Mechanism of Procyanidin B2 in the Treatment of Chronic Myeloid Leukemia Based on Integrating Network Pharmacology and Molecular Docking


Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction:To study the pharmacological mechanism of procyanidin B2 (PCB2) on chronic myeloid leukemia (CML) by integrating network pharmacological methods systematically.

Methods: Firstly, the potential target genes of PCB2 were predicted by the pharmacological database and analysis platform (TCMSP and Pharmmapper). Meanwhile, the relevant target genes of CML were collected from GeneCards and DisGene. Pooled data were collected to screen for common target genes. Furthermore, the above intersection genes were imported into the String website to construct a protein-protein interaction (PPI) network, and the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were further analyzed. Besides, molecular docking was performed to verify the possible binding conformation between PCB2 and candidate targets. Finally, MTT and RT-PCR experiments of K562 cells were performed to verify the above results of network pharmacology.

Results: A total of 229 PCB2 target genes were retrieved, among which 186 target genes had interaction with CML. The pharmacological effects of PCB2 on CML were related to some important oncogenes and signaling pathways. The top ten core targets predicted by Network Analysis were as follows: AKT1, EGFR, ESR1, CASP3, SRC, VEGFA, HIF1A, ERBB2, MTOR, and IGF1. Molecular docking studies confirmed that hydrogen bonding was the main interaction force of PCB2 binding targets. According to the molecular docking score, the following three target proteins were most likely to bind to PCB2: VEGFA (-5.5 kcal/mol), SRC (-5.1 kcal/mol), and EGFR (-4.6 kcal/mol). After treatment of PCB2 for 24h, mRNA expression levels of VEGFA and HIF1A decreased significantly in K562 cells.

Conclusion: Through integrating network pharmacology combined with molecular docking, the study revealed the potential mechanism of PCB2 anti-chronic myeloid leukemia.

Авторлар туралы

Hong-Xing Li

The First Clinical Medical College, Lanzhou University

Email: info@benthamscience.net

Yuan-Xue Jing

The First Clinical Medical College, Lanzhou University

Email: info@benthamscience.net

Yi-Hong Chai

The First Clinical Medical College, Lanzhou University

Email: info@benthamscience.net

Xiao-Hong Sun

The First Clinical Medical College, Lanzhou University

Email: info@benthamscience.net

Xiao-Xia He

The First Clinical Medical College, Lanzhou University

Email: info@benthamscience.net

Shi-Long Xue

The First Clinical Medical College, Lanzhou University

Email: info@benthamscience.net

Ya-Ming Xi

The First Clinical Medical College, Lanzhou University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Xiao-Ling Ma

The First Clinical Medical College, Lanzhou University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am. J. Hematol., 2020, 95(6), 691-709. doi: 10.1002/ajh.25792 PMID: 32239758
  2. Höglund, M.; Sandin, F.; Simonsson, B. Epidemiology of chronic myeloid leukaemia: An update. Ann. Hematol., 2015, 94(S2), 241-247. doi: 10.1007/s00277-015-2314-2 PMID: 25814090
  3. Hochhaus, A.; Baccarani, M.; Silver, R.T.; Schiffer, C.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Deininger, M.W.; Guilhot, F.; Hjorth-Hansen, H.; Hughes, T.P.; Janssen, J.J.W.M.; Kantarjian, H.M.; Kim, D.W.; Larson, R.A.; Lipton, J.H.; Mahon, F.X.; Mayer, J.; Nicolini, F.; Niederwieser, D.; Pane, F.; Radich, J.P.; Rea, D.; Richter, J.; Rosti, G.; Rousselot, P.; Saglio, G.; Saußele, S.; Soverini, S.; Steegmann, J.L.; Turkina, A.; Zaritskey, A.; Hehlmann, R. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia, 2020, 34(4), 966-984. doi: 10.1038/s41375-020-0776-2 PMID: 32127639
  4. Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; DiPersio, J.; DeAngelo, D.J.; Abruzzese, E.; Rea, D.; Baccarani, M.; Müller, M.C.; Gambacorti-Passerini, C.; Wong, S.; Lustgarten, S.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Guilhot, F.; Deininger, M.W.; Hochhaus, A.; Hughes, T.; Goldman, J.M.; Shah, N.P.; Kantarjian, H. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2013, 369(19), 1783-1796. doi: 10.1056/NEJMoa1306494 PMID: 24180494
  5. Cortes, J.E.; Gambacorti-Passerini, C.; Deininger, M.W.; Mauro, M.J.; Chuah, C.; Kim, D.W.; Dyagil, I.; Glushko, N.; Milojkovic, D.; le Coutre, P.; Garcia-Gutierrez, V.; Reilly, L.; Jeynes-Ellis, A.; Leip, E.; Bardy-Bouxin, N.; Hochhaus, A.; Brümmendorf, T.H. Bosutinib versus Imatinib for newly diagnosed chronic myeloid leukemia: Results from the randomized before trial. J. Clin. Oncol., 2018, 36(3), 231-237. doi: 10.1200/JCO.2017.74.7162 PMID: 29091516
  6. Amir, M.; Javed, S. A review on the therapeutic role of TKIs in case of CML in combination with epigenetic drugs. Front. Genet., 2021, 12, 742802. doi: 10.3389/fgene.2021.742802 PMID: 34745216
  7. Wolfe, H.R.; Rein, L.A.M. The evolving landscape of frontline therapy in chronic phase chronic myeloid leukemia (CML). Curr. Hematol. Malig. Rep., 2021, 16(5), 448-454. doi: 10.1007/s11899-021-00655-z PMID: 34661874
  8. Minciacchi, V.R.; Kumar, R.; Krause, D.S. Chronic myeloid leukemia: A model disease of the past, present and future. Cells, 2021, 10(1), 117. doi: 10.3390/cells10010117 PMID: 33435150
  9. Hehlmann, R. Chronic myeloid leukemia in 2020. HemaSphere, 2020, 4(5), e468. doi: 10.1097/HS9.0000000000000468 PMID: 33134861
  10. Lübking, A.; Dreimane, A.; Sandin, F.; Isaksson, C.; Märkevärn, B.; Brune, M.; Ljungman, P.; Lenhoff, S.; Stenke, L.; Höglund, M.; Richter, J.; Olsson-Strömberg, U. Allogeneic stem cell transplantation for chronic myeloid leukemia in the TKI era: Population-based data from the Swedish CML registry. Bone Marrow Transplant., 2019, 54(11), 1764-1774. doi: 10.1038/s41409-019-0513-5 PMID: 30962502
  11. Valencia-Hernandez, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Chávez-González, M.L.; Contreras-Esquivel, J.C.; Aguilar, C.N. Procyanidins: From agro-industrial waste to food as bioactive molecules. Foods, 2021, 10(12), 3152. doi: 10.3390/foods10123152 PMID: 34945704
  12. Yang, H.; Xiao, L.; Yuan, Y.; Luo, X.; Jiang, M.; Ni, J.; Wang, N. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochem. Pharmacol., 2014, 92(4), 599-606. doi: 10.1016/j.bcp.2014.10.001 PMID: 25450671
  13. Chuang, C.C.; McIntosh, M.K. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu. Rev. Nutr., 2011, 31(1), 155-176. doi: 10.1146/annurev-nutr-072610-145149 PMID: 21548775
  14. Gouvêa, C.M.C.P.; Avelar, M.M. Procyanidin B2 cytotoxicity to MCF-7 human breast adenocarcinoma cells. Indian J. Pharm. Sci., 2012, 74(4), 351-355. doi: 10.4103/0250-474X.107070 PMID: 23626391
  15. Chen, H.; Wang, W.; Yu, S.; Wang, H.; Tian, Z.; Zhu, S. Procyanidins and their therapeutic potential against oral diseases. Molecules, 2022, 27(9), 2932. doi: 10.3390/molecules27092932 PMID: 35566283
  16. Liu, J.; Zhang, W.Y.; Kong, Z.H.; Ding, D.G. Induction of cell cycle arrest and apoptosis by grape seed procyanidin extract in human bladder cancer BIU87 cells. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(15), 3282-3291. PMID: 27467005
  17. Owczarek, K.; Hrabec, E.; Fichna, J.; Sosnowska, D. Koziołkiewicz, M.; Szymański, J.; Lewandowska, U. Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase-2, metalloproteinase-9, and nuclear factor-kappaB in human colon cancer cells. Acta Biochim. Pol., 2017, 64(3), 567-576. doi: 10.18388/abp.2017_1599 PMID: 28787469
  18. Lee, Y. Cancer chemopreventive potential of Procyanidin. Toxicol. Res., 2017, 33(4), 273-282. doi: 10.5487/TR.2017.33.4.273 PMID: 29071011
  19. Ma, Y.; Zhang, X.; Su, Z.; Li, N.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Insight into the molecular mechanism of a herbal injection by integrating network pharmacology and in vitro. J. Ethnopharmacol., 2015, 173, 91-99. doi: 10.1016/j.jep.2015.07.016 PMID: 26192807
  20. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  21. Osman, A.E.G.; Deininger, M.W. Chronic Myeloid Leukemia: Modern therapies, current challenges and future directions. Blood Rev., 2021, 49, 100825. doi: 10.1016/j.blre.2021.100825 PMID: 33773846
  22. Hehlmann, R. The new ELN recommendations for treating CML. J. Clin. Med., 2020, 9(11), 3671. doi: 10.3390/jcm9113671 PMID: 33207600
  23. Braun, T.P.; Eide, C.A.; Druker, B.J. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell, 2020, 37(4), 530-542. doi: 10.1016/j.ccell.2020.03.006 PMID: 32289275
  24. Chen, J.; Wang, F.; Fang, J.; Nie, D.; Zhang, Y.; Chen, X.; Li, Y.; Tan, Y.; Ma, X.; Guo, Y.; Cao, P.; Liu, M.; Liu, H. Dynamic evolution of ponatinib‐resistant mutations in BCR–ABL1 ‐positive leukaemias revealed by next‐generation sequencing. Br. J. Haematol., 2020, 191(5), e113-e116. doi: 10.1111/bjh.17068 PMID: 33460055
  25. Stetka, J.; Gursky, J.; Liñan Velasquez, J.; Mojzikova, R.; Vyhlidalova, P.; Vrablova, L.; Bartek, J.; Divoky, V. Role of DNA damage response in suppressing malignant progression of chronic myeloid leukemia and polycythemia vera: Impact of different oncogenes. Cancers, 2020, 12(4), 903. doi: 10.3390/cancers12040903 PMID: 32272770
  26. Vetrie, D.; Helgason, G.V.; Copland, M. The leukaemia stem cell: Similarities, differences and clinical prospects in CML and AML. Nat. Rev. Cancer, 2020, 20(3), 158-173. doi: 10.1038/s41568-019-0230-9 PMID: 31907378
  27. Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150. doi: 10.1016/j.tips.2021.11.004 PMID: 34895945
  28. Zeng, Y.X.; Wang, S.; Wei, L.; Cui, Y.Y.; Chen, Y.H. Proanthocyanidins: Components, pharmacokinetics and biomedical properties. Am. J. Chin. Med., 2020, 48(4), 813-869. doi: 10.1142/S0192415X2050041X PMID: 32536248
  29. Dinner, S.; Platanias, L.C. Targeting the mTOR pathway in leukemia. J. Cell. Biochem., 2016, 117(8), 1745-1752. doi: 10.1002/jcb.25559 PMID: 27018341
  30. Bibi, S.; Arslanhan, M.D.; Langenfeld, F.; Jeanningros, S.; Cerny-Reiterer, S.; Hadzijusufovic, E.; Tchertanov, L.; Moriggl, R.; Valent, P.; Arock, M. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: Possible new targets of therapy. Haematologica, 2014, 99(3), 417-429. doi: 10.3324/haematol.2013.098442 PMID: 24598853
  31. Meeran, S.M.; Katiyar, S.K. Proanthocyanidins inhibit mitogenic and survival-signaling in vitro and tumor growth in vivo. Front. Biosci., 2008, 13(13), 887-897. doi: 10.2741/2729 PMID: 17981597
  32. Wu, P.S.; Wang, C.Y.; Chen, P.S.; Hung, J.H.; Yen, J.H.; Wu, M.J. 8-Hydroxydaidzein downregulates JAK/STAT, MMP, oxidative phosphorylation, and PI3K/AKT pathways in K562 cells. Biomedicines, 2021, 9(12), 1907. doi: 10.3390/biomedicines9121907 PMID: 34944720
  33. Luo, X.; Feng, M.; Zhu, X.; Li, Y.; Fei, J.; Zhang, Y. VEGF depletion enhances bcr-abl-specific sensitivity of arsenic trioxide in chronic myelogenous leukemia. Hematology, 2013, 18(6), 334-340. doi: 10.1179/1607845413Y.0000000083 PMID: 24129092
  34. Steinbach, A.; Clark, S.M.; Clemmons, A.B. Bosutinib: A novel src/abl kinase inhibitor for chronic myelogenous leukemia. J. Adv. Pract. Oncol., 2013, 4(6), 451-455. PMID: 25032026
  35. Bertacchini, J.; Heidari, N.; Mediani, L.; Capitani, S.; Shahjahani, M.; Ahmadzadeh, A.; Saki, N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci., 2015, 72(12), 2337-2347. doi: 10.1007/s00018-015-1867-5 PMID: 25712020
  36. Nakahara, F.; Kitaura, J.; Uchida, T.; Nishida, C.; Togami, K.; Inoue, D.; Matsukawa, T.; Kagiyama, Y.; Enomoto, Y.; Kawabata, K.C.; Chen-Yi, L.; Komeno, Y.; Izawa, K.; Oki, T.; Nagae, G.; Harada, Y.; Harada, H.; Otsu, M.; Aburatani, H.; Heissig, B.; Hattori, K.; Kitamura, T. Hes1 promotes blast crisis in chronic myelogenous leukemia through MMP-9 upregulation in leukemic cells. Blood, 2014, 123(25), 3932-3942. doi: 10.1182/blood-2013-01-476747 PMID: 24825862
  37. Zhu, X.; Wang, L.; Zhang, B.; Li, J.; Dou, X.; Zhao, R.C. TGF- 1-induced PI3K/Akt/NF- B/MMP9 signalling pathway is activated in Philadelphia chromosome-positive chronic myeloid leukaemia hemangioblasts. J. Biochem., 2011, 149(4), 405-414. doi: 10.1093/jb/mvr016 PMID: 21288887

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2023