Synthesis and Characterization of Novel 4-aryl-4H-chromene Derivatives using Borax and Evaluation of their Anticancer Effects


Дәйексөз келтіру

Толық мәтін

Аннотация

Background/Introduction:4-aryl-4H-chromenes have attracted attention as potential anticancer agents.

Objective: In an effort to discover effective compounds, we designed a new series of these chromenes with methoxy substitution at 2, 3, 4, 5, and 6 positions.

Methods: The synthesized compounds were tested for anticancer properties against two human cancer cell lines (MCF- 7 and PC3) as well as a normal cell line. Furthermore, induction of apoptosis was explored through various methods, such as flow cytometry analysis, morphological changes, activation of caspase 3, ROS, and MMP.

Results: The MTT assay showed that the 5g derivative, with methoxy groups at ortho and meta positions, exhibited the highest potency (IC50 = 40 µM) against the PC3 cell line. Our findings revealed that compound 5g induced apoptosis in the PC3 cell line, which was demonstrated by activation of caspase 3, an increase in ROS levels, and early apoptosis percentage.

Conclusion: These results suggest that compound 5g holds promise as a potential therapeutic approach to cancer treatment.

Авторлар туралы

Hadi Adibi

Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences

Email: info@benthamscience.net

Leila Hosseinzadeh

Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Mahya Amirafshari

Students Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences

Email: info@benthamscience.net

Fereshteh Jalilian

Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. El-Agrody, A.M.; Fouda, A.M.; Khattab, E.S.A.E.H. Halogenated 2-amino-4H-benzohchromene derivatives as antitumor agents and the relationship between lipophilicity and antitumor activity. Med. Chem. Res., 2017, 26(4), 691-700. doi: 10.1007/s00044-016-1773-x
  2. Eid, E.M.; Hassaneen, H.M.E.; Abdelhamid, I.A.; Elwahy, A.H.M. Facile one pot, three component synthesis of novel bis(heterocycles) incorporating thieno2,3 bthiophenes via Michael addition reaction. J. Heterocycl. Chem., 2020, 57(5), 2243-2255. doi: 10.1002/jhet.3945
  3. Ghavidel, H.; Mirza, B.; Soleimani-Amiri, S. A novel, efficient, and recoverable basic Fe3O4 @C nano-catalyst for green synthesis of 4 H -chromenes in water via one-pot three component reactions. Polycycl. Aromat. Compd., 2021, 41(3), 604-625. doi: 10.1080/10406638.2019.1607413
  4. Molla, A.; Hossain, E.; Hussain, S. Multicomponent domino reactions: Borax catalyzed synthesis of highly functionalised pyran-annulated heterocycles. RSC Advances, 2013, 3(44), 21517-21523. doi: 10.1039/c3ra43514h
  5. Omar, R.S.; Ragheb, M.A.; Elwahy, A.H.; Abdelhamid, I.A. Facile onepot, three-component synthesis of novel fused 4H-pyrans incorporating 2-phenoxy-N-phenylacetamide core as novel hybrid molecules via Michael addition reaction. Arkivoc, 2021, 183-198. doi: 10.24820/ark.5550190.p011.690
  6. Rezayati, S.; Ramazani, A.; Sajjadifar, S.; Aghahosseini, H.; Rezaei, A. Design of a schiff base complex of copper coated on epoxy-modified core-shell mnps as an environmentally friendly and novel catalyst for the one-pot synthesis of various chromene-annulated heterocycles. ACS Omega, 2021, 6(39), 25608-25622. doi: 10.1021/acsomega.1c03672 PMID: 34632217
  7. Matloubi Moghaddam, F.; Eslami, M.; Hoda, G. Cysteic acid grafted to magnetic graphene oxide as a promising recoverable solid acid catalyst for the synthesis of diverse 4H-chromene. Sci. Rep., 2020, 10(1), 20968. doi: 10.1038/s41598-020-77872-8 PMID: 33262479
  8. Shanthia, G; Perumal, PT; Rao, U; Sehgal, PK Synthesis and antioxidant activity of indolyl chromenes., 2009.
  9. Panda, D.; Singh, J.P.; Wilson, L. Suppression of microtubule dynamics by LY290181. A potential mechanism for its antiproliferative action. J. Biol. Chem., 1997, 272(12), 7681-7687. doi: 10.1074/jbc.272.12.7681 PMID: 9065425
  10. Rueping, M.; Sugiono, E.; Merino, E. Asymmetric organocatalysis: An efficient enantioselective access to benzopyranes and chromenes. Chemistry, 2008, 14(21), 6329-6332. doi: 10.1002/chem.200800836 PMID: 18576457
  11. Patil, S.A.; Patil, R.; Pfeffer, L.M.; Miller, D.D. Chromenes: Potential new chemotherapeutic agents for cancer. Future Med. Chem., 2013, 5(14), 1647-1660. doi: 10.4155/fmc.13.126 PMID: 24047270
  12. Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 1993, 28(6), 517-520. doi: 10.1016/0223-5234(93)90020-F
  13. Raj, T.; Bhatia, R.K. kapur, A.; Sharma, M.; Saxena, A.K.; Ishar, M.P.S. Cytotoxic activity of 3-(5-phenyl-3 H -1,2,4dithiazol-3-yl)chromen-4-ones and 4-oxo-4 H -chromene-3-carbothioic acid N -phenylamides. Eur. J. Med. Chem., 2010, 45(2), 790-794. doi: 10.1016/j.ejmech.2009.11.001 PMID: 19939522
  14. Swelam, S.; El-Salam, A.; Zaki, M. Synthesis of some pyrazolo3,4-dpyrimidines and their fused triazole and tetrazole derivatives. J. Serb. Chem. Soc., 1999, 64(11), 655-662. doi: 10.2298/JSC9911655S
  15. Thomas, N.; Zachariah, S.M. In silico drug design and analysis of 4-Phenyl-4H-chromene derivatives as anticancer and antiinflammatory agents. Int. J. Pharm. Sci. Rev. Res., 2013, 22, 50-54.
  16. Smith, C.W.; Bailey, J.M.; Billingham, M.E.J.; Chandrasekhar, S.; Dell, C.P.; Harvey, A.K.; Hicks, C.A.; Kingston, A.E.; Wishart, G.N. The anti-rheumatic potential of a series of 2,4-di-substituted-4H-naphtho1,2-bpyran-3-carbonitriles. Bioorg. Med. Chem. Lett., 1995, 5(23), 2783-2788. doi: 10.1016/0960-894X(95)00487-E
  17. Ghorbani-Vaghei, R.; Toghraei-Semiromi, Z.; Karimi-Nami, R. One-pot synthesis of 4H-Chromene and Dihydropyrano 3, 2-c chromene derivatives in hydroalcoholic media. J. Braz. Chem., 2011, 22, 905-909.
  18. Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and biological screening of pyrano 3, 2-c quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288. doi: 10.1021/acsmedchemlett.7b00545 PMID: 29541375
  19. Kheirollahi, A.; Pordeli, M.; Safavi, M.; Mashkouri, S.; Naimi-Jamal, M.R.; Ardestani, S.K. Cytotoxic and apoptotic effects of synthetic benzochromene derivatives on human cancer cell lines. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(12), 1199-1208. doi: 10.1007/s00210-014-1038-5 PMID: 25261336
  20. Khan, A.T.; Lal, M.; Ali, S.; Khan, M.M. One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett., 2011, 52(41), 5327-5332. doi: 10.1016/j.tetlet.2011.08.019
  21. Shaabani, A.; Samadi, S.; Badri, Z.; Rahmati, A. Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems. Catal. Lett., 2005, 104(1-2), 39-43. doi: 10.1007/s10562-005-7433-2
  22. Banerjee, S.; Horn, A.; Khatri, H.; Sereda, G. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 2011, 52(16), 1878-1881. doi: 10.1016/j.tetlet.2011.02.031
  23. Khurana, J.M.; Kumar, S. Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyranocchromene derivatives in water and solvent-free conditions. Tetrahedron Lett., 2009, 50(28), 4125-4127. doi: 10.1016/j.tetlet.2009.04.125
  24. Mirza-Aghayan, M.; Nazmdeh, S.; Boukherroub, R.; Rahimifard, M.; Tarlani, A.A.; Abolghasemi-Malakshah, M. Convenient and efficient one-pot method for the synthesis of 2-amino-tetrahydro-4 H-chromenes and 2-amino-4 H-benzo h-chromenes using catalytic amount of amino-functionalized MCM-41 in aqueous media. Synth. Commun., 2013, 43(11), 1499-1507. doi: 10.1080/00397911.2011.643438
  25. Wang, X.S.; Shi, D.Q.; Tu, S.J.; Yao, C.S. A convenient synthesis of 5-Oxo-5, 6, 7, 8-tetrahydro-4 H-benzo-b-pyran derivatives catalyzed by KF-Alumina. Synth. Commun., 2003, 33(1), 119-126. doi: 10.1081/SCC-120015567
  26. Sabitha, G.; Arundhathi, K.; Sudhakar, K.; Sastry, B.S.; Yadav, J.S. Cerium (III) chloride-catalyzed one-pot synthesis of tetrahydrobenzo b pyrans. Synth. Commun., 2009, 39(3), 433-442. doi: 10.1080/00397910802378399
  27. He, L.; Szopinski, D.; Wu, Y.; Luinstra, G.A.; Theato, P. Toward self-healing hydrogels using one-pot thiol-ene click and borax-diol chemistry. ACS Macro Lett., 2015, 4(7), 673-678. doi: 10.1021/acsmacrolett.5b00336 PMID: 35596485
  28. Hussain, S.; Bharadwaj, S.K.; Chaudhuri, M.K.; Kalita, H. Borax as an Efficient Metal Free Catalyst for Hetero Michael Reactions in an Aqueous Medium; Wiley Online Library, 2007.
  29. Amiri-Zirtol, L.; Amrollahi, M.A. Borax: an environmentally clean catalyst for the synthesize of pyrano 2, 3-c pyrazoles and xanthene-1, 8-diones in H2O. Polycycl. Aromat. Compd., 2022, 42(8), 5696-5707. doi: 10.1080/10406638.2021.1954039
  30. Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; Meerovitch, K.; Bouffard, D.; Rej, R.; Denis, R.; Blais, C.; Lamothe, S.; Attardo, G.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group. J. Med. Chem., 2004, 47(25), 6299-6310. doi: 10.1021/jm049640t PMID: 15566300
  31. Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Zhao, J.; Jia, S.; Xu, L.; Crogan-Grundy, C.; Denis, R.; Barriault, N.; Vaillancourt, L.; Charron, S.; Dodd, J.; Attardo, G.; Labrecque, D.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg. Med. Chem. Lett., 2005, 15(21), 4745-4751. doi: 10.1016/j.bmcl.2005.07.066 PMID: 16143530
  32. Amr, A.G.E.; Mohamed, A.M.; Mohamed, S.F.; Abdel-Hafez, N.A.; Hammam, A.E.F.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5481-5488. doi: 10.1016/j.bmc.2006.04.045 PMID: 16713269
  33. Kemnitzer, W.; Jiang, S.; Wang, Y.; Kasibhatla, S.; Crogan-Grundy, C.; Bubenik, M.; Labrecque, D.; Denis, R.; Lamothe, S.; Attardo, G.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based HTS assay. Part 5: Modifications of the 2- and 3-positions. Bioorg. Med. Chem. Lett., 2008, 18(2), 603-607. doi: 10.1016/j.bmcl.2007.11.078 PMID: 18077161
  34. Adibi, H.; Hosseinzadeh, L.; Farhadi, S.; Ahmadi, F. Synthesis and cytotoxic evaluation of 6-amino-4-aryl-3-methyl-2, 4-dihydropyrano 2, 3-C pyrazole-carbonitrile derivatives using borax with potential anticancer effects. J. Rep. Pharm. Sci., 2013, 2(2), 27-35.
  35. Arjomandi, O.K.; Almasi, S.; Hosseinzadeh, L.; Kavoosi, M.; Adibi, H. Preparation, characterization and in vitro biological evaluation of novel curcumin derivatives as cytotoxic and apoptosis-inducing agents. Anticancer. Agents Med. Chem., 2021, 21(10), 1309-1322. doi: 10.2174/1871520620666201002111205 PMID: 33006540
  36. Hosseinzadeh, L.; Soheili, S.; Ghiasvand, N.; Ahmadi, F. shokoohinia, Y. Fatty acid mixtures from nigella sativa protects pc12 cells from oxidative stress and apoptosis induced by doxorubicin. Ulum-i Daruyi, 2018, 24(1), 15-22. doi: 10.15171/PS.2018.04
  37. Hosseinzadeh, L.; Amin, N.; Adibi, H.; Beyhaghi, E.; Hayati, S. In vitro cytotoxicity and apoptosis inducing evaluation of novel halogenated isatin derivatives. Anticancer. Agents Med. Chem., 2022, 22(13), 2439-2447. doi: 10.2174/1871520622666220119091642 PMID: 35043767
  38. Jalilian, F.; Moieni-Arya, M.; Hosseinzadeh, L.; Shokoohinia, Y. Oxypeucedanin and isoimperatorin extracted from Prangos ferulacea (L.) Lindl protect PC12 pheochromocytoma cells from oxidative stress and apoptosis induced by doxorubicin. Res. Pharm. Sci., 2021, 17(1), 12-21. PMID: 34909040
  39. Mourya, M.; Basak, A.K. Advances in chemistry of 2-amino-3-cyano-4-aryl 4h-chromenes via dehydrogenation reaction. J Sci Res., 2019, 63, 205-217.
  40. Wang, H.J.; Zhou, Y.Y.; Liu, X.L.; Zhang, W.H.; Chen, S.; Liu, X.W.; Zhou, Y. Regioselective synthesis and evaluation of 2-amino 3-cyano chromene-chrysin hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2020, 30(9)127087 doi: 10.1016/j.bmcl.2020.127087 PMID: 32160978
  41. Afifi, T.H.; Okasha, R.M.; Ahmed, H.E.A.; Ilaš, J.; Saleh, T.; Abd-El-Aziz, A.S. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: A novel series of potent antimicrobial and anticancer agents. EXCLI J., 2017, 16, 868-902. PMID: 28828001
  42. Tarhan, H.N.; Hosseinzadeh, L.; Aliabadi, A.; Babak, G.; Foroumadi, A. Cytotoxic and apoptogenic properties of 2-phenylthiazole-4-carboxamide derivatives in human carcinoma cell lines. J Rep Pharm Sci., 2012, 1(1), 1-6.
  43. Ren, D.; Tu, H.C.; Kim, H.; Wang, G.X.; Bean, G.R.; Takeuchi, O.; Jeffers, J.R.; Zambetti, G.P.; Hsieh, J.J.D.; Cheng, E.H.Y. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science, 2010, 330(6009), 1390-1393. doi: 10.1126/science.1190217 PMID: 21127253
  44. Slee, E.A.; Harte, M.T.; Kluck, R.M.; Wolf, B.B.; Casiano, C.A.; Newmeyer, D.D.; Wang, H.G.; Reed, J.C.; Nicholson, D.W.; Alnemri, E.S.; Green, D.R.; Martin, S.J. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol., 1999, 144(2), 281-292. doi: 10.1083/jcb.144.2.281 PMID: 9922454
  45. Willis, S.N.; Fletcher, J.I.; Kaufmann, T.; van Delft, M.F.; Chen, L.; Czabotar, P.E.; Ierino, H.; Lee, E.F.; Fairlie, W.D.; Bouillet, P.; Strasser, A.; Kluck, R.M.; Adams, J.M.; Huang, D.C.S. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 2007, 315(5813), 856-859. doi: 10.1126/science.1133289 PMID: 17289999
  46. Polyak, K.; Xia, Y.; Zweier, J.L.; Kinzler, K.W.; Vogelstein, B. A model for p53-induced apoptosis. Nature, 1997, 389(6648), 300-305. doi: 10.1038/38525 PMID: 9305847
  47. Benhar, M.; Engelberg, D.; Levitzki, A. ROS, stress activated kinases and stress signaling in cancer. EMBO Rep., 2002, 3(5), 420-425. doi: 10.1093/embo-reports/kvf094 PMID: 11991946
  48. Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108. doi: 10.3322/canjclin.55.2.74 PMID: 15761078
  49. Ma, L.; Wang, X.; Li, W.; Li, T.; Xiao, S.; Lu, J.; Xu, J.; Zhao, Y. Rational design, synthesis and biological evaluation of triphenylphosphonium-ginsenoside conjugates as mitochondria-targeting anti-cancer agents. Bioorg. Chem., 2020, 103104150 doi: 10.1016/j.bioorg.2020.104150 PMID: 32942193
  50. Fadok, V.A.; Voelker, D.R.; Campbell, P.A.; Cohen, J.J.; Bratton, D.L.; Henson, P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol., 1992, 148(7), 2207-2216. doi: 10.4049/jimmunol.148.7.2207 PMID: 1545126

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2023