Mechanism of Procyanidin B2 in the Treatment of Chronic Myeloid Leukemia Based on Integrating Network Pharmacology and Molecular Docking
- Авторлар: Li H.1, Jing Y.1, Chai Y.1, Sun X.1, He X.1, Xue S.1, Xi Y.1, Ma X.1
-
Мекемелер:
- The First Clinical Medical College, Lanzhou University
- Шығарылым: Том 23, № 16 (2023)
- Беттер: 1838-1847
- Бөлім: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694357
- DOI: https://doi.org/10.2174/1871520623666230526122524
- ID: 694357
Дәйексөз келтіру
Толық мәтін
Аннотация
Introduction:To study the pharmacological mechanism of procyanidin B2 (PCB2) on chronic myeloid leukemia (CML) by integrating network pharmacological methods systematically.
Methods: Firstly, the potential target genes of PCB2 were predicted by the pharmacological database and analysis platform (TCMSP and Pharmmapper). Meanwhile, the relevant target genes of CML were collected from GeneCards and DisGene. Pooled data were collected to screen for common target genes. Furthermore, the above intersection genes were imported into the String website to construct a protein-protein interaction (PPI) network, and the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were further analyzed. Besides, molecular docking was performed to verify the possible binding conformation between PCB2 and candidate targets. Finally, MTT and RT-PCR experiments of K562 cells were performed to verify the above results of network pharmacology.
Results: A total of 229 PCB2 target genes were retrieved, among which 186 target genes had interaction with CML. The pharmacological effects of PCB2 on CML were related to some important oncogenes and signaling pathways. The top ten core targets predicted by Network Analysis were as follows: AKT1, EGFR, ESR1, CASP3, SRC, VEGFA, HIF1A, ERBB2, MTOR, and IGF1. Molecular docking studies confirmed that hydrogen bonding was the main interaction force of PCB2 binding targets. According to the molecular docking score, the following three target proteins were most likely to bind to PCB2: VEGFA (-5.5 kcal/mol), SRC (-5.1 kcal/mol), and EGFR (-4.6 kcal/mol). After treatment of PCB2 for 24h, mRNA expression levels of VEGFA and HIF1A decreased significantly in K562 cells.
Conclusion: Through integrating network pharmacology combined with molecular docking, the study revealed the potential mechanism of PCB2 anti-chronic myeloid leukemia.
Негізгі сөздер
Авторлар туралы
Hong-Xing Li
The First Clinical Medical College, Lanzhou University
Email: info@benthamscience.net
Yuan-Xue Jing
The First Clinical Medical College, Lanzhou University
Email: info@benthamscience.net
Yi-Hong Chai
The First Clinical Medical College, Lanzhou University
Email: info@benthamscience.net
Xiao-Hong Sun
The First Clinical Medical College, Lanzhou University
Email: info@benthamscience.net
Xiao-Xia He
The First Clinical Medical College, Lanzhou University
Email: info@benthamscience.net
Shi-Long Xue
The First Clinical Medical College, Lanzhou University
Email: info@benthamscience.net
Ya-Ming Xi
The First Clinical Medical College, Lanzhou University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Xiao-Ling Ma
The First Clinical Medical College, Lanzhou University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am. J. Hematol., 2020, 95(6), 691-709. doi: 10.1002/ajh.25792 PMID: 32239758
- Höglund, M.; Sandin, F.; Simonsson, B. Epidemiology of chronic myeloid leukaemia: An update. Ann. Hematol., 2015, 94(S2), 241-247. doi: 10.1007/s00277-015-2314-2 PMID: 25814090
- Hochhaus, A.; Baccarani, M.; Silver, R.T.; Schiffer, C.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Deininger, M.W.; Guilhot, F.; Hjorth-Hansen, H.; Hughes, T.P.; Janssen, J.J.W.M.; Kantarjian, H.M.; Kim, D.W.; Larson, R.A.; Lipton, J.H.; Mahon, F.X.; Mayer, J.; Nicolini, F.; Niederwieser, D.; Pane, F.; Radich, J.P.; Rea, D.; Richter, J.; Rosti, G.; Rousselot, P.; Saglio, G.; Saußele, S.; Soverini, S.; Steegmann, J.L.; Turkina, A.; Zaritskey, A.; Hehlmann, R. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia, 2020, 34(4), 966-984. doi: 10.1038/s41375-020-0776-2 PMID: 32127639
- Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; DiPersio, J.; DeAngelo, D.J.; Abruzzese, E.; Rea, D.; Baccarani, M.; Müller, M.C.; Gambacorti-Passerini, C.; Wong, S.; Lustgarten, S.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Guilhot, F.; Deininger, M.W.; Hochhaus, A.; Hughes, T.; Goldman, J.M.; Shah, N.P.; Kantarjian, H. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2013, 369(19), 1783-1796. doi: 10.1056/NEJMoa1306494 PMID: 24180494
- Cortes, J.E.; Gambacorti-Passerini, C.; Deininger, M.W.; Mauro, M.J.; Chuah, C.; Kim, D.W.; Dyagil, I.; Glushko, N.; Milojkovic, D.; le Coutre, P.; Garcia-Gutierrez, V.; Reilly, L.; Jeynes-Ellis, A.; Leip, E.; Bardy-Bouxin, N.; Hochhaus, A.; Brümmendorf, T.H. Bosutinib versus Imatinib for newly diagnosed chronic myeloid leukemia: Results from the randomized before trial. J. Clin. Oncol., 2018, 36(3), 231-237. doi: 10.1200/JCO.2017.74.7162 PMID: 29091516
- Amir, M.; Javed, S. A review on the therapeutic role of TKIs in case of CML in combination with epigenetic drugs. Front. Genet., 2021, 12, 742802. doi: 10.3389/fgene.2021.742802 PMID: 34745216
- Wolfe, H.R.; Rein, L.A.M. The evolving landscape of frontline therapy in chronic phase chronic myeloid leukemia (CML). Curr. Hematol. Malig. Rep., 2021, 16(5), 448-454. doi: 10.1007/s11899-021-00655-z PMID: 34661874
- Minciacchi, V.R.; Kumar, R.; Krause, D.S. Chronic myeloid leukemia: A model disease of the past, present and future. Cells, 2021, 10(1), 117. doi: 10.3390/cells10010117 PMID: 33435150
- Hehlmann, R. Chronic myeloid leukemia in 2020. HemaSphere, 2020, 4(5), e468. doi: 10.1097/HS9.0000000000000468 PMID: 33134861
- Lübking, A.; Dreimane, A.; Sandin, F.; Isaksson, C.; Märkevärn, B.; Brune, M.; Ljungman, P.; Lenhoff, S.; Stenke, L.; Höglund, M.; Richter, J.; Olsson-Strömberg, U. Allogeneic stem cell transplantation for chronic myeloid leukemia in the TKI era: Population-based data from the Swedish CML registry. Bone Marrow Transplant., 2019, 54(11), 1764-1774. doi: 10.1038/s41409-019-0513-5 PMID: 30962502
- Valencia-Hernandez, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Chávez-González, M.L.; Contreras-Esquivel, J.C.; Aguilar, C.N. Procyanidins: From agro-industrial waste to food as bioactive molecules. Foods, 2021, 10(12), 3152. doi: 10.3390/foods10123152 PMID: 34945704
- Yang, H.; Xiao, L.; Yuan, Y.; Luo, X.; Jiang, M.; Ni, J.; Wang, N. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochem. Pharmacol., 2014, 92(4), 599-606. doi: 10.1016/j.bcp.2014.10.001 PMID: 25450671
- Chuang, C.C.; McIntosh, M.K. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu. Rev. Nutr., 2011, 31(1), 155-176. doi: 10.1146/annurev-nutr-072610-145149 PMID: 21548775
- Gouvêa, C.M.C.P.; Avelar, M.M. Procyanidin B2 cytotoxicity to MCF-7 human breast adenocarcinoma cells. Indian J. Pharm. Sci., 2012, 74(4), 351-355. doi: 10.4103/0250-474X.107070 PMID: 23626391
- Chen, H.; Wang, W.; Yu, S.; Wang, H.; Tian, Z.; Zhu, S. Procyanidins and their therapeutic potential against oral diseases. Molecules, 2022, 27(9), 2932. doi: 10.3390/molecules27092932 PMID: 35566283
- Liu, J.; Zhang, W.Y.; Kong, Z.H.; Ding, D.G. Induction of cell cycle arrest and apoptosis by grape seed procyanidin extract in human bladder cancer BIU87 cells. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(15), 3282-3291. PMID: 27467005
- Owczarek, K.; Hrabec, E.; Fichna, J.; Sosnowska, D. Koziołkiewicz, M.; Szymański, J.; Lewandowska, U. Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase-2, metalloproteinase-9, and nuclear factor-kappaB in human colon cancer cells. Acta Biochim. Pol., 2017, 64(3), 567-576. doi: 10.18388/abp.2017_1599 PMID: 28787469
- Lee, Y. Cancer chemopreventive potential of Procyanidin. Toxicol. Res., 2017, 33(4), 273-282. doi: 10.5487/TR.2017.33.4.273 PMID: 29071011
- Ma, Y.; Zhang, X.; Su, Z.; Li, N.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Insight into the molecular mechanism of a herbal injection by integrating network pharmacology and in vitro. J. Ethnopharmacol., 2015, 173, 91-99. doi: 10.1016/j.jep.2015.07.016 PMID: 26192807
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Osman, A.E.G.; Deininger, M.W. Chronic Myeloid Leukemia: Modern therapies, current challenges and future directions. Blood Rev., 2021, 49, 100825. doi: 10.1016/j.blre.2021.100825 PMID: 33773846
- Hehlmann, R. The new ELN recommendations for treating CML. J. Clin. Med., 2020, 9(11), 3671. doi: 10.3390/jcm9113671 PMID: 33207600
- Braun, T.P.; Eide, C.A.; Druker, B.J. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell, 2020, 37(4), 530-542. doi: 10.1016/j.ccell.2020.03.006 PMID: 32289275
- Chen, J.; Wang, F.; Fang, J.; Nie, D.; Zhang, Y.; Chen, X.; Li, Y.; Tan, Y.; Ma, X.; Guo, Y.; Cao, P.; Liu, M.; Liu, H. Dynamic evolution of ponatinib‐resistant mutations in BCRABL1 ‐positive leukaemias revealed by next‐generation sequencing. Br. J. Haematol., 2020, 191(5), e113-e116. doi: 10.1111/bjh.17068 PMID: 33460055
- Stetka, J.; Gursky, J.; Liñan Velasquez, J.; Mojzikova, R.; Vyhlidalova, P.; Vrablova, L.; Bartek, J.; Divoky, V. Role of DNA damage response in suppressing malignant progression of chronic myeloid leukemia and polycythemia vera: Impact of different oncogenes. Cancers, 2020, 12(4), 903. doi: 10.3390/cancers12040903 PMID: 32272770
- Vetrie, D.; Helgason, G.V.; Copland, M. The leukaemia stem cell: Similarities, differences and clinical prospects in CML and AML. Nat. Rev. Cancer, 2020, 20(3), 158-173. doi: 10.1038/s41568-019-0230-9 PMID: 31907378
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150. doi: 10.1016/j.tips.2021.11.004 PMID: 34895945
- Zeng, Y.X.; Wang, S.; Wei, L.; Cui, Y.Y.; Chen, Y.H. Proanthocyanidins: Components, pharmacokinetics and biomedical properties. Am. J. Chin. Med., 2020, 48(4), 813-869. doi: 10.1142/S0192415X2050041X PMID: 32536248
- Dinner, S.; Platanias, L.C. Targeting the mTOR pathway in leukemia. J. Cell. Biochem., 2016, 117(8), 1745-1752. doi: 10.1002/jcb.25559 PMID: 27018341
- Bibi, S.; Arslanhan, M.D.; Langenfeld, F.; Jeanningros, S.; Cerny-Reiterer, S.; Hadzijusufovic, E.; Tchertanov, L.; Moriggl, R.; Valent, P.; Arock, M. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: Possible new targets of therapy. Haematologica, 2014, 99(3), 417-429. doi: 10.3324/haematol.2013.098442 PMID: 24598853
- Meeran, S.M.; Katiyar, S.K. Proanthocyanidins inhibit mitogenic and survival-signaling in vitro and tumor growth in vivo. Front. Biosci., 2008, 13(13), 887-897. doi: 10.2741/2729 PMID: 17981597
- Wu, P.S.; Wang, C.Y.; Chen, P.S.; Hung, J.H.; Yen, J.H.; Wu, M.J. 8-Hydroxydaidzein downregulates JAK/STAT, MMP, oxidative phosphorylation, and PI3K/AKT pathways in K562 cells. Biomedicines, 2021, 9(12), 1907. doi: 10.3390/biomedicines9121907 PMID: 34944720
- Luo, X.; Feng, M.; Zhu, X.; Li, Y.; Fei, J.; Zhang, Y. VEGF depletion enhances bcr-abl-specific sensitivity of arsenic trioxide in chronic myelogenous leukemia. Hematology, 2013, 18(6), 334-340. doi: 10.1179/1607845413Y.0000000083 PMID: 24129092
- Steinbach, A.; Clark, S.M.; Clemmons, A.B. Bosutinib: A novel src/abl kinase inhibitor for chronic myelogenous leukemia. J. Adv. Pract. Oncol., 2013, 4(6), 451-455. PMID: 25032026
- Bertacchini, J.; Heidari, N.; Mediani, L.; Capitani, S.; Shahjahani, M.; Ahmadzadeh, A.; Saki, N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci., 2015, 72(12), 2337-2347. doi: 10.1007/s00018-015-1867-5 PMID: 25712020
- Nakahara, F.; Kitaura, J.; Uchida, T.; Nishida, C.; Togami, K.; Inoue, D.; Matsukawa, T.; Kagiyama, Y.; Enomoto, Y.; Kawabata, K.C.; Chen-Yi, L.; Komeno, Y.; Izawa, K.; Oki, T.; Nagae, G.; Harada, Y.; Harada, H.; Otsu, M.; Aburatani, H.; Heissig, B.; Hattori, K.; Kitamura, T. Hes1 promotes blast crisis in chronic myelogenous leukemia through MMP-9 upregulation in leukemic cells. Blood, 2014, 123(25), 3932-3942. doi: 10.1182/blood-2013-01-476747 PMID: 24825862
- Zhu, X.; Wang, L.; Zhang, B.; Li, J.; Dou, X.; Zhao, R.C. TGF- 1-induced PI3K/Akt/NF- B/MMP9 signalling pathway is activated in Philadelphia chromosome-positive chronic myeloid leukaemia hemangioblasts. J. Biochem., 2011, 149(4), 405-414. doi: 10.1093/jb/mvr016 PMID: 21288887
Қосымша файлдар
