana dos Santos
Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE)
Email: info@benthamscience.net
Júlia de Oliveira
Laboratório de Biologia Celular e Mutagênese (LaBCeM), Campus Centro-Oeste, Universidade Federal de São João del Rei (UFSJ)
Email: info@benthamscience.net
Fabio dos Santos
Laboratório de Biologia Celular e Mutagênese (LaBCeM), Campus Centro-Oeste, Universidade Federal de São João del Rei (UFSJ)
Email: info@benthamscience.net
Francisco Jaime Junior
Laboratory Synthesis and Vectoring Molecules, Departament of Biological Sciences, State University of Paraíba (UFPB),
Email: info@benthamscience.net
Maria do Carmo Alves de Lima
Laboratory Synthesis and Vectoring Molecules, Departament of Biological Sciences,, State University of Paraíba (UFPB)
Email: info@benthamscience.net
Maira da Rocha Pitta
Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE)
Email: info@benthamscience.net
Moacyr de Jesus de Melo Rego
Núcleo de Pesquisa em Inovação Terapêutica,, Universidade Federal de Pernambuco (UFPE)
Email: info@benthamscience.net
Michelly Pereira
Núcleo de Pesquisa em Inovação Terapêutica,, Universidade Federal de Pernambuco (UFPE)
Author for correspondence.
Email: info@benthamscience.net
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
- Senapati, S.; Kumar, M.A.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Nature., 2018, 3(7), 01-19. doi: 10.1038/s41392-017-0004-3
- Cagan, R.; Meyer, P. Rethinking cancer: Current challenges and opportunities in cancer research. Dis. Model. Mech., 2017, 10(4), 349-352. doi: 10.1242/dmm.030007
- Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer creatment. Clin. Ther., 2016, 38(7), 1551-1566. doi: 10.1016/j.clinthera.2016.03.026 PMID: 27158009
- Swift, L.H.; Golsteyn, R.M. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int. J. Mol. Sci., 2014, 15(3), 3403-3431. doi: 10.3390/ijms15033403
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2021, 23(1), 74-88. doi: 10.1038/s41580-021-00404-3 PMID: 34508254
- Abedinifar, F.; Babazadeh, R.E.; Biglar, M.; Larijani, B.; Hamedifar, H.; Ansari, S.; Mahdavi, M. Recent strategies in the synthesis of thiophene derivatives: Highlights from the 2012-2020 literature. Mol. Divers., 2021, 25(4), 2571-2604. doi: 10.1007/s11030-020-10128-9 PMID: 32734589
- El-Sayed, N.N.E.; Abdelaziz, M.A.; Wardakhan, W.W.; Mohareb, R.M. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno2,3-dpyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids, 2016, 107, 98-111. doi: 10.1016/j.steroids.2015.12.023 PMID: 26772772
- Rodrigues, K.A.F.; Dias, C.N.S.; Néris, P.L.N.; Rocha, J.C.; Scotti, M.T.; Scotti, L.; Mascarenhas, S.R.; Veras, R.C.; Medeiros, I.A.; Keesen, T.S.L.; Oliveira, T.B.; Lima, M.C.A.; Balliano, T.L.; Aquino, T.M.; Moura, R.O.; Mendonça Junior, F.J.B.; Oliveira, M.R. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro. Eur. J. Med. Chem., 2015, 106, 1-14. doi: 10.1016/j.ejmech.2015.10.011 PMID: 26513640
- Bregoli, L.; Movia, D.; Gavigan-Imedio, J.D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine, 2016, 12(1), 81-103. doi: 10.1016/j.nano.2015.08.006 PMID: 26370707
- Mabkhot, Y.N.; Alatibi, F.; El-Sayed, N. Molecules antimicrobial activity of some novel armed thiophene derivatives and Petra/Osiris/Molinspiration (POM) analyses. Molecules., 2016, 21(2), 01-16. doi: 10.3390/molecules21020222 PMID: 26901173
- Mohareb, R.M.; Megally, A.N.Y.; Abdo, M. Synthesis and cytotoxic evaluation of pyran, dihydropyridine and thiophene derivatives of 3-Acetylcoumarin. Chem. Pharm. Bull., 2015, 63(9), 678-687. doi: 10.1248/cpb.c15-00115 PMID: 26329861
- Romagnoli, R.; Baraldi, P.G.; Salvador, M.K. Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzobthiophenes and thieno2,3-bpyridines as ew potent anticancer agents NIH public access. J. Med. Chem., 2013, 56(6), 2606-2618. doi: 10.1021/jm400043d PMID: 23445496
- Ghorab, M.M.; Bashandy, M.S.; Alsaid, M.S. Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents. Acta Pharm., 2014, 64(4), 419-431. doi: 10.2478/acph-2014-0035 PMID: 25531783
- Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça Junior, F.J.B.; de Lima, M.C.A.; Pitta, M.G.R.; Pitta, I.R.; de Melo Rêgo, M.J.B.; da Rocha Pitta, M.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs, 2018, 29(2), 157-166. doi: 10.1097/CAD.0000000000000581 PMID: 29256900
- Daina, A; Michielin, O; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep., 2017, Mar 3. 7, 42717. doi: 10.1038/srep42717 PMID: 28256516 PMCID: 5335600
- Valster, A.; Tran, N.L.; Nakada, M.; Berens, M.E.; Chan, A.Y.; Symons, M. Cell migration and invasion assays. Methods, 2005, 37(2), 208-215. doi: 10.1016/j.ymeth.2005.08.001 PMID: 16288884
- Fenech, M. Cytokinesis-block micronucleus cytome assay. Nature, 2016, 02(5), 1084-1104.
- de Oliveira, J.T.; Barbosa, M.C.S.; de Camargos, L.F.; da Silva, I.V.G.; Varotti, F.P.; da Silva, L.M.; Moreira, L.M.; Lyon, J.P.; dos Santos, V.J.S.V.; dos Santos, F.V. Digoxin reduces the mutagenic effects of Mitomycin C in human and rodent cell lines. Cytotechnology, 2017, 69(4), 699-710. doi: 10.1007/s10616-017-0078-3 PMID: 28321777
- Barbosa, M.C.S.; de Souza, B.C.; de Oliveira, J.T.; Moreira, N.C.S.; de Miranda, M.N.R.; Alves, G.G.K.; Caldeira, C.A.; Alves e Costa, M.L.; Martins, G.D.S.; Guimarães, L.; Nascimento, C.S., Jr; de Pilla Varotti, F.; Ribeiro, V.G.H.; Santos, F.V. Synthesis and evaluation of the mutagenicity of 3-alkylpyridine marine alkaloid analogues with anticancer potential. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 825, 31-39. doi: 10.1016/j.mrgentox.2017.11.006 PMID: 29307373
- Titenko-Holland, N.; Windham, G.; Kolachana, P.; Reinisch, F.; Parvatham, S.; Osorio, A.M.; Smith, M.T. Genotoxicity of malathion in human lymphocytes assessed using the micronucleus assay in vitro and in vivo: A study of malathion-exposed workers. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1997, 388(1), 85-95. doi: 10.1016/S1383-5718(96)00140-4 PMID: 9025795
- Eastmond, D.A.; Tucker, J.D. Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody. Environ. Mol. Mutagen., 1989, 13(1), 34-43. doi: 10.1002/em.2850130104 PMID: 2783409
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
- Tao, Y.X.; Yuan, Z.H.; Xie, J. G protein-coupled receptors as regulators of energy homeostasis. Prog. Mol. Biol. Transl. Sci., 2013, 114, 1-43. doi: 10.1016/B978-0-12-386933-3.00001-7 PMID: 23317781
- Wang, W.; Chen, Z.X.; Guo, D.Y.; Tao, Y.X. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors. Pharmacol. Ther., 2018, 191, 135-147. doi: 10.1016/j.pharmthera.2018.06.005 PMID: 29909235
- Mudududdla, R.; Guru, S.K.; Wani, A.; Sharma, S.; Joshi, P.; Vishwakarma, R.A.; Kumar, A.; Bhushan, S.; Bharate, S.B. 3-(Benzod1,3dioxol-5-ylamino)-N-(4-fluorophenyl)thiophene-2-carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P-glycoprotein efflux pump activity. Org. Biomol. Chem., 2015, 13(14), 4296-4309. doi: 10.1039/C5OB00233H PMID: 25758415
- Gill, R.K.; Kaur, R.; Kumar, V.; Gupta, V.; Singh, G.; Bariwal, J. Design and microwave assisted synthesis of novel 2-phenyl/2-phenylethynyl-3-aroyl thiophenes as potent antiproliferative agents. MedChemComm, 2016, 7(10), 1966-1972. doi: 10.1039/C6MD00256K
- Romagnoli, R.; Baraldi, P.G.; Lopez-Cara, C.; Salvador, M.K.; Preti, D.; Tabrizi, M.A.; Balzarini, J.; Nussbaumer, P.; Bassetto, M.; Brancale, A.; Fu, X.H.; Yang-Gao; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents. Bioorg. Med. Chem., 2014, 22(18), 5097-5109. doi: 10.1016/j.bmc.2013.12.030 PMID: 24398384
- Liao, X.; Huang, J.; Lin, W.; Long, Z.; Xie, Y.; Ma, W. APTM, a thiophene heterocyclic compound, inhibits human colon cancer HCT116 cell proliferation through p53-dependent induction of apoptosis. DNA Cell Biol., 2018, 37(2), 70-77. doi: 10.1089/dna.2017.3962 PMID: 29215922
- Curtin, N.J.; Szabo, C. Poly(ADP-ribose) polymerase inhibition: Past, present and future. Nat. Rev. Drug Discov., 2020, 19(10), 711-736. doi: 10.1038/s41573-020-0076-6 PMID: 32884152
- Hwang, J; Qiu, X; Borgelt, L; Haacke, N; Kanis, L; Petroulia, S Synthesis and evaluation of RNase L-binding 2-aminothiophenes as anticancer agents. Bioorg. Med. Chem., 2022, 58, 01-15. doi: 10.1016/j.bmc.2022.116653 PMID: 35152173
- Romagnoli, R; Preti, D; Hamel, E Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzobthiophene derivatives as potent apoptosis-inducing agents. Bioorg. Chem., 2021, 112, 01-15. doi: 10.1016/j.bioorg.2021.104919 PMID: 33957538
- Amawi, H.; Hussein, N.; Boddu, S.H.S.; Karthikeyan, C.; Williams, F.E.; Ashby, C.R., Jr; Raman, D.; Trivedi, P.; Tiwari, A.K. Novel thienopyrimidine derivative, RP-010, inducesβ-catenin fragmentation and is Efficacious against prostate cancer cells. Cancers, 2019, 11(5), 711-729. doi: 10.3390/cancers11050711 PMID: 31126091
- Schmitt, A.C.; Ravazzolo, A.P.; von Poser, G.L. Investigation of some Hypericum species native to Southern of Brazil for antiviral activity. J. Ethnopharmacol., 2001, 77(2-3), 239-245. doi: 10.1016/S0378-8741(01)00314-2 PMID: 11535370
- Brambilla, G.; Mattioli, F.; Robbiano, L.; Martelli, A. Genotoxicity and carcinogenicity studies of bronchodilators and antiasthma drugs. Basic Clin. Pharmacol. Toxicol., 2013, 112(5), 302-313. doi: 10.1111/bcpt.12054 PMID: 23374861
- Nath, J.; Krishna, G.; Nath, J. Safety screening of drugs in cancer therapy. Acta Haematol., 1998, 99(3), 138-147. doi: 10.1159/000040828 PMID: 9587395
- He, L.; Jurs, P.C.; Custer, L.L.; Durham, S.K.; Pearl, G.M. Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers. Chem. Res. Toxicol., 2003, 16(12), 1567-1580. doi: 10.1021/tx030032a PMID: 14680371
- Snyder, R.D. Possible structural and functional determinants contributing to the clastogenicity of pharmaceuticals. Environ. Mol. Mutagen., 2010, 51(8-9), 800-814. doi: 10.1002/em.20626 PMID: 20872827
- Czajkowski, D.; Szmyd, R.; Gee, H.E. Impact of DNA damage response defects in cancer cells on response to immunotherapy and radiotherapy. J. Med. Imaging Radiat. Oncol., 2022, 66(4), 546-559. doi: 10.1111/1754-9485.13413 PMID: 35460184
- Shah, R; Verma, PK Therapeutic importance of synthetic thiophene. Chem. Cent. J., 2018, 12(1), 01-22. doi: 10.1186/s13065-018-0511-5
- Bolzán, A.D.; Bianchi, M.S. Genotoxicity of Streptozotocin. Mutat. Res. Rev. Mutat. Res., 2002, 512(2-3), 121-134. doi: 10.1016/S1383-5742(02)00044-3 PMID: 12464347
- Arbillaga, L.; Azqueta, A.; van Delft, J.H.M.; López de Cerain, A. In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicol. Appl. Pharmacol., 2007, 220(2), 216-224. doi: 10.1016/j.taap.2007.01.008 PMID: 17316727
- Kaur, B.; Singh, G.; Sharma, V.; Singh, I. Sulphur containing heterocyclic compounds as anticancer agents. Anticancer. Agents Med. Chem., 2022, 23(8), 869-881. Epub ahead of print.Epub ahead of print. doi: 10.2174/1871520623666221221143918 PMID: 36545721
- Mohareb, R.M.; Elmetwally, A.M.; Mohamed, A.A. Multi-component reactions of cyclohexan-1,3-dione: Synthesis of fused pyran, pyridine, thiophene and pyrazole derivatives with c-Met, Anti-proliferative activities. Anticancer. Agents Med. Chem., 2021, 21(17), 2443-2463. doi: 10.2174/1871520621666210112115128 PMID: 33438568
- Wardakhan, W.W.; Elmetwally, A.M.; Mohamed, A.A.; Mohareb, R.M. The uses of dimedone for the synthesis of thiophene, thiazole and annulated derivatives with antitumor, pim-1 kinase inhibitions, pains evaluations and molecular docking. Anticancer. Agents Med. Chem., 2021, 21(16), 2258-2277. doi: 10.2174/1871520621666210119092325 PMID: 33463476
Supplementary files
