Investigating the Anti-tumor and Apoptosis-inducing Effects of Coumarin Derivatives as Potent 15-Lipoxygenase Inhibitors on PC-3 Prostate Cancer Cells


Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction:Prostate cancer is the second most prevalent cancer among men. Despite different treatments, including surgery, chemotherapy, radiation therapy, hormone therapy and immunotherapy for this disease, patients ultimately progress to advanced states. Thus, there is a need for new treatment options targeting cell growth and apoptosis to better control the proliferation and metastasis of these cells. There are many reports indicating overexpression of the 15-lipoxygenase-1 (15-LOX-1) enzyme in prostate tumors. Studies have also shown that inhibition of this enzyme prevents the progression of prostate cancer.

Objective: This study was conducted to assess the anti-cancer properties of some coumarin derivatives as possible 15- LOX-1 inhibitors, on PC-3 prostate cancer cells.

Methods: In this study, the activity of 15-LOX-1 was evaluated in PC-3 cells by a spectrophotometric assay. In addition, due to high similarity between the 15-LOX-1 and soybean 15-lipoxygenase (SLO) (L1; EC 1, 13, 11, 12) active sites, the soybean SLO was used to investigate inhibitory effects of synthetic coumarin compounds 8- isopentenyloxycoumarin (8-IC), 8-isopentenyloxy-3-carboxycoumarin (8-ICC), 8-geranyloxycoumarin (8-GC), 8- geranyloxy-3-carboxycoumarin (8-GCC), and 8-farnesyloxy-3-carboxycoumarin (8-FCC) on this enzyme. Moreover, the cytotoxic and anticancer effects of the coumarin compounds were examined on PC-3 (Prostate Cancer) and HDF-1 (Human Dermal Fibroblast) cells by assay. Finally, apoptosis-inducing effects of alamarBlue all synthetic compounds were determined by flow cytometry.

Results: The IC50 values obtained by the alamarBlue test revealed that 8-IC, 8-GC and 8-GCC had cytotoxic effects on PC-3 cells. Treating both PC-3 and HDF-1 cells with 8-ICC and 8-FCC did not significantly reduce cell number. Furthermore, the IC50 values of 8-IC on HDF-1 cells showed cytotoxic effects, while treating these cells with 8-GC and 8- GCC did not show any significant cytotoxicity on these normal human fibroblasts. Assessing the ability of 4-MMPB (as a specific inhibitor of 15-LOX-1), 8-GC, and 8-GCC compounds to inhibit SLO revealed that these compounds exerted strong 15-LOX-1 inhibitory activity, while 8-IC and 8-FCC had a weak inhibitory effect and also 8-ICC showed no inhibitory effect on SLO enzyme. In addition, flow cytometric analysis by FITC (fluorescein isothiocyanate)- annexin V and propidium iodide showed that treatment with IC50 values of 8-GC and 8-GCC induced apoptosis in 35.2% and 30.8% of PC-3 cells, respectively.

Conclusion: Thus, 8-GC and 8-GCC can be introduced as effective anticancer agents with apoptosis-inducing properties. Furthermore, our results suggest that the cytotoxic effects of these compounds might be related to the inhibition of 15-LOX-1 enzyme in PC-3 cells. On the other hand, the cytotoxic effects of 8-IC might be due to the inhibition of other signaling pathways in PC-3 cells. However, further in vivo experiments are required to determine the exact mechanisms involved in the anticancer effects of these coumarin compounds.

Авторлар туралы

Fatemeh Maleki

Department of Biology, Faculty of Science, Ferdowsi University of Mashhad

Email: info@benthamscience.net

Hamid Sadeghian

Department of Laboratory Sciences, Neurogenic Inflammation Research Center, School of Paramedical Sciences,, Mashhad University of Medical Sciences,

Email: info@benthamscience.net

Ahmad Bahrami

Department of Biology, Faculty of Science, Ferdowsi University of Mashhad

Email: info@benthamscience.net

Seyed Goftari

Department of Biology, Faculty of Science, Ferdowsi University of Mashhad

Email: info@benthamscience.net

Maryam Matin

Department of Biology, Faculty of Science,, Ferdowsi University of Mashhad

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci., 2020, 8(3), 28. doi: 10.3390/medsci8030028 PMID: 32698438
  2. Bubendorf, L.; Schöpfer, A.; Wagner, U.; Sauter, G.; Moch, H.; Willi, N.; Gasser, T.C.; Mihatsch, M.J. Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. Hum. Pathol., 2000, 31(5), 578-583. doi: 10.1053/hp.2000.6698 PMID: 10836297
  3. Lee, J.C.; Shin, E.A.; Kim, B.; Kim, B.I.; Chitsazian-Yazdi, M.; Iranshahi, M.; Kim, S.H. Auraptene induces apoptosis via myeloid cell leukemia 1-mediated activation of caspases in PC3 and DU145 prostate cancer cells. Phytother. Res., 2017, 31(6), 891-898. doi: 10.1002/ptr.5810 PMID: 28383142
  4. Chen, Y.Q.; Edwards, I.J.; Kridel, S.J.; Thornburg, T.; Berquin, I.M. Dietary fat'gene interactions in cancer. Cancer Metastasis Rev., 2007, 26(3-4), 535-551. doi: 10.1007/s10555-007-9075-x PMID: 17849170
  5. Brash, A.R. Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem., 1999, 274(34), 23679-23682. doi: 10.1074/jbc.274.34.23679 PMID: 10446122
  6. Kühn, H.; Barnett, J.; Grunberger, D.; Baecker, P.; Chow, J.; Nguyen, B.; Bursztyn-Pettegrew, H.; Chan, H.; Sigal, E. Overexpression, purification and characterization of human recombinant 15-lipoxygenase. Biochim. Biophys. Acta Lipids Lipid Metab., 1993, 1169(1), 80-89. doi: 10.1016/0005-2760(93)90085-N PMID: 8334154
  7. Brash, A.R.; Boeglin, W.E.; Chang, M.S. Discovery of a second 15 S -lipoxygenase in humans. Proc. Natl. Acad. Sci., 1997, 94(12), 6148-6152. doi: 10.1073/pnas.94.12.6148 PMID: 9177185
  8. Kelavkar, U.P.; Nixon, J.B.; Cohen, C.; Dillehay, D.; Eling, T.E.; Badr, K.F. Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis, 2001, 22(11), 1765-1773. doi: 10.1093/carcin/22.11.1765 PMID: 11698337
  9. Spindler, S.A.; Sarkar, F.H.; Sakr, W.A.; Blackburn, M.L.; Bull, A.W.; Lagattuta, M.; Reddy, R.G. Production of 13-hydroxyoctadecadienoic acid (13-HODE) by prostate tumors and cell lines. Biochem. Biophys. Res. Commun., 1997, 239(3), 775-781. doi: 10.1006/bbrc.1997.7471 PMID: 9367845
  10. Shen, J-Q.; Zhang, Z-X.; Shen, C-F.; Liao, J-Z. Anticarcinogenic effect of Umbelliferone in human prostate carcinoma: An in vitro study. J. BUON, 2017, 22(1), 94-101. PMID: 28365941
  11. Garg, S.S.; Gupta, J.; Sharma, S.; Sahu, D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. Eur. J. Pharm. Sci., 2020, 152, 105424. doi: 10.1016/j.ejps.2020.105424 PMID: 32534193
  12. Stoyanov, E.; Mezger, J. Pechmann reaction promoted by boron trifluoride dihydrate. Molecules, 2005, 10(7), 762-766. doi: 10.3390/10070762 PMID: 18007344
  13. Bruneton, J. Pharmacognosy, phytochemistry, medicinal plants; Lavoisier Publishing Inc, 1995.
  14. Orafaie, A.; Sadeghian, H.; Bahrami, A.R.; Saboormaleki, S.; Matin, M.M. 5-farnesyloxycoumarin: A potent 15-LOX-1 inhibitor, prevents prostate cancer cell growth. Med. Chem. Res., 2017, 26(1), 227-234. doi: 10.1007/s00044-016-1737-1
  15. Hosseinymehr, M.; Matin, M.M.; Sadeghian, H.; Bahrami, A.R.; Kaseb-Mojaver, N. 8-Farnesyloxycoumarin induces apoptosis in PC-3 prostate cancer cells by inhibition of 15-lipoxygenase-1 enzymatic activity. Anticancer Drugs, 2016, 27(9), 854-862. doi: 10.1097/CAD.0000000000000399 PMID: 27362790
  16. Saboormaleki, S.; Sadeghian, H.; Bahrami, A.R.; Orafaie, A.; Matin, M.M. 7-farnesyloxycoumarin exerts anti-cancer effects on a prostate cancer cell line by 15-LOX-1 inhibition. Arch. Iran Med., 2018, 21(6), 251-259. PMID: 29940744
  17. Jabbari, A.; Mousavian, M.; Seyedi, S.M.; Bakavoli, M.; Sadeghian, H. O-prenylated 3-carboxycoumarins as a novel class of 15-LOX-1 inhibitors. PLoS One, 2017, 12(2), e0171789. doi: 10.1371/journal.pone.0171789 PMID: 28182779
  18. Tveden-Nyborg, P.; Bergmann, T.K.; Jessen, N.; Simonsen, U.; Lykkesfeldt, J. BCPT policy for experimental and clinical studies. Basic Clin. Pharmacol. Toxicol., 2021, 128(1), 4-8. doi: 10.1111/bcpt.13492 PMID: 32955760
  19. Iranshahi, M.; Jabbari, A.; Orafaie, A.; Mehri, R.; Zeraatkar, S.; Ahmadi, T.; Alimardani, M.; Sadeghian, H. Synthesis and SAR studies of mono O-prenylated coumarins as potent 15-lipoxygenase inhibitors. Eur. J. Med. Chem., 2012, 57, 134-142. doi: 10.1016/j.ejmech.2012.09.006 PMID: 23047230
  20. Choudhary, M.I.; Thomsen, W.J. Bioassay techniques for drug development; CRC Press: Boca Raton, Florida, 2001.
  21. Anthon, G.E.; Barrett, D.M. Colorimetric method for the determination of lipoxygenase activity. J. Agric. Food Chem., 2001, 49(1), 32-37. doi: 10.1021/jf000871s PMID: 11170556
  22. Vega-Avila, E.; Pugsley, M.K. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc. West. Pharmacol. Soc., 2011, 54, 10-14. PMID: 22423572
  23. Prigge, S.T.; Boyington, J.C.; Gaffney, B.J.; Amzel, L.M. Structure conservation in lipoxygenases: Structural analysis of soybean lipoxygenase-1 and modeling of human lipoxygenases. Proteins, 1996, 24(3), 275-291. doi: 10.1002/(SICI)1097-0134(199603)24:3<275:AID-PROT1>3.0.CO;2-G PMID: 8778775
  24. Pandalai, P.K.; Pilat, M.J.; Yamazaki, K.; Naik, H.; Pienta, K.J. The effects of omega-3 and omega-6 fatty acids on in vitro prostate cancer growth. Anticancer Res., 1996, 16(2), 815-820. PMID: 8687134
  25. Kelavkar, U.; Lin, Y.; Landsittel, D.; Chandran, U.; Dhir, R. The yin and yang of 15-lipoxygenase-1 and delta-desaturases: Dietary omega-6 linoleic acid metabolic pathway in prostate. J. Carcinog., 2006, 5(1), 9. doi: 10.1186/1477-3163-5-9 PMID: 16566819
  26. Hu, E; Kim, JB; Sarraf, P; Spiegelman, BM Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPAR gamma. Science, 1996, 274, 2100. doi: 10.1126/science.274.5295.2100
  27. Hsi, L.C.; Wilson, L.C.; Eling, T.E. Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate. Alteration in peroxisome proliferator-activated receptor γ. J. Biol. Chem., 2002, 277(43), 40549-40556. doi: 10.1074/jbc.M203522200 PMID: 12189136
  28. Dudek, H.; Datta, SR; Franke, TF; Birnbaum, MJ; Yao, R; Cooper, GM Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 1997, 275, 661-665. doi: 10.1126/science.275.5300.661
  29. Datta, S.R.; Dudek, H.; Tao, X.; Masters, S.; Fu, H.; Gotoh, Y.; Greenberg, M.E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997, 91(2), 231-241. doi: 10.1016/S0092-8674(00)80405-5 PMID: 9346240
  30. Szliszka, E.; Czuba, Z.P. Sędek, Ł.; Paradysz, A.; Król, W. Enhanced TRAIL-mediated apoptosis in prostate cancer cells by the bioactive compounds neobavaisoflavone and psoralidin isolated from Psoralea corylifolia. Pharmacol. Rep., 2011, 63(1), 139-148. doi: 10.1016/S1734-1140(11)70408-X PMID: 21441621
  31. Li, C.L.; Han, X.C.; Zhang, H.; Wu, J.S.; Li, B. Effect of scopoletin on apoptosis and cell cycle arrest in human prostate cancer cells in vitro. Trop. J. Pharm. Res., 2015, 14(4), 611-617. doi: 10.4314/tjpr.v14i4.8
  32. Song, X.F.; Fan, J.; Liu, L.; Liu, X.F.; Gao, F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm., 2020, 353(8), 2000025. doi: 10.1002/ardp.202000025 PMID: 32383190
  33. Rawat, A.; Reddy, A.V.B. Recent advances on anticancer activity of coumarin derivatives. Eur J. Med. Chem. Reports, 2022, 5, 100038. doi: 10.1016/j.ejmcr.2022.100038
  34. Fylaktakidou, K.; Hadjipavlou-Litina, D.; Litinas, K.; Nicolaides, D. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833. doi: 10.2174/1381612043382710 PMID: 15579073
  35. Curini, M.; Cravotto, G.; Epifano, F.; Giannone, G. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr. Med. Chem., 2006, 13(2), 199-222. doi: 10.2174/092986706775197890 PMID: 16472213
  36. Iranshahi, M.; Askari, M.; Sahebkar, A.; Hadjipavlou, L.D. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. DARU J. Pharm. Sci., 2009, 17(2), 99-103.
  37. Aghasizadeh, M.; Moghaddam, T.; Bahrami, A.R.; Sadeghian, H.; Alavi, S.J.; Matin, M.M. 8-Geranyloxycarbostyril as a potent 15-LOX-1 inhibitor showed great anti-tumor effects against prostate cancer. Life Sci., 2022, 293, 120272. doi: 10.1016/j.lfs.2021.120272 PMID: 35065164
  38. Sadeghian, H.; Attaran, N.; Jafari, Z.; Saberi, M.R.; Pordel, M.; Riazi, M.M.; Pordel, M.; Riazi, M.M. Design and synthesis of 4-methoxyphenylacetic acid esters as 15-lipoxygenase inhibitors and SAR comparative studies of them. Bioorg. Med. Chem., 2009, 17(6), 2327-2335. doi: 10.1016/j.bmc.2009.02.009 PMID: 19251422
  39. Bakavoli, M.; Nikpour, M.; Rahimizadeh, M.; Saberi, M.R.; Sadeghian, H. Design and synthesis of pyrimido4,5-b1,4benzothiazine derivatives, as potent 15-lipoxygenase inhibitors. Bioorg. Med. Chem., 2007, 15(5), 2120-2126. doi: 10.1016/j.bmc.2006.12.022 PMID: 17210254
  40. Jabbari, A.; Davoodnejad, M.; Alimardani, M.; Assadieskandar, A.; Sadeghian, A.; Safdari, H.; Movaffagh, J.; Sadeghian, H. Synthesis and SAR studies of 3-allyl-4-prenyloxyaniline amides as potent 15-lipoxygenase inhibitors. Bioorg. Med. Chem., 2012, 20(18), 5518-5526. doi: 10.1016/j.bmc.2012.07.025 PMID: 22917856
  41. Yildirim, H.; Aydemir, A.T. Multidrug resistance gene expression response to cisplatin and 5FU treatment in hepatoma, prostate and colon cancer cells. J BAUN Inst Sci Technol, 2020, 22, 698-708.
  42. Hahm, J.C.; Lee, I.K.; Kang, W.K.; Kim, S.U.; Ahn, Y.J. Cytotoxicity of neolignans identified in Saururus chinensis towards human cancer cell lines. Planta Med., 2005, 71(5), 464-469. doi: 10.1055/s-2005-864143 PMID: 15931587
  43. Dowling, C.M.; Claffey, J.; Cuffe, S.; Fichtner, I.; Pampillón, C.; Sweeney, N.J. Antitumor activity of titanocene Y in xenografted PC3 tumors in mice. Lett. Drug Des. Discov., 2008, 5, 141-144. doi: 10.2174/157018008783928463
  44. Matsumura, T.; Takigawa, N.; Kiura, K.; Shibayama, T.; Chikamori, M.; Tabata, M. Determinants of cisplatin and irinotecan activities in human lung adenocarcinoma cells: Evidence of cisplatin accumulation and topoisomerase I activity. In Vivo, 2005, 19, 717-721.
  45. Gumulec, J.; Balvan, J.; Sztalmachova, M.; Raudenska, M.; Dvorakova, V.; Knopfova, L.; Polanska, H.; Hudcova, K.; Ruttkay-Nedecky, B.; Babula, P.; Adam, V.; Kizek, R.; Stiborova, M.; Masarik, M. Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle. Int. J. Oncol., 2014, 44(3), 923-933. doi: 10.3892/ijo.2013.2223 PMID: 24366574

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2023