Assessment of Cytotoxic/Antitumour Potential and in silico Study of Salazinic Acid Isolated from Parmotrema concurrens


Cite item

Full Text

Abstract

Introduction:Despite numerous scientific advances, cancer continues to be one of the main causes of death in the world. This situation has driven the search for promising molecules. Lichen substances have been widely described for their pharmacological potential.

Objective: The present study evaluated the antitumour potential of a depsidone isolated from Parmotrema concurrens– salazinic acid (SAL) – through in vitro, in vivo and in silico studies.

Methods: The molecule was isolated from the acetonic extract of the lichen and recrystallized in acetone. The macrophage J774, sarcoma-180 and MDA-MB-231 cell lines were used for the MTT cytotoxicity assay. The antitumor assay used a murine model (Swiss albino mice) with sarcoma-180. The animals were treated for seven consecutive days with doses of SAL (25 and 50 mg/kg) and 5-fluorouracil (20 mg/kg).

Results: Its purity was determined using high-performance liquid chromatography (94%), and its structure was confirmed by H1 and C13 nuclear magnetic resonance. SAL was not considered toxic to cancer cell lines, showing cell viability rates of 79.49 ± 4.15% and 86.88 ± 1.02% for sarcoma-180 and MDA-MB-231, respectively. The tumour inhibition rate was greater than 80% in the animals treated with SAL and 65% for those that received 5-fluorouracil. Simulations of molecular dynamics to estimate the flexibility of the interactions between human thymidylate synthase and derivatives of SAL and 5-fluorouracil revealed that SAL exhibited greater enzymatic interaction capacity, with highly favourable energy, compared to 5-fluorouracil.

Conclusion: The present results demonstrate the potential of salazinic acid as a tumour inhibition agent.

About the authors

Maria da Conceição de Lira

Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências - Universidade Federal de Pernambuco

Email: info@benthamscience.net

Marllyn da Silva

Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco

Email: info@benthamscience.net

Tamiris Rocha

Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco

Email: info@benthamscience.net

Danielle de Moura

Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências - Universidade Federal de Pernambuco

Email: info@benthamscience.net

Erick Santos Costa

Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências - Universidade Federal de Pernambuco

Email: info@benthamscience.net

Mayara dos Santos Maia

Laboratório de Quiminformática, Programa de Pós-Graduação em Produtos Bioativos Naturais e Sintéticos,, Universidade Federal da Paraíba

Email: info@benthamscience.net

Luciana Scotti

oratório de Quiminformática, Programa de Pós-Graduação em Produtos Bioativos Naturais e Sintéticos, Universidade Federal da Paraíba

Email: info@benthamscience.net

Marcus Scotti

Laboratório de Quiminformática, Programa de Pós-Graduação em Produtos Bioativos Naturais e Sintéticos,, Universidade Federal da Paraíba

Email: info@benthamscience.net

Maria de Lourdes Lacerda Buril

Departamento de Ciências Geográficas, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco

Email: info@benthamscience.net

Eugênia Pereira

Departamento de Ciências Geográficas, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco

Email: info@benthamscience.net

Francisco Carlos de Aguiar Júnior

Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco

Email: info@benthamscience.net

Mariane de Britto Lira Nogueira

Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco

Email: info@benthamscience.net

Noemia da Silva Santos

Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco

Email: info@benthamscience.net

Emerson da Silva Falcão

Laboratório de Síntese e Isolamento Molecular, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco

Author for correspondence.
Email: info@benthamscience.net

Sebastião de Melo

Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências - Universidade Federal de Pernambuco

Email: info@benthamscience.net

References

  1. Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-treating fields: A fourth modality in cancer treatment. Clin. Cancer Res., 2018, 24(2), 266-275. doi: 10.1158/1078-0432.CCR-17-1117 PMID: 28765323
  2. Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3855-3864. doi: 10.26355/eurrev201806-15270 PMID: 29949179
  3. Abotaleb, M.; Kubatka, P.; Caprnda, M.; Varghese, E.; Zolakova, B.; Zubor, P.; Opatrilova, R.; Kruzliak, P.; Stefanicka, P.; Büsselberg, D. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed. Pharmacother., 2018, 101, 458-477. doi: 10.1016/j.biopha.2018.02.108 PMID: 29501768
  4. Kapinova, A.; Kubatka, P.; Golubnitschaja, O.; Kello, M.; Zubor, P.; Solar, P.; Pec, M. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. Med., 2018, 23(1), 36. doi: 10.1186/s12199-018-0724-1 PMID: 30092754
  5. Song, Y.; Dai, F.; Zhai, D.; Dong, Y.; Zhang, J.; Lu, B.; Luo, J.; Liu, M.; Yi, Z. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis, 2012, 15(3), 421-432. doi: 10.1007/s10456-012-9270-4 PMID: 22669534
  6. Barroso, M.M.C.; Alves, R.T.; Santos, S.T.D.; Pacífico Cavalcanti-Neto, M.; Pereira da Silva Santos, N.; Gonçalves da Silva, T.; Amanajás Aguiar-Junior, F.C.; da Silva Falcão, E.P.; Pereira, E.C.; da Silva, N.H. In vitro and in vivo antineoplastic activity of barbatic acid. Int. Arch. Med., 2016, 1-9. doi: 10.3823/1934
  7. Santos, G.J.L.; Oliveira, E.S.; Pinheiro, A.D.N.; da Costa, P.M.; de Freitas, J.C.C.; de Araújo, S.F.G.; Maia, F.M.M.; de Morais, S.M.; Nunes-Pinheiro, D.C.S. Himatanthus drasticus (Apocynaceae) latex reduces oxidative stress and modulates CD4+, CD8+, FoxP3+ and HSP-60+ expressions in Sarcoma 180-bearing mice. J. Ethnopharmacol., 2018, 220, 159-168. doi: 10.1016/j.jep.2017.09.043 PMID: 29079220
  8. Alexandrino, C.A.F.; Honda, N.K.; Matos, M.F.C.; Portugal, L.C.; Souza, P.R.B.; Perdomo, R.T.; Guimarães, R.C.A.; Kadri, M.C.T.; Silva, M.C.B.L.; Bogo, D. Antitumor effect of depsidones from lichens on tumor cell lines and experimental murine melanoma. Rev. Bras. Farmacogn., 2019, 29(4), 449-456. doi: 10.1016/j.bjp.2019.04.005
  9. Souza, M.V.N.; Pinheiro, A.C.; Ferreira, M.L.; Gonçalves, R.S.B. Lima, CHC natural products in advance clinical trials applied to cancer. Rev Fit., 2007, 3, 25-42. doi: 10.32712/2446-4775.2007.72
  10. Hale- JR. M.E The Biology of Lichens, 3rd ed; Edward Arnold Pub.: London, 1983.
  11. Ebrahim, H.Y.; Elsayed, H.E.; Mohyeldin, M.M.; Akl, M.R.; Bhattacharjee, J.; Egbert, S.; El Sayed, K.A. Norstictic acid inhibits breast cancer cell proliferation, migration, invasion, and in vivo invasive growth through targeting C-Met. Phytother. Res., 2016, 30(4), 557-566. doi: 10.1002/ptr.5551 PMID: 26744260
  12. Zuo, S.; Wang, L.; Zhang, Y.; Zhao, D.; Li, Q.; Shao, D.; Fang, X. Usnic acid induces apoptosis via an ROS-dependent mitochondrial pathway in human breast cancer cells in vitro and in vivo. RSC Advances, 2015, 5(1), 153-162. doi: 10.1039/C4RA12340A
  13. Solár, P.; Hrčková, G.; Koptašíková, V.; Velebný, S.; Solárová, Z.; Bačkor, M. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo. Chem. Biol. Interact., 2016, 250, 27-37. doi: 10.1016/j.cbi.2016.03.012 PMID: 26969521
  14. Zhou, R.; Yang, Y.; Park, S.Y.; Nguyen, T.T.; Seo, Y.W.; Lee, K.H.; Lee, J.H.; Kim, K.K.; Hur, J.S.; Kim, H. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci. Rep., 2017, 7(1), 8136. doi: 10.1038/s41598-017-08225-1 PMID: 28811522
  15. Geng, X.; Zhang, X.; Zhou, B.; Zhang, C.; Tu, J.; Chen, X.; Wang, J.; Gao, H.; Qin, G.; Pan, W. Usnic acid induces cycle arrest, apoptosis, and autophagy in gastric cancer cells in vitro and in vivo. Med. Sci. Monit., 2018, 24, 556-566. doi: 10.12659/MSM.908568 PMID: 29374767
  16. Jain, A.P.; Bhearkar, S.; Rai, G.; Yadav, A.K. Evaluation of Parmotrema reticulatum taylor for antibacterial and antiinflammatory activities. Ind J. Pharm. Sci., 2016, 7, 94-102.
  17. Basile, A.; Rigano, D.; Loppi, S.; Di Santi, A.; Nebbioso, A.; Sorbo, S.; Conte, B.; Paoli, L.; De Ruberto, F.; Molinari, A.; Altucci, L.; Bontempo, P. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. Int. J. Mol. Sci., 2015, 16(12), 7861-7875. doi: 10.3390/ijms16047861 PMID: 25860944
  18. da Luz, J.S.B.; de Oliveira, E.B.; Martins, M.C.B.; Silva, N.H.; Alves, L.C.; dos Santos, F.A.B.; da Silva, L.L.S.; Silva, E.C.; de Medeiros, P.L. Ultrastructural analysis of Leishmania infantum chagasi promastigotes forms treated in vitro with usnic acid. Scien. W. J., 2015, 2015, 1-7. doi: 10.1155/2015/617401 PMID: 25767824
  19. Moreira, A.S.N.; Fernandes, R.O.S.; Lemos, F.J.A.; Braz-Filho, R.; Vieira, I.J.C. Larvicidal activity of Ramalina usnea lichen against Aedes aegypti. Rev. Bras. Farmacogn., 2016, 26(4), 530-532. doi: 10.1016/j.bjp.2016.03.006
  20. Khader, S.Z.A.; Ahmed, S.S.Z.; Venkatesh, K.P.; Chinnaperumal, K.; Nayaka, S. Larvicidal potential of selected indigenous lichens against three mosquito species–Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. Chin. Herb. Med., 2018, 10(2), 152-156. doi: 10.1016/j.chmed.2018.03.002
  21. Jain, P.K. Jain, A.P. Effect of Parmotrema reticulatum lichens on dermal wound healing with possible antioxidant and antibacterial mechanism. Asian J. Pharm. Pharmacol., 2016, 10-14.
  22. Micheletti, A.C.; Beatriz, A.; Lima, D.P.; Honda, N.K.; Pessoa, C.Ó.; Moraes, M.O.; Lotufo, L.V.; Magalhães, H.I.F.; Carvalho, N.C.P. Chemical constituents of Parmotrema lichexanthonicum Eliasaro & Adler: Isolation, structural modifications and evaluation of antibiotic and cytotoxic activities. Quim. Nova, 2009, 32(1), 12-20. doi: 10.1590/S0100-40422009000100003
  23. Culberson, C.F. Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. J. Chromatogr. A, 1972, 72(1), 113-125. doi: 10.1016/0021-9673(72)80013-X PMID: 5072880
  24. Legaz, M.E.; Vicente, C. Endogenous inactivators of arginase, arginine decarboxilase e agmnatine amidinohydrolase in Evernia prusnatri thallus. Plant Physiol., 1983, 71(2), 300-302. doi: 10.1104/pp.71.2.300 PMID: 16662821
  25. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
  26. da Silva, M.M.; Rocha, T.A.; de Moura, D.F.; Chagas, C.A.; de Aguiar Júnior, F.C.A.; da Silva Santos, N.P.; Da Silva Sobral, R.V.; do Nascimento, J.M.; Lima Leite, A.C.; Pastrana, L.; Costa, R.M.P.B..; Nascimento, T.P.; Porto, A.L.F. Effect of acute exposure in swiss mice (Mus musculus) to a fibrinolytic protease produced by Mucor subtilissimus UCP 1262: An histomorphometric, genotoxic and cytological approach. Regul. Toxicol. Pharmacol., 2019, 103, 282-291. doi: 10.1016/j.yrtph.2019.02.009 PMID: 30790607
  27. Geran, R.I.; Greenberg, H.M.; McDonald, M.; Abbott, B.J. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother. Rep., 1972, 33, 1-17.
  28. BIOVIA discovery studio visualizer. 2020. Available from:https://discover.3ds.com/discovery-studio-visualizer-download
  29. PubChem databank. 2020. Available from:https://pubchem.ncbi.nlm.nih.gov/
  30. Avogadro program 2020. Available from:https://avogadro.cc/
  31. MetaSite program of Moldiscovery 2020. Available from:https://www.moldiscovery.com/software/metasite/
  32. Oda, A.; Tsuchida, K.; Takakura, T.; Yamaotsu, N.; Hirono, S. Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. J. Chem. Inf. Model., 2006, 46(1), 380-391. doi: 10.1021/ci050283k PMID: 16426072
  33. da Silva-Junior, E.F.; Barcellos, F.P.H.; Ribeiro, F.F.; Bezerra Mendonca-Junior, F.J.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Molecular docking studies applied to a dataset of cruzain inhibitors. Curr. Computeraided Drug Des., 2018, 14(1), 68-78. doi: 10.2174/1573409913666170519112758 PMID: 28523999
  34. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001
  35. Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56. doi: 10.1016/0010-4655(95)00042-E
  36. Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated force field Topology Builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput., 2011, 7(12), 4026-4037. doi: 10.1021/ct200196m PMID: 26598349
  37. Bondi, A. Van der Waals Volumes and Radii. J. Phys. Chem., 1964, (3), 441-451.
  38. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
  39. Falcão, E.P.S.; Silva, N.H.; Gusmão, N.B.; Ribeiro, S.M.; Pereira, E.C. Antimicrobial activity of phenolic derivatives of lichen. Acta Bot. Bras., 2004, 18, 911-918. doi: 10.1590/S0102-33062004000400022
  40. Manojlović, N.; Ranković, B.; Kosanić, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine, 2012, 19(13), 1166-1172. doi: 10.1016/j.phymed.2012.07.012 PMID: 22921748
  41. Huneck, S.; Yoshimura, I. Identification of lichen substances; Springer: New York, 1996. doi: 10.1007/978-3-642-85243-5
  42. Eifler-Lima, V.L.; Sperry, A.; Sinbandhit, S.; Boustie, J.; Tomasi, S.; Schenkel, E. NMR spectral data of salazinic acid isolated from some species ofParmotrema. Magn. Reson. Chem., 2000, 38(6), 472-474. doi: 10.1002/1097-458X(200006)38:6<472:AID-MRC658>3.0.CO;2-P
  43. Paluszczak, J.; Kleszcz, R.; Studzińska-Sroka, E.; Krajka-Kuźniak, V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol. Cell. Biochem., 2018, 441(1-2), 109-124. doi: 10.1007/s11010-017-3178-7 PMID: 28887754
  44. Liu, X.; Zheng, L.; Zhang, R.; Liu, G.; Xiao, S.; Qiao, X.; Wu, Y.; Gong, Z. Toxicological evaluation of advanced glycation end product Nε-(carboxymethyl)lysine: Acute and subacute oral toxicity studies. Regul. Toxicol. Pharmacol., 2016, 77, 65-74. doi: 10.1016/j.yrtph.2016.02.013 PMID: 26921796
  45. Aniagu, S.O.; Nwinyi, F.C.; Akumka, D.D.; Ajoku, G.A.; Dzarma, S.; Izebe, K.S.; Ditse, M.; Nwaneri, P.E.C.; Wambebe, C.; Gamaniel, K. Toxicity studies in rats fed nature cure bitters. Afr. J. Biotechnol., 2005, 4, 72-78.
  46. Silva, M.M.; Nascimento, T.P.; Porto, A.L.F. The importance of Sarcoma-180 as valid model to determine the toxicity and antitumor activity of molecules extracts. Int. J. Recent Acad. Res., 2019, 01, 433-437.
  47. Debnath, S.; Karan, S.; Debnath, M.; Dash, J.; Chatterjee, T.K. Poly-L-lysine inhibits tumor angiogenesis and induces apoptosis in Ehrlich ascites carcinoma and in sarcoma S-180 tumor. Asian Pac. J. Cancer Prev., 2017, 18(8), 2255-2268. doi: 10.22034/APJCP.2017.18.8.2255 PMID: 28843265
  48. Longley, D.B.; Allen, W.L.; McDermott, U.; Wilson, T.R.; Latif, T.; Boyer, J.; Lynch, M.; Johnston, P.G. The roles of thymidylate synthase and p53 in regulating Fas-mediated apoptosis in response to antimetabolites. Clin. Cancer Res., 2004, 10(10), 3562-3571. doi: 10.1158/1078-0432.CCR-03-0532 PMID: 15161716
  49. Almeida, V.L.; Leitão, A.; Reina, L.C.B.; Montanari, C.A.; Donnici, C.L.; Lopes, M.T.P. Cancer and cell-cycle-specific and cell-cycle non-specific DNA-interacting antineoplastic agents: An introduction. Quim. Nova, 2005, 28(1), 118-129. doi: 10.1590/S0100-40422005000100021
  50. Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338. doi: 10.1038/nrc1074 PMID: 12724731
  51. Zhao, T.; Mao, G.; Zhang, M.; Zou, Y.; Feng, W.; Gu, X.; Zhu, Y.; Mao, R.; Yang, L.; Wu, X. Enhanced antitumor and reduced toxicity effect of Schisanreae polysaccharide in 5-Fu treated Heps-bearing mice. Int. J. Biol. Macromol., 2014, 63, 114-118.
  52. Cireşan, D.C.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Mitosis detection in breast cancer histology images with deep neural networks. Med. Image Comput. Comput. Assist. Interv., 2013, 16(2), 411-418. doi: 10.1007/978-3-642-40763-5_51
  53. Veta, M.; van Diest, P.J.; Pluim, J.P.W. Detecting mitotic figures in breast cancer histopathology images. Med Imaging: Digit Pathol., 2013, 8676, 867607. doi: 10.1117/12.2006626
  54. van Diest, P.J.; van der Wall, E.; Baak, J.P.A. Prognostic value of proliferation in invasive breast cancer: A review. J. Clin. Pathol., 2004, 57(7), 675-681. doi: 10.1136/jcp.2003.010777 PMID: 15220356
  55. Ludovic, R.; Daniel, R.; Nicolas, L.; Maria, K.; Humayun, I.; Jacques, K.; Frédérique, C.; Catherine, G.; Gilles, L.N.; Metin, N.G. Mitosis detection in breast cancer histological images An ICPR 2012 contest. J. Pathol. Inform., 2013, 4(1), 8. doi: 10.4103/2153-3539.112693 PMID: 23858383
  56. Singh, D.; Cho, W.C.; Upadhyay, G. Drug-induced liver toxicity and prevention by herbal antioxidants: An overview. Front. Physiol., 2016, 6, 363. doi: 10.3389/fphys.2015.00363 PMID: 26858648
  57. Mukesh, K.S.; Ganesh, N.S.; Vishal, V.; Ranjan, B. Hepatotoxicity: A major complication with critical treatment. MOJ Toxicol., 2015, 1(3), 114-120. doi: 10.15406/mojt.2015.01.00016
  58. Marinho, K.S.N.; Antonio, E.A.; Silva, C.V.N.S.; Silva, K.T.; Teixeira, V.W.; Aguiar-Júnior, F.C.A.; Santos, K.R.R.P.; Silva, N.H. Hepatic toxicity caused by PLGA-microspheres containing usnic acid from the lichen C ladonia substellata (AHTI) during pregnancy in Wistar rats. An. Acad. Bras. Cienc., 2017, 89(2), 1073-1084.
  59. Arii, S.; Imamura, M. Physiological role of sinusoidal endothelial cells and Kupffer cells and their implication in the pathogenesis of liver injury. J. Hepatobiliary Pancreat. Surg., 2000, 7(1), 40-48. doi: 10.1007/s005340050152 PMID: 10982590
  60. Barnett, L.M.A.; Cummings, B.S. Cellular and molecular mechanisms of kidney toxicity. Semin. Nephrol., 2019, 39(2), 141-151. doi: 10.1016/j.semnephrol.2018.12.004 PMID: 30827337
  61. El-Shenawy, N.S.; Hamza, R.Z.; Khaled, H.E. Protective effect of α–lipoic acid against spleen toxicity of dimethylnitrosamine in male mice: Antioxidant and ultrastructure approaches. Biomed. Pharmacother., 2017, 96, 459-465. doi: 10.1016/j.biopha.2017.10.010 PMID: 29031205
  62. Crăciunaş, C.; Crăciun, C.; Crăciun, V.; Dordea, M.; Toader-Radu, M. Ultrastructural effects of certain cytostatics on rat spleen. Curr. Probl. Techn. Cell. Mole. Biol., 1996, 1, 311-317.
  63. Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem., 2005, 48(22), 6970-6979. doi: 10.1021/jm050529c PMID: 16250655
  64. Pozzi, C.; Ferrari, S.; Luciani, R.; Costi, M.; Mangani, S. Structural and functional characterization of the Human Thymidylate Synthase (hTS) Interface Variant R175C, new perspectives for the development of hTS inhibitors. Molecules, 2019, 24(7), 1362. doi: 10.3390/molecules24071362 PMID: 30959951
  65. Choi, Y.M.; Yeo, H.K.; Park, Y.W.; Lee, J.Y. Structural analysis of thymidylate synthase from Kaposi's sarcoma-associated herpesvirus with the anticancer drug raltitrexed. PLoS One, 2016, 11(12), e0168019. doi: 10.1371/journal.pone.0168019 PMID: 27936107
  66. Chen, D.; Jansson, A.; Sim, D.; Larsson, A.; Nordlund, P. Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. J. Biol. Chem., 2017, 292(32), 13449-13458. doi: 10.1074/jbc.M117.787267 PMID: 28634233
  67. Kukol, A. Consensus virtual screening approaches to predict protein ligands. Eur. J. Med. Chem., 2011, 46(9), 4661-4664. doi: 10.1016/j.ejmech.2011.05.026 PMID: 21640444
  68. Phan, J.; Koli, S.; Minor, W.; Dunlap, R.B.; Berger, S.H.; Lebioda, L. Human thymidylate synthase is in the closed conformation when complexed with dUMP and raltitrexed, an antifolate drug. Biochemistry, 2001, 40(7), 1897-1902. doi: 10.1021/bi002413i PMID: 11329255

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bentham Science Publishers