Assessment of Cytotoxic/Antitumour Potential and in silico Study of Salazinic Acid Isolated from Parmotrema concurrens
- Authors: da Conceição de Lira M.1, da Silva M.2, Rocha T.3, de Moura D.1, Santos Costa E.1, dos Santos Maia M.4, Scotti L.5, Scotti M.4, de Lourdes Lacerda Buril M.6, Pereira E.6, de Aguiar Júnior F.C.7, de Britto Lira Nogueira M.3, da Silva Santos N.3, da Silva Falcão E.8, de Melo S.1
-
Affiliations:
- Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências - Universidade Federal de Pernambuco
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco
- Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco
- Laboratório de Quiminformática, Programa de Pós-Graduação em Produtos Bioativos Naturais e Sintéticos,, Universidade Federal da Paraíba
- oratório de Quiminformática, Programa de Pós-Graduação em Produtos Bioativos Naturais e Sintéticos, Universidade Federal da Paraíba
- Departamento de Ciências Geográficas, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco
- Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco
- Laboratório de Síntese e Isolamento Molecular, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco
- Issue: Vol 23, No 12 (2023)
- Pages: 1469-1481
- Section: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694318
- DOI: https://doi.org/10.2174/1871520623666230407105219
- ID: 694318
Cite item
Full Text
Abstract
Introduction:Despite numerous scientific advances, cancer continues to be one of the main causes of death in the world. This situation has driven the search for promising molecules. Lichen substances have been widely described for their pharmacological potential.
Objective: The present study evaluated the antitumour potential of a depsidone isolated from Parmotrema concurrens salazinic acid (SAL) through in vitro, in vivo and in silico studies.
Methods: The molecule was isolated from the acetonic extract of the lichen and recrystallized in acetone. The macrophage J774, sarcoma-180 and MDA-MB-231 cell lines were used for the MTT cytotoxicity assay. The antitumor assay used a murine model (Swiss albino mice) with sarcoma-180. The animals were treated for seven consecutive days with doses of SAL (25 and 50 mg/kg) and 5-fluorouracil (20 mg/kg).
Results: Its purity was determined using high-performance liquid chromatography (94%), and its structure was confirmed by H1 and C13 nuclear magnetic resonance. SAL was not considered toxic to cancer cell lines, showing cell viability rates of 79.49 ± 4.15% and 86.88 ± 1.02% for sarcoma-180 and MDA-MB-231, respectively. The tumour inhibition rate was greater than 80% in the animals treated with SAL and 65% for those that received 5-fluorouracil. Simulations of molecular dynamics to estimate the flexibility of the interactions between human thymidylate synthase and derivatives of SAL and 5-fluorouracil revealed that SAL exhibited greater enzymatic interaction capacity, with highly favourable energy, compared to 5-fluorouracil.
Conclusion: The present results demonstrate the potential of salazinic acid as a tumour inhibition agent.
Keywords
About the authors
Maria da Conceição de Lira
Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências - Universidade Federal de Pernambuco
Email: info@benthamscience.net
Marllyn da Silva
Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco
Email: info@benthamscience.net
Tamiris Rocha
Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco
Email: info@benthamscience.net
Danielle de Moura
Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências - Universidade Federal de Pernambuco
Email: info@benthamscience.net
Erick Santos Costa
Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências - Universidade Federal de Pernambuco
Email: info@benthamscience.net
Mayara dos Santos Maia
Laboratório de Quiminformática, Programa de Pós-Graduação em Produtos Bioativos Naturais e Sintéticos,, Universidade Federal da Paraíba
Email: info@benthamscience.net
Luciana Scotti
oratório de Quiminformática, Programa de Pós-Graduação em Produtos Bioativos Naturais e Sintéticos, Universidade Federal da Paraíba
Email: info@benthamscience.net
Marcus Scotti
Laboratório de Quiminformática, Programa de Pós-Graduação em Produtos Bioativos Naturais e Sintéticos,, Universidade Federal da Paraíba
Email: info@benthamscience.net
Maria de Lourdes Lacerda Buril
Departamento de Ciências Geográficas, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco
Email: info@benthamscience.net
Eugênia Pereira
Departamento de Ciências Geográficas, Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco
Email: info@benthamscience.net
Francisco Carlos de Aguiar Júnior
Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco
Email: info@benthamscience.net
Mariane de Britto Lira Nogueira
Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco
Email: info@benthamscience.net
Noemia da Silva Santos
Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco
Email: info@benthamscience.net
Emerson da Silva Falcão
Laboratório de Síntese e Isolamento Molecular, Centro Acadêmico de Vitória - Universidade Federal de Pernambuco
Author for correspondence.
Email: info@benthamscience.net
Sebastião de Melo
Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências - Universidade Federal de Pernambuco
Email: info@benthamscience.net
References
- Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-treating fields: A fourth modality in cancer treatment. Clin. Cancer Res., 2018, 24(2), 266-275. doi: 10.1158/1078-0432.CCR-17-1117 PMID: 28765323
- Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3855-3864. doi: 10.26355/eurrev201806-15270 PMID: 29949179
- Abotaleb, M.; Kubatka, P.; Caprnda, M.; Varghese, E.; Zolakova, B.; Zubor, P.; Opatrilova, R.; Kruzliak, P.; Stefanicka, P.; Büsselberg, D. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed. Pharmacother., 2018, 101, 458-477. doi: 10.1016/j.biopha.2018.02.108 PMID: 29501768
- Kapinova, A.; Kubatka, P.; Golubnitschaja, O.; Kello, M.; Zubor, P.; Solar, P.; Pec, M. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. Med., 2018, 23(1), 36. doi: 10.1186/s12199-018-0724-1 PMID: 30092754
- Song, Y.; Dai, F.; Zhai, D.; Dong, Y.; Zhang, J.; Lu, B.; Luo, J.; Liu, M.; Yi, Z. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis, 2012, 15(3), 421-432. doi: 10.1007/s10456-012-9270-4 PMID: 22669534
- Barroso, M.M.C.; Alves, R.T.; Santos, S.T.D.; Pacífico Cavalcanti-Neto, M.; Pereira da Silva Santos, N.; Gonçalves da Silva, T.; Amanajás Aguiar-Junior, F.C.; da Silva Falcão, E.P.; Pereira, E.C.; da Silva, N.H. In vitro and in vivo antineoplastic activity of barbatic acid. Int. Arch. Med., 2016, 1-9. doi: 10.3823/1934
- Santos, G.J.L.; Oliveira, E.S.; Pinheiro, A.D.N.; da Costa, P.M.; de Freitas, J.C.C.; de Araújo, S.F.G.; Maia, F.M.M.; de Morais, S.M.; Nunes-Pinheiro, D.C.S. Himatanthus drasticus (Apocynaceae) latex reduces oxidative stress and modulates CD4+, CD8+, FoxP3+ and HSP-60+ expressions in Sarcoma 180-bearing mice. J. Ethnopharmacol., 2018, 220, 159-168. doi: 10.1016/j.jep.2017.09.043 PMID: 29079220
- Alexandrino, C.A.F.; Honda, N.K.; Matos, M.F.C.; Portugal, L.C.; Souza, P.R.B.; Perdomo, R.T.; Guimarães, R.C.A.; Kadri, M.C.T.; Silva, M.C.B.L.; Bogo, D. Antitumor effect of depsidones from lichens on tumor cell lines and experimental murine melanoma. Rev. Bras. Farmacogn., 2019, 29(4), 449-456. doi: 10.1016/j.bjp.2019.04.005
- Souza, M.V.N.; Pinheiro, A.C.; Ferreira, M.L.; Gonçalves, R.S.B. Lima, CHC natural products in advance clinical trials applied to cancer. Rev Fit., 2007, 3, 25-42. doi: 10.32712/2446-4775.2007.72
- Hale- JR. M.E The Biology of Lichens, 3rd ed; Edward Arnold Pub.: London, 1983.
- Ebrahim, H.Y.; Elsayed, H.E.; Mohyeldin, M.M.; Akl, M.R.; Bhattacharjee, J.; Egbert, S.; El Sayed, K.A. Norstictic acid inhibits breast cancer cell proliferation, migration, invasion, and in vivo invasive growth through targeting C-Met. Phytother. Res., 2016, 30(4), 557-566. doi: 10.1002/ptr.5551 PMID: 26744260
- Zuo, S.; Wang, L.; Zhang, Y.; Zhao, D.; Li, Q.; Shao, D.; Fang, X. Usnic acid induces apoptosis via an ROS-dependent mitochondrial pathway in human breast cancer cells in vitro and in vivo. RSC Advances, 2015, 5(1), 153-162. doi: 10.1039/C4RA12340A
- Solár, P.; Hrčková, G.; Koptaíková, V.; Velebný, S.; Solárová, Z.; Bačkor, M. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo. Chem. Biol. Interact., 2016, 250, 27-37. doi: 10.1016/j.cbi.2016.03.012 PMID: 26969521
- Zhou, R.; Yang, Y.; Park, S.Y.; Nguyen, T.T.; Seo, Y.W.; Lee, K.H.; Lee, J.H.; Kim, K.K.; Hur, J.S.; Kim, H. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci. Rep., 2017, 7(1), 8136. doi: 10.1038/s41598-017-08225-1 PMID: 28811522
- Geng, X.; Zhang, X.; Zhou, B.; Zhang, C.; Tu, J.; Chen, X.; Wang, J.; Gao, H.; Qin, G.; Pan, W. Usnic acid induces cycle arrest, apoptosis, and autophagy in gastric cancer cells in vitro and in vivo. Med. Sci. Monit., 2018, 24, 556-566. doi: 10.12659/MSM.908568 PMID: 29374767
- Jain, A.P.; Bhearkar, S.; Rai, G.; Yadav, A.K. Evaluation of Parmotrema reticulatum taylor for antibacterial and antiinflammatory activities. Ind J. Pharm. Sci., 2016, 7, 94-102.
- Basile, A.; Rigano, D.; Loppi, S.; Di Santi, A.; Nebbioso, A.; Sorbo, S.; Conte, B.; Paoli, L.; De Ruberto, F.; Molinari, A.; Altucci, L.; Bontempo, P. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. Int. J. Mol. Sci., 2015, 16(12), 7861-7875. doi: 10.3390/ijms16047861 PMID: 25860944
- da Luz, J.S.B.; de Oliveira, E.B.; Martins, M.C.B.; Silva, N.H.; Alves, L.C.; dos Santos, F.A.B.; da Silva, L.L.S.; Silva, E.C.; de Medeiros, P.L. Ultrastructural analysis of Leishmania infantum chagasi promastigotes forms treated in vitro with usnic acid. Scien. W. J., 2015, 2015, 1-7. doi: 10.1155/2015/617401 PMID: 25767824
- Moreira, A.S.N.; Fernandes, R.O.S.; Lemos, F.J.A.; Braz-Filho, R.; Vieira, I.J.C. Larvicidal activity of Ramalina usnea lichen against Aedes aegypti. Rev. Bras. Farmacogn., 2016, 26(4), 530-532. doi: 10.1016/j.bjp.2016.03.006
- Khader, S.Z.A.; Ahmed, S.S.Z.; Venkatesh, K.P.; Chinnaperumal, K.; Nayaka, S. Larvicidal potential of selected indigenous lichens against three mosquito speciesCulex quinquefasciatus, Aedes aegypti and Anopheles stephensi. Chin. Herb. Med., 2018, 10(2), 152-156. doi: 10.1016/j.chmed.2018.03.002
- Jain, P.K. Jain, A.P. Effect of Parmotrema reticulatum lichens on dermal wound healing with possible antioxidant and antibacterial mechanism. Asian J. Pharm. Pharmacol., 2016, 10-14.
- Micheletti, A.C.; Beatriz, A.; Lima, D.P.; Honda, N.K.; Pessoa, C.Ó.; Moraes, M.O.; Lotufo, L.V.; Magalhães, H.I.F.; Carvalho, N.C.P. Chemical constituents of Parmotrema lichexanthonicum Eliasaro & Adler: Isolation, structural modifications and evaluation of antibiotic and cytotoxic activities. Quim. Nova, 2009, 32(1), 12-20. doi: 10.1590/S0100-40422009000100003
- Culberson, C.F. Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. J. Chromatogr. A, 1972, 72(1), 113-125. doi: 10.1016/0021-9673(72)80013-X PMID: 5072880
- Legaz, M.E.; Vicente, C. Endogenous inactivators of arginase, arginine decarboxilase e agmnatine amidinohydrolase in Evernia prusnatri thallus. Plant Physiol., 1983, 71(2), 300-302. doi: 10.1104/pp.71.2.300 PMID: 16662821
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
- da Silva, M.M.; Rocha, T.A.; de Moura, D.F.; Chagas, C.A.; de Aguiar Júnior, F.C.A.; da Silva Santos, N.P.; Da Silva Sobral, R.V.; do Nascimento, J.M.; Lima Leite, A.C.; Pastrana, L.; Costa, R.M.P.B..; Nascimento, T.P.; Porto, A.L.F. Effect of acute exposure in swiss mice (Mus musculus) to a fibrinolytic protease produced by Mucor subtilissimus UCP 1262: An histomorphometric, genotoxic and cytological approach. Regul. Toxicol. Pharmacol., 2019, 103, 282-291. doi: 10.1016/j.yrtph.2019.02.009 PMID: 30790607
- Geran, R.I.; Greenberg, H.M.; McDonald, M.; Abbott, B.J. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother. Rep., 1972, 33, 1-17.
- BIOVIA discovery studio visualizer. 2020. Available from:https://discover.3ds.com/discovery-studio-visualizer-download
- PubChem databank. 2020. Available from:https://pubchem.ncbi.nlm.nih.gov/
- Avogadro program 2020. Available from:https://avogadro.cc/
- MetaSite program of Moldiscovery 2020. Available from:https://www.moldiscovery.com/software/metasite/
- Oda, A.; Tsuchida, K.; Takakura, T.; Yamaotsu, N.; Hirono, S. Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. J. Chem. Inf. Model., 2006, 46(1), 380-391. doi: 10.1021/ci050283k PMID: 16426072
- da Silva-Junior, E.F.; Barcellos, F.P.H.; Ribeiro, F.F.; Bezerra Mendonca-Junior, F.J.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Molecular docking studies applied to a dataset of cruzain inhibitors. Curr. Computeraided Drug Des., 2018, 14(1), 68-78. doi: 10.2174/1573409913666170519112758 PMID: 28523999
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56. doi: 10.1016/0010-4655(95)00042-E
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated force field Topology Builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput., 2011, 7(12), 4026-4037. doi: 10.1021/ct200196m PMID: 26598349
- Bondi, A. Van der Waals Volumes and Radii. J. Phys. Chem., 1964, (3), 441-451.
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
- Falcão, E.P.S.; Silva, N.H.; Gusmão, N.B.; Ribeiro, S.M.; Pereira, E.C. Antimicrobial activity of phenolic derivatives of lichen. Acta Bot. Bras., 2004, 18, 911-918. doi: 10.1590/S0102-33062004000400022
- Manojlović, N.; Ranković, B.; Kosanić, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine, 2012, 19(13), 1166-1172. doi: 10.1016/j.phymed.2012.07.012 PMID: 22921748
- Huneck, S.; Yoshimura, I. Identification of lichen substances; Springer: New York, 1996. doi: 10.1007/978-3-642-85243-5
- Eifler-Lima, V.L.; Sperry, A.; Sinbandhit, S.; Boustie, J.; Tomasi, S.; Schenkel, E. NMR spectral data of salazinic acid isolated from some species ofParmotrema. Magn. Reson. Chem., 2000, 38(6), 472-474. doi: 10.1002/1097-458X(200006)38:6<472:AID-MRC658>3.0.CO;2-P
- Paluszczak, J.; Kleszcz, R.; Studzińska-Sroka, E.; Krajka-Kuźniak, V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol. Cell. Biochem., 2018, 441(1-2), 109-124. doi: 10.1007/s11010-017-3178-7 PMID: 28887754
- Liu, X.; Zheng, L.; Zhang, R.; Liu, G.; Xiao, S.; Qiao, X.; Wu, Y.; Gong, Z. Toxicological evaluation of advanced glycation end product Nε-(carboxymethyl)lysine: Acute and subacute oral toxicity studies. Regul. Toxicol. Pharmacol., 2016, 77, 65-74. doi: 10.1016/j.yrtph.2016.02.013 PMID: 26921796
- Aniagu, S.O.; Nwinyi, F.C.; Akumka, D.D.; Ajoku, G.A.; Dzarma, S.; Izebe, K.S.; Ditse, M.; Nwaneri, P.E.C.; Wambebe, C.; Gamaniel, K. Toxicity studies in rats fed nature cure bitters. Afr. J. Biotechnol., 2005, 4, 72-78.
- Silva, M.M.; Nascimento, T.P.; Porto, A.L.F. The importance of Sarcoma-180 as valid model to determine the toxicity and antitumor activity of molecules extracts. Int. J. Recent Acad. Res., 2019, 01, 433-437.
- Debnath, S.; Karan, S.; Debnath, M.; Dash, J.; Chatterjee, T.K. Poly-L-lysine inhibits tumor angiogenesis and induces apoptosis in Ehrlich ascites carcinoma and in sarcoma S-180 tumor. Asian Pac. J. Cancer Prev., 2017, 18(8), 2255-2268. doi: 10.22034/APJCP.2017.18.8.2255 PMID: 28843265
- Longley, D.B.; Allen, W.L.; McDermott, U.; Wilson, T.R.; Latif, T.; Boyer, J.; Lynch, M.; Johnston, P.G. The roles of thymidylate synthase and p53 in regulating Fas-mediated apoptosis in response to antimetabolites. Clin. Cancer Res., 2004, 10(10), 3562-3571. doi: 10.1158/1078-0432.CCR-03-0532 PMID: 15161716
- Almeida, V.L.; Leitão, A.; Reina, L.C.B.; Montanari, C.A.; Donnici, C.L.; Lopes, M.T.P. Cancer and cell-cycle-specific and cell-cycle non-specific DNA-interacting antineoplastic agents: An introduction. Quim. Nova, 2005, 28(1), 118-129. doi: 10.1590/S0100-40422005000100021
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338. doi: 10.1038/nrc1074 PMID: 12724731
- Zhao, T.; Mao, G.; Zhang, M.; Zou, Y.; Feng, W.; Gu, X.; Zhu, Y.; Mao, R.; Yang, L.; Wu, X. Enhanced antitumor and reduced toxicity effect of Schisanreae polysaccharide in 5-Fu treated Heps-bearing mice. Int. J. Biol. Macromol., 2014, 63, 114-118.
- Cireşan, D.C.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Mitosis detection in breast cancer histology images with deep neural networks. Med. Image Comput. Comput. Assist. Interv., 2013, 16(2), 411-418. doi: 10.1007/978-3-642-40763-5_51
- Veta, M.; van Diest, P.J.; Pluim, J.P.W. Detecting mitotic figures in breast cancer histopathology images. Med Imaging: Digit Pathol., 2013, 8676, 867607. doi: 10.1117/12.2006626
- van Diest, P.J.; van der Wall, E.; Baak, J.P.A. Prognostic value of proliferation in invasive breast cancer: A review. J. Clin. Pathol., 2004, 57(7), 675-681. doi: 10.1136/jcp.2003.010777 PMID: 15220356
- Ludovic, R.; Daniel, R.; Nicolas, L.; Maria, K.; Humayun, I.; Jacques, K.; Frédérique, C.; Catherine, G.; Gilles, L.N.; Metin, N.G. Mitosis detection in breast cancer histological images An ICPR 2012 contest. J. Pathol. Inform., 2013, 4(1), 8. doi: 10.4103/2153-3539.112693 PMID: 23858383
- Singh, D.; Cho, W.C.; Upadhyay, G. Drug-induced liver toxicity and prevention by herbal antioxidants: An overview. Front. Physiol., 2016, 6, 363. doi: 10.3389/fphys.2015.00363 PMID: 26858648
- Mukesh, K.S.; Ganesh, N.S.; Vishal, V.; Ranjan, B. Hepatotoxicity: A major complication with critical treatment. MOJ Toxicol., 2015, 1(3), 114-120. doi: 10.15406/mojt.2015.01.00016
- Marinho, K.S.N.; Antonio, E.A.; Silva, C.V.N.S.; Silva, K.T.; Teixeira, V.W.; Aguiar-Júnior, F.C.A.; Santos, K.R.R.P.; Silva, N.H. Hepatic toxicity caused by PLGA-microspheres containing usnic acid from the lichen C ladonia substellata (AHTI) during pregnancy in Wistar rats. An. Acad. Bras. Cienc., 2017, 89(2), 1073-1084.
- Arii, S.; Imamura, M. Physiological role of sinusoidal endothelial cells and Kupffer cells and their implication in the pathogenesis of liver injury. J. Hepatobiliary Pancreat. Surg., 2000, 7(1), 40-48. doi: 10.1007/s005340050152 PMID: 10982590
- Barnett, L.M.A.; Cummings, B.S. Cellular and molecular mechanisms of kidney toxicity. Semin. Nephrol., 2019, 39(2), 141-151. doi: 10.1016/j.semnephrol.2018.12.004 PMID: 30827337
- El-Shenawy, N.S.; Hamza, R.Z.; Khaled, H.E. Protective effect of αlipoic acid against spleen toxicity of dimethylnitrosamine in male mice: Antioxidant and ultrastructure approaches. Biomed. Pharmacother., 2017, 96, 459-465. doi: 10.1016/j.biopha.2017.10.010 PMID: 29031205
- Crăciunaş, C.; Crăciun, C.; Crăciun, V.; Dordea, M.; Toader-Radu, M. Ultrastructural effects of certain cytostatics on rat spleen. Curr. Probl. Techn. Cell. Mole. Biol., 1996, 1, 311-317.
- Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem., 2005, 48(22), 6970-6979. doi: 10.1021/jm050529c PMID: 16250655
- Pozzi, C.; Ferrari, S.; Luciani, R.; Costi, M.; Mangani, S. Structural and functional characterization of the Human Thymidylate Synthase (hTS) Interface Variant R175C, new perspectives for the development of hTS inhibitors. Molecules, 2019, 24(7), 1362. doi: 10.3390/molecules24071362 PMID: 30959951
- Choi, Y.M.; Yeo, H.K.; Park, Y.W.; Lee, J.Y. Structural analysis of thymidylate synthase from Kaposi's sarcoma-associated herpesvirus with the anticancer drug raltitrexed. PLoS One, 2016, 11(12), e0168019. doi: 10.1371/journal.pone.0168019 PMID: 27936107
- Chen, D.; Jansson, A.; Sim, D.; Larsson, A.; Nordlund, P. Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. J. Biol. Chem., 2017, 292(32), 13449-13458. doi: 10.1074/jbc.M117.787267 PMID: 28634233
- Kukol, A. Consensus virtual screening approaches to predict protein ligands. Eur. J. Med. Chem., 2011, 46(9), 4661-4664. doi: 10.1016/j.ejmech.2011.05.026 PMID: 21640444
- Phan, J.; Koli, S.; Minor, W.; Dunlap, R.B.; Berger, S.H.; Lebioda, L. Human thymidylate synthase is in the closed conformation when complexed with dUMP and raltitrexed, an antifolate drug. Biochemistry, 2001, 40(7), 1897-1902. doi: 10.1021/bi002413i PMID: 11329255
Supplementary files
