Proteomics Analysis Revealed Smad3 as a Potential Target of the Synergistic Antitumor Activity of Disulfiram and Cisplatin in Ovarian Cancer
- Авторы: Du R.1, Sun F.2, Li K.3, Qi J.4, Zhong W.5, Wang W.6, Sun Q.4, Deng Q.4, Wang H.7, Nie J.2, Ding C.3, Hong B.8
-
Учреждения:
- School of Basic Medical Science, Anhui Medical University
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science,, Chinese Academy of Sciences
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,, University of Science and Technology of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science,, Chinese Academy of Sciences,
- School of Basic Medical Science,, Anhui Medical University
- Выпуск: Том 23, № 15 (2023)
- Страницы: 1754-1764
- Раздел: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694348
- DOI: https://doi.org/10.2174/1871520623666230516161200
- ID: 694348
Цитировать
Полный текст
Аннотация
Introduction:Among gynecological cancers, ovarian cancer has a high mortality rate. Cisplatin-based chemotherapy is commonly used for the treatment of ovarian cancer. However, the clinical efficacy of cisplatin in ovarian cancer is limited due to the development of chemo-resistance during treatment.
Objective: In the study, we aimed to investigate the synergistic anti-cancer activity and targets of the FDA-approved drug disulfiram combined with cisplatin in ovarian cancer.
Methods: The cell viability was determined by Celltier-Glo luminescent assay. The synergistic anti-cancer activity was assessed by combination index. Cell cycle and apoptosis were detected by flow cytometry. The in vivo anti-tumor activity and side effects were evaluated using a xenografted mice model. The synergistic anti-cancer targets were identified by a mass spectrometry-based proteomics analysis.
Results: In this study, we first found that disulfiram synergistically enhanced the anti-tumor activity of cisplatin in chemo-resistant ovarian cancer cells, which was accompanied by the enhanced induction of cellular apoptosis. Secondly, the in vivo study demonstrated that the combination treatment of disulfiram and cisplatin dramatically inhibited tumor growth and had no apparent side effects in ovarian cancer xenografted mice. Finally, proteomics analysis identified SMAD3 as a potential target of disulfiram-cisplatin combined treatment, and the down-regulation of SMAD3 could increase cisplatin-induced cell death in ovarian cancer.
Conclusion: Combination treatment of disulfiram and cisplatin synergistically inhibited the growth of ovarian cancer through down-regulating SMAD3. As a repurposed drug, disulfiram could be quickly transformed into a clinic to overcome cisplatin resistance for the treatment of ovarian cancer.
Ключевые слова
Об авторах
Ruiping Du
School of Basic Medical Science, Anhui Medical University
Email: info@benthamscience.net
Feilong Sun
Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science,, Chinese Academy of Sciences
Email: info@benthamscience.net
Kai Li
State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University
Email: info@benthamscience.net
Jian Qi
Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences
Email: info@benthamscience.net
Wen Zhong
Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
Email: info@benthamscience.net
Wei Wang
Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,, University of Science and Technology of China
Email: info@benthamscience.net
Qiuyan Sun
Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences
Email: info@benthamscience.net
Qingmei Deng
Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences
Email: info@benthamscience.net
Hongzhi Wang
Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science,, Chinese Academy of Sciences,
Email: info@benthamscience.net
Jinfu Nie
Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science,, Chinese Academy of Sciences
Email: info@benthamscience.net
Chen Ding
State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Bo Hong
School of Basic Medical Science,, Anhui Medical University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Zhang, S.; Sun, K.; Zheng, R.; Zeng, H.; Wang, S.; Chen, R.; Wei, W.; He, J. Cancer incidence and mortality in China, 2015. J. Natl. Cancer Inst., 2021, 1(1), 2-11. doi: 10.1016/j.jncc.2020.12.001
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30. doi: 10.3322/caac.21387 PMID: 28055103
- Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian cancer. Nat. Rev. Dis. Primers, 2016, 2(1), 16061. doi: 10.1038/nrdp.2016.61 PMID: 27558151
- Mirahmadi, Y.; Nabavi, R.; Taheri, F.; Samadian, M.M.; Ghale-Noie, Z.N.; Farjami, M.; Samadi-khouzani, A.; Yousefi, M.; Azhdari, S.; Salmaninejad, A.; Sahebkar, A. MicroRNAs as biomarkers for early diagnosis, prognosis, and therapeutic targeting of ovarian cancer. J. Oncol., 2021, 2021, 1-25. doi: 10.1155/2021/3408937 PMID: 34721577
- Jiao, Y.; Hannafon, B.N.; Ding, W.Q. Disulfiram's anticancer activity: Evidence and mechanisms. Anticancer. Agents Med. Chem., 2016, 16(11), 1378-1384. doi: 10.2174/1871520615666160504095040 PMID: 27141876
- Skrott, Z.; Majera, D.; Gursky, J.; Buchtova, T.; Hajduch, M.; Mistrik, M.; Bartek, J. Disulfiram's anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene, 2019, 38(40), 6711-6722. doi: 10.1038/s41388-019-0915-2 PMID: 31391554
- Yip, N.C.; Fombon, I.S.; Liu, P.; Brown, S.; Kannappan, V.; Armesilla, A.L.; Xu, B.; Cassidy, J.; Darling, J.L.; Wang, W. Disulfiram modulated ROSMAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br. J. Cancer, 2011, 104(10), 1564-1574. doi: 10.1038/bjc.2011.126 PMID: 21487404
- Viola-Rhenals, M.; Patel, K.R.; Jaimes-Santamaria, L.; Wu, G.; Liu, J.; Dou, Q.P. Recent advances in antabuse (Disulfiram): The importance of its metal-binding ability to its anticancer activity. Curr. Med. Chem., 2018, 25(4), 506-524. doi: 10.2174/0929867324666171023161121 PMID: 29065820
- Terashima, Y.; Toda, E.; Itakura, M.; Otsuji, M.; Yoshinaga, S.; Okumura, K.; Shand, F.H.W.; Komohara, Y.; Takeda, M.; Kokubo, K.; Chen, M.C.; Yokoi, S.; Rokutan, H.; Kofuku, Y.; Ohnishi, K.; Ohira, M.; Iizasa, T.; Nakano, H.; Okabe, T.; Kojima, H.; Shimizu, A.; Kanegasaki, S.; Zhang, M.R.; Shimada, I.; Nagase, H.; Terasawa, H.; Matsushima, K. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat. Commun., 2020, 11(1), 609. doi: 10.1038/s41467-020-14338-5 PMID: 32001710
- Lun, X.; Wells, J.C.; Grinshtein, N.; King, J.C.; Hao, X.; Dang, N.H.; Wang, X.; Aman, A.; Uehling, D.; Datti, A.; Wrana, J.L.; Easaw, J.C.; Luchman, A.; Weiss, S.; Cairncross, J.G.; Kaplan, D.R.; Robbins, S.M.; Senger, D.L. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma. Clin. Cancer Res., 2016, 22(15), 3860-3875. doi: 10.1158/1078-0432.CCR-15-1798 PMID: 27006494
- Allensworth, J.L.; Evans, M.K.; Bertucci, F.; Aldrich, A.J.; Festa, R.A.; Finetti, P.; Ueno, N.T.; Safi, R.; McDonnell, D.P.; Thiele, D.J.; Van Laere, S.; Devi, G.R. Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol. Oncol., 2015, 9(6), 1155-1168. doi: 10.1016/j.molonc.2015.02.007 PMID: 25769405
- Kita, Y.; Hamada, A.; Saito, R.; Teramoto, Y.; Tanaka, R.; Takano, K.; Nakayama, K.; Murakami, K.; Matsumoto, K.; Akamatsu, S.; Yamasaki, T.; Inoue, T.; Tabata, Y.; Okuno, Y.; Ogawa, O.; Kobayashi, T. Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: A summary of preclinical studies. Br. J. Cancer, 2019, 121(12), 1027-1038. doi: 10.1038/s41416-019-0609-0 PMID: 31673101
- Song, W.; Tang, Z.; Shen, N.; Yu, H.; Jia, Y.; Zhang, D.; Jiang, J.; He, C.; Tian, H.; Chen, X. Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. J. Control. Release, 2016, 231, 94-102. doi: 10.1016/j.jconrel.2016.02.039 PMID: 26928530
- Moreb, J.S.; Ucar, D.; Han, S.; Amory, J.K.; Goldstein, A.S.; Ostmark, B.; Chang, L.J. The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem. Biol. Interact., 2012, 195(1), 52-60. doi: 10.1016/j.cbi.2011.10.007 PMID: 22079344
- Hu, L.; Chen, M.; Chen, X.; Zhao, C.; Fang, Z.; Wang, H.; Dai, H. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis., 2020, 11(4), 281. doi: 10.1038/s41419-020-2476-2 PMID: 32332857
- Liu, X.; Wang, W.; Yin, Y.; Li, M.; Li, H.; Xiang, H.; Xu, A.; Mei, X.; Hong, B.; Lin, W. A high-throughput drug screen identifies auranofin as a potential sensitizer of cisplatin in small cell lung cancer. Invest. New Drugs, 2019, 37(6), 1166-1176. doi: 10.1007/s10637-019-00750-2 PMID: 30825105
- Yin, Y.; Shi, W.; Deng, K.; Liu, X.; Li, H.; Lv, X.; Lui, V.W.Y.; Ding, C.; Hong, B.; Lin, W. Combinations of proteasome inhibitors with obatoclax are effective for small cell lung cancer. Acta Pharmacol. Sin., 2021, 42(8), 1298-1310. doi: 10.1038/s41401-020-00544-w PMID: 33139838
- Jangra, A.; Choi, S.A.; Yang, J.; Koh, E.J.; Phi, J.H.; Lee, J.Y.; Wang, K.C.; Kim, S.K. Disulfiram potentiates the anticancer effect of cisplatin in atypical teratoid/rhabdoid tumors (AT/RT). Cancer Lett., 2020, 486, 38-45. doi: 10.1016/j.canlet.2020.05.006 PMID: 32428661
- Wang, H.; Hong, B.; Li, X.; Deng, K.; Li, H.; Yan Lui, V.W.; Lin, W. JQ1 synergizes with the Bcl-2 inhibitor ABT-263 against MYCN -amplified small cell lung cancer. Oncotarget, 2017, 8(49), 86312-86324. doi: 10.18632/oncotarget.21146 PMID: 29156797
- Ashton, J.C. Drug combination studies and their synergy quantification using the Chou-Talalay method--letter. Cancer Res., 2015, 75(11), 2400. doi: 10.1158/0008-5472.CAN-14-3763 PMID: 25977339
- Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767. doi: 10.3390/ijms20112767 PMID: 31195692
- Sabbadini, F.; Bertolini, M.; De Matteis, S.; Mangiameli, D.; Contarelli, S.; Pietrobono, S.; Melisi, D. The multifaceted role of tgf-β in gastrointestinal tumors. Cancers , 2021, 13(16), 3960. doi: 10.3390/cancers13163960 PMID: 34439114
- Xie, Y.; Zhu, S.; Zang, J.; Wu, G.; Wen, Y.; Liang, Y.; Long, Y.; Guo, W.; Zang, C.; Hu, X.; Fan, G.; Xiang, S.; Zhang, J. ADNP prompts the cisplatin-resistance of bladder cancer via TGF-β-mediated epithelial-mesenchymal transition (EMT) pathway. J. Cancer, 2021, 12(17), 5114-5124. doi: 10.7150/jca.58049 PMID: 34335928
- Yin, J.; Wang, L.; Wang, Y.; Shen, H.; Wang, X.; Wu, L. Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway. OncoTargets Ther., 2019, 12, 3893-3903. doi: 10.2147/OTT.S199601 PMID: 31190888
- Ji, H.; Li, K.; Xu, W.; Li, R.; Xie, S.; Zhu, X. Prediction of the mechanisms by which quercetin enhances cisplatin action in cervical cancer: A network pharmacology study and experimental validation. Front. Oncol., 2022, 11, 780387. doi: 10.3389/fonc.2021.780387 PMID: 35070983
- Liang, F.; Ren, C.; Wang, J.; Wang, S.; Yang, L.; Han, X.; Chen, Y.; Tong, G.; Yang, G. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis, 2019, 8(10), 59. doi: 10.1038/s41389-019-0165-8 PMID: 31597912
- Chatterjee, N.; Whitman, M.A.; Harris, C.A.; Min, S.M.; Jonas, O.; Lien, E.C.; Luengo, A.; Vander Heiden, M.G.; Hong, J.; Zhou, P.; Hemann, M.T.; Walker, G.C. REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. Proc. Natl. Acad. Sci., 2020, 117(46), 28918-28921. doi: 10.1073/pnas.2016064117 PMID: 33168727
- Mohammad, I.S.; Teng, C.; Chaurasiya, B.; Yin, L.; Wu, C.; He, W. Drug-delivering-drug approach-based codelivery of paclitaxel and disulfiram for treating multidrug-resistant cancer. Int. J. Pharm., 2019, 557, 304-313. doi: 10.1016/j.ijpharm.2018.12.067 PMID: 30599232
Дополнительные файлы
