Intermittent Fasting against Cancer Development and Progression: Highlighting Potential Anticancer Molecular Mechanisms
- Авторлар: Psara E.1, Poulios E.1, Papadopoulou S.2, Tolia M.3, Vasios G.1, Giaginis C.1
-
Мекемелер:
- Department of Food Science and Nutrition, University of the Aegean
- Department of Nutritional Science and Dietetics, International Hellenic University
- Department of Radiotherapy, School of Medicine, University of Crete
- Шығарылым: Том 23, № 17 (2023)
- Беттер: 1889-1909
- Бөлім: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694362
- DOI: https://doi.org/10.2174/1871520623666230816090229
- ID: 694362
Дәйексөз келтіру
Толық мәтін
Аннотация
Background: Intermittent fasting (IF) diets have been popular since the last few decades because of their provable clinical efficiency on weight control of the subjects. These diet types are generally safe, resulting in health promoting effects against several human diseases like cardiovascular diseases, diabetes mellitus, neurogenerative disorders and cancer.
Objective: To review whether IF can act against cancer development and progression, highlighting potential anticancer molecular mechanisms in clinical studies.
Methods: Applied summarization of the available clinical studies investigating the effectiveness of IF against cancer development and progression and cancer-induced indicators. Scientific databases, e.g., PubMed, and Scopus, were comprehensively searched using relative words to identify in vivo and in vitro data, as well as clinical studies.
Results: IF seems to exert health-promoting effects in cancer patients through induction of autophagy, which enhances the in vivo suppression of tumor development, by chemotherapy. IF provokes tumors to chemotherapy and defends the normal cells from its adverse side effects, increasing the immune response. In addition, it enhances the cytotoxic CD8(+) tumor-infiltrating lymphocytes and the bone marrow lymphoid progenitor cells, delaying the cancer progression. IF reduces oxidative stress via repression of translation and induces cellular apoptosis. Fasting exerts anti-aging properties modulating the secretion of IGF-1, IGFBP-1, glucose, and insulin while, at the same time, it integrates cell adaptive responses and activates cell signaling pathways which stimulates antioxidant defenses, DNA repairment, control of protein quality, mitochondrial synthesis while decreasing inflammation.
Conclusion: IF appears to exert health promoting effects against cancer development and progression, suppressing several kinds of cancer. There are well-recognized and not well-recognized molecular processes accentuating its anticancer outcomes; however, well-designed clinical trials and further molecular studies are strongly recommended.
Негізгі сөздер
Авторлар туралы
Evmorfia Psara
Department of Food Science and Nutrition, University of the Aegean
Email: info@benthamscience.net
Efthymios Poulios
Department of Food Science and Nutrition, University of the Aegean
Email: info@benthamscience.net
Sousana Papadopoulou
Department of Nutritional Science and Dietetics, International Hellenic University
Email: info@benthamscience.net
Maria Tolia
Department of Radiotherapy, School of Medicine, University of Crete
Email: info@benthamscience.net
Georgios Vasios
Department of Food Science and Nutrition, University of the Aegean
Email: info@benthamscience.net
Constantinos Giaginis
Department of Food Science and Nutrition, University of the Aegean
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Mandal, S.; Simmons, N.; Awan, S.; Chamari, K.; Ahmed, I. Intermittent fasting: Eating by the clock for health and exercise performance. BMJ Open Sport Exerc. Med., 2022, 8(1), e001206. doi: 10.1136/bmjsem-2021-001206 PMID: 35070352
- Varady, K.A.; Roohk, D.J.; McEvoy-Hein, B.K.; Gaylinn, B.D.; Thorner, M.O.; Hellerstein, M.K. Modified alternate‐day fasting regimens reduce cell proliferation rates to a similar extent as daily calorie restriction in mice. FASEB J., 2008, 22(6), 2090-2096. doi: 10.1096/fj.07-098178 PMID: 18184721
- Duregon, E.; Pomatto-Watson, L.C.D.D.; Bernier, M.; Price, N.L.; de Cabo, R. Intermittent fasting: From calories to time restriction. Geroscience, 2021, 43(3), 1083-1092. doi: 10.1007/s11357-021-00335-z PMID: 33686571
- Moro, T.; Tinsley, G.; Bianco, A.; Marcolin, G.; Pacelli, Q.F.; Battaglia, G.; Palma, A.; Gentil, P.; Neri, M.; Paoli, A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med., 2016, 14(1), 290. doi: 10.1186/s12967-016-1044-0 PMID: 27737674
- Morimoto, L.M.; White, E.; Chen, Z.; Chlebowski, R.T.; Hays, J.; Kuller, L.; Lopez, A.M.; Manson, J.; Margolis, K.L.; Muti, P.C.; Stefan-ick, M.L.; McTiernan, A. Obesity, body size, and risk of postmenopausal breast cancer: The Women's Health Initiative (United States). Cancer Causes Control, 2002, 13(8), 741-751. doi: 10.1023/A:1020239211145 PMID: 12420953
- International Agency for Research on Cancer; World Health Organization, 2020.
- Nowosad, K.; Sujka, M. Effect of various types of intermittent fasting (IF) on weight loss and improvement of diabetic parameters in hu-man. Curr. Nutr. Rep., 2021, 10(2), 146-154. doi: 10.1007/s13668-021-00353-5 PMID: 33826120
- Wahl, D.; LaRocca, T.J. Transcriptomic effects of healthspan-promoting dietary interventions: Current evidence and future directions. Front. Nutr., 2021, 8, 712129. doi: 10.3389/fnut.2021.712129 PMID: 34447778
- Brandhorst, S.; Choi, I.Y.; Wei, M.; Cheng, C.W.; Sedrakyan, S.; Navarrete, G.; Dubeau, L.; Yap, L.P.; Park, R.; Vinciguerra, M.; Di Biase, S.; Mirzaei, H.; Mirisola, M.G.; Childress, P.; Ji, L.; Groshen, S.; Penna, F.; Odetti, P.; Perin, L.; Conti, P.S.; Ikeno, Y.; Kennedy, B.K.; Co-hen, P.; Morgan, T.E.; Dorff, T.B.; Longo, V.D. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cogni-tive performance, and healthspan. Cell Metab., 2015, 22(1), 86-99. doi: 10.1016/j.cmet.2015.05.012 PMID: 26094889
- Abdullahi Bagudu, K.; Noreen, S.; Rizwan, B.; Bashir, S.; Khan, M.; Chishti, K.; Hussain, S.; Wahid, S. Intermittent fasting effect on weight loss. Syst. Rev., 2021.
- Abdellatif, M.; Sedej, S.; Carmona-Gutierrez, D.; Madeo, F.; Kroemer, G. Autophagy in cardiovascular aging. Circ. Res., 2018, 123(7), 803-824. doi: 10.1161/CIRCRESAHA.118.312208 PMID: 30355077
- Ahmad, A.; Khan, M.U.; Aslani, P. The role of religion, spirituality and fasting in coping with diabetes among indian migrants in Australia: A qualitative exploratory study. J. Relig. Health, 2022, 61(3), 1994-2017. doi: 10.1007/s10943-021-01438-9 PMID: 34617198
- AlAbdan, N.A.; Almohammed, O.A.; Altukhaim, M.S.; Farooqui, M.A.; Abdalla, M.I.; Al Otaibi, H.Q.; Alshuraym, N.R.; Alghusun, S.N.; Alotaibi, L.H.; Alsayyari, A.A. Fasting during Ramadan and acute kidney injury (AKI): A retrospective, propensity matched cohort study. BMC Nephrol., 2022, 23(1), 54. doi: 10.1186/s12882-022-02674-1 PMID: 35125093
- Aadil, N.; Houti, I.E.; Moussamih, S. Drug intake during Ramadan. BMJ, 2004, 329(7469), 778-782. doi: 10.1136/bmj.329.7469.778 PMID: 15459052
- Grindrod, K.; Alsabbagh, W. Managing medications during Ramadan fasting. Can. Pharm. J., 2017, 150(3), 146-149. doi: 10.1177/1715163517700840 PMID: 28507649
- Longo, V.D.; Mattson, M.P. Fasting: Molecular mechanisms and clinical applications. Cell Metab., 2014, 19(2), 181-192. doi: 10.1016/j.cmet.2013.12.008 PMID: 24440038
- Crudele, L.; Piccinin, E.; Moschetta, A. Visceral adiposity and cancer: Role in pathogenesis and prognosis. Nutrients, 2021, 13(6), 2101. doi: 10.3390/nu13062101 PMID: 34205356
- Bloom, W.L. Fasting as an introduction to the treatment of obesity. Metabolism, 1959, 8(3), 214-220. PMID: 13656492
- Vidoni, C.; Ferraresi, A.; Esposito, A.; Maheshwari, C.; Dhanasekaran, D.N.; Mollace, V.; Isidoro, C. Calorie restriction for cancer preven-tion and therapy: Mechanisms, expectations, and efficacy. J. Cancer Prev., 2021, 26(4), 224-236. doi: 10.15430/JCP.2021.26.4.224 PMID: 35047448
- Schlesinger, S.; Neuenschwander, M.; Barbaresko, J.; Lang, A.; Maalmi, H.; Rathmann, W.; Roden, M.; Herder, C. Prediabetes and risk of mortality, diabetes-related complications and comorbidities: Umbrella review of meta-analyses of prospective studies. Diabetologia, 2022, 65(2), 275-285. doi: 10.1007/s00125-021-05592-3 PMID: 34718834
- Galati, L.; Chiocca, S.; Duca, D.; Tagliabue, M.; Simoens, C.; Gheit, T.; Arbyn, M.; Tommasino, M. HPV and head and neck cancers: Towards early diagnosis and prevention. Tumour virus Res., 2022, 14, 200245. doi: 10.1016/j.tvr.2022.200245
- Gouveia, H.J.C.B.; Urquiza-Martínez, M.V.; Manhães-de-Castro, R.; Costa-de-Santana, B.J.R.; Villarreal, J.P.; Mercado-Camargo, R.; Torner, L.; de Souza Aquino, J.; Toscano, A.E.; Guzmán-Quevedo, O. Effects of the treatment with flavonoids on metabolic syndrome components in humans: A systematic review focusing on mechanisms of action. Int. J. Mol. Sci., 2022, 23(15), 8344. doi: 10.3390/ijms23158344 PMID: 35955475
- Majewski, M.; Mertowska, P.; Mertowski, S.; Smolak, K.; Grywalska, E.; Torres, K. Microbiota and the immune systemactors in the gastric cancer story. Cancers., 2022, 14(15), 3832. doi: 10.3390/cancers14153832 PMID: 35954495
- Peixoto, R.D.A.; Oliveira, L.J.C.; Passarini, T.M.; Andrade, A.C.; Diniz, P.H.; Prolla, G.; Amorim, L.C.; Gil, M.; Lino, F.; Garicochea, B.; Jácome, A.; Ng, K. Vitamin D and colorectal cancer A practical review of the literature. In: Cancer Treat. Res. Commun; , 2022; 32, p. 100616. doi: 10.1016/j.ctarc.2022.100616 PMID: 35940119
- Zhao, Y.; Zhao, W.; Li, J.; Lin, S.; Li, L.; Ren, Z.; Lu, J.; Xing, X.; Liu, X. Effect of dietary consumption on the survival of esophageal squamous cell carcinoma: A prospective cohort study. Eur. J. Clin. Nutr., 2022, 77(1), 55-64. doi: 10.1038/s41430-022-01194-3 PMID: 35974139
- Nishioka, S.; Aragane, H.; Suzuki, N.; Yoshimura, Y.; Fujiwara, D.; Mori, T.; Kanehisa, Y.; Iida, Y.; Higashi, K.; Yoshimura-Yokoi, Y.; Sato, C.; Toyota, M.; Tanaka, M.; Ishii, Y.; Kosaka, S.; Kumagae, N.; Fujimoto, A.; Omura, K.; Yoshida, S.; Wakabayashi, H.; Momosaki, R. Clinical practice guidelines for rehabilitation nutrition in cerebrovascular disease, hip fracture, cancer, and acute illness: 2020 update. Clin. Nutr. ESPEN, 2021, 43, 90-103. doi: 10.1016/j.clnesp.2021.02.018 PMID: 34024570
- Laviano, A. Current guidelines for nutrition therapy in cancer: The arrival of a long journey or the starting point? JPEN. J. Parenter. Enteral Nutr., 2021, 45(S2), 12-15. doi: 10.1002/jpen.2288 PMID: 34897734
- Fontana, L.; Villareal, D.T.; Das, S.K.; Smith, S.R.; Meydani, S.N.; Pittas, A.G.; Klein, S.; Bhapkar, M.; Rochon, J.; Ravussin, E.; Holloszy, J.O. Effects of 2‐year calorie restriction on circulating levels of IGF‐1, IGF‐binding proteins and cortisol in nonobese men and women: a randomized clinical trial. Aging Cell, 2016, 15(1), 22-27. doi: 10.1111/acel.12400 PMID: 26443692
- Lee, C.; Longo, V.D. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene, 2011, 30(30), 3305-3316. doi: 10.1038/onc.2011.91 PMID: 21516129
- Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; Zhou, Y.; Piccio, L. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab., 2018, 27(6), 1222-1235.e6. doi: 10.1016/j.cmet.2018.05.006 PMID: 29874567
- Kang, D.H. Oxidative stress, DNA damage, and breast cancer. AACN Clin. Issues, 2002, 13(4), 540-549. doi: 10.1097/00044067-200211000-00007 PMID: 12473916
- McAllister, M.J.; Pigg, B.L.; Renteria, L.I.; Waldman, H.S. Time-restricted feeding improves markers of cardiometabolic health in physi-cally active college-age men: a 4-week randomized pre-post pilot study. Nutr. Res., 2020, 75, 32-43. doi: 10.1016/j.nutres.2019.12.001 PMID: 31955013
- Lo Re, O.; Panebianco, C.; Porto, S.; Cervi, C.; Rappa, F.; Di Biase, S.; Caraglia, M.; Pazienza, V.; Vinciguerra, M. Fasting inhibits hepatic stellate cells activation and potentiates anti‐cancer activity of Sorafenib in hepatocellular cancer cells. J. Cell. Physiol., 2018, 233(2), 1202-1212. doi: 10.1002/jcp.25987 PMID: 28471474
- Shi, Y.; Felley-Bosco, E.; Marti, T.M.; Orlowski, K.; Pruschy, M.; Stahel, R.A. Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer, 2012, 12(1), 571. doi: 10.1186/1471-2407-12-571 PMID: 23211021
- Bianchi, G.; Martella, R.; Ravera, S.; Marini, C.; Capitanio, S.; Orengo, A.; Emionite, L.; Lavarello, C.; Amaro, A.; Petretto, A.; Pfeffer, U.; Sambuceti, G.; Pistoia, V.; Raffaghello, L.; Longo, V.D. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget, 2015, 6(14), 11806-11819. doi: 10.18632/oncotarget.3688 PMID: 25909219
- Leite, T.C.; Watters, R.J.; Weiss, K.R.; Intini, G. Avenues of research in dietary interventions to target tumor metabolism in osteosarcoma. J. Transl. Med., 2021, 19(1), 450. doi: 10.1186/s12967-021-03122-8 PMID: 34715874
- Brandhorst, S.; Longo, V.D. Fasting and caloric restriction in cancer prevention and treatment. Recent Results Cancer Res., 2016, 207, 241-266. doi: 10.1007/978-3-319-42118-6_12
- Greer, E.L.; Dowlatshahi, D.; Banko, M.R.; Villen, J.; Hoang, K.; Blanchard, D.; Gygi, S.P.; Brunet, A. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol., 2007, 17(19), 1646-1656. doi: 10.1016/j.cub.2007.08.047 PMID: 17900900
- Lee, S.J.; Murphy, C.T.; Kenyon, C. Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab., 2009, 10(5), 379-391. doi: 10.1016/j.cmet.2009.10.003 PMID: 19883616
- Han, Y.M.; Ramprasath, T.; Zou, M.H. β-hydroxybutyrate and its metabolic effects on age-associated pathology. Exp. Mol. Med., 2020, 52(4), 548-555. doi: 10.1038/s12276-020-0415-z PMID: 32269287
- Cantó, C.; Auwerx, J. Calorie restriction: Is AMPK a key sensor and effector? Physiology, 2011, 26(4), 214-224. doi: 10.1152/physiol.00010.2011 PMID: 21841070
- Ruderman, N.B.; Julia, Xu X.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A long-standing partnership? Am. J. Physiol. Endocrinol. Metab., 2010, 298(4), E751-E760. doi: 10.1152/ajpendo.00745.2009 PMID: 20103737
- Zhang, Y.; Wang, X.; Zhou, M.; Kang, C.; Lang, H.; Chen, M.; Hui, S.; Wang, B.; Mi, M. Crosstalk between gut microbiota and Sirtuin-3 in colonic inflammation and tumorigenesis. Exp. Mol. Med., 2018, 50(4), 1-11. doi: 10.1038/s12276-017-0002-0 PMID: 29650970
- Poulose, N.; Raju, R. Sirtuin regulation in aging and injury. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(11), 2442-2455. doi: 10.1016/j.bbadis.2015.08.017 PMID: 26303641
- Nagpal, R.; Mainali, R.; Ahmadi, S.; Wang, S.; Singh, R.; Kavanagh, K.; Kitzman, D.W.; Kushugulova, A.; Marotta, F.; Yadav, H. Gut mi-crobiome and aging: Physiological and mechanistic insights. Nutr. Healthy Aging, 2018, 4(4), 267-285. doi: 10.3233/NHA-170030 PMID: 29951588
- Lakhan, S.E.; Kirchgessner, A. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction. J. Transl. Med., 2011, 9(1), 202. doi: 10.1186/1479-5876-9-202 PMID: 22115311
- Makwana, K.; Patel, S.A.; Velingkaar, N.; Ebron, J.S.; Shukla, G.C.; Kondratov, R.V. Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13. Aging, 2017, 9(7), 1825-1843. doi: 10.18632/aging.101270 PMID: 28783714
- Pietrocola, F.; Pol, J.; Vacchelli, E.; Rao, S.; Enot, D.P.; Baracco, E.E.; Levesque, S.; Castoldi, F.; Jacquelot, N.; Yamazaki, T.; Senovilla, L.; Marino, G.; Aranda, F.; Durand, S.; Sica, V.; Chery, A.; Lachkar, S.; Sigl, V.; Bloy, N.; Buque, A.; Falzoni, S.; Ryffel, B.; Apetoh, L.; Di Virgilio, F.; Madeo, F.; Maiuri, M.C.; Zitvogel, L.; Levine, B.; Penninger, J.M.; Kroemer, G. Caloric restriction mimetics enhance anti-cancer immunosurveillance. Cancer Cell, 2016, 30(1), 147-160. doi: 10.1016/j.ccell.2016.05.016 PMID: 27411589
- Safdie, F.M.; Dorff, T.; Quinn, D.; Fontana, L.; Wei, M.; Lee, C.; Cohen, P.; Longo, V.D. Fasting and cancer treatment in humans: A case series report. Aging, 2009, 1(12), 988-1007. doi: 10.18632/aging.100114 PMID: 20157582
- Lee, C.; Safdie, F.M.; Raffaghello, L.; Wei, M.; Madia, F.; Parrella, E.; Hwang, D.; Cohen, P.; Bianchi, G.; Longo, V.D. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res., 2010, 70(4), 1564-1572. doi: 10.1158/0008-5472.CAN-09-3228 PMID: 20145127
- Yakar, S.; Liu, J.L.; Stannard, B.; Butler, A.; Accili, D.; Sauer, B.; LeRoith, D. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci., 1999, 96(13), 7324-7329. doi: 10.1073/pnas.96.13.7324 PMID: 10377413
- Kari, F.W.; Dunn, S.E.; French, J.E.; Barrett, J.C. Roles for insulin-like growth factor-1 in mediating the anti-carcinogenic effects of caloric restriction. J. Nutr. Health Aging, 1999, 3(2), 92-101. PMID: 10885804
- Chang, S.; Hursting, S.D.; Contois, J.H.; Strom, S.S.; Yamamura, Y.; Babaian, R.J.; Troncoso, P.; Scardino, P.T.; Wheeler, T.M.; Amos, C.I.; Spitz, M.R. Leptin and prostate cancer. Prostate, 2001, 46(1), 62-67. doi: 10.1002/1097-0045(200101)46:1<62:AID-PROS1009>3.0.CO;2-V PMID: 11170133
- Cadoni, E.; Marongiu, F.; Fanti, M.; Serra, M.; Laconi, E. Caloric restriction delays early phases of carcinogenesis via effects on the tissue microenvironment. Oncotarget, 2017, 8(22), 36020-36032. doi: 10.18632/oncotarget.16421 PMID: 28415598
- Sharma, H.S.; Nyberg, F.; Gordh, T.; Alm, P.; Westman, J. Neurotrophic factors influence upregulation of constitutive isoform of heme oxygenase and cellular stress response in the spinal cord following trauma. Amino Acids, 2000, 19(1), 351-361. doi: 10.1007/s007260070066 PMID: 11026506
- Kozal, K.; Jóźwiak, P.; Krześlak, A. Contemporary perspectives on the warburg effect inhibition in cancer therapy. Cancer Contr., 2021, 28. doi: 10.1177/10732748211041243 PMID: 34554006
- Strickaert, A.; Saiselet, M.; Dom, G.; De Deken, X.; Dumont, J.E.; Feron, O.; Sonveaux, P.; Maenhaut, C. Cancer heterogeneity is not com-patible with one unique cancer cell metabolic map. Oncogene, 2017, 36(19), 2637-2642. doi: 10.1038/onc.2016.411 PMID: 27797377
- Sun, P.; Wang, H.; He, Z.; Chen, X.; Wu, Q.; Chen, W.; Sun, Z.; Weng, M.; Zhu, M.; Ma, D.; Miao, C. Fasting inhibits colorectal cancer growth by reducing M2 polarization of tumor-associated macrophages. Oncotarget, 2017, 8(43), 74649-74660. doi: 10.18632/oncotarget.20301 PMID: 29088814
- Zhou, L.; Zhang, Z.; Nice, E.; Huang, C.; Zhang, W.; Tang, Y. Circadian rhythms and cancers: The intrinsic links and therapeutic poten-tials. J. Hematol. Oncol., 2022, 15(1), 21. doi: 10.1186/s13045-022-01238-y PMID: 35246220
- Cathcart, P.; Craddock, C.; Stebbing, J. Fasting: Starving cancer. Lancet Oncol., 2017, 18(4), 431. doi: 10.1016/S1470-2045(17)30196-1 PMID: 28368246
- Salvadori, G.; Mirisola, M.G.; Longo, V.D. Intermittent and periodic fasting, hormones, and cancer prevention. Cancers, 2021, 13(18), 4587. doi: 10.3390/cancers13184587 PMID: 34572814
- Cheng, C.W.; Adams, G.B.; Perin, L.; Wei, M.; Zhou, X.; Lam, B.S.; Da Sacco, S.; Mirisola, M.; Quinn, D.I.; Dorff, T.B.; Kopchick, J.J.; Longo, V.D. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppres-sion. Cell Stem Cell, 2014, 14(6), 810-823. doi: 10.1016/j.stem.2014.04.014 PMID: 24905167
- Di Biase, S.; Lee, C.; Brandhorst, S.; Manes, B.; Buono, R.; Cheng, C.W.; Cacciottolo, M.; Martin-Montalvo, A.; de Cabo, R.; Wei, M.; Morgan, T.E.; Longo, V.D. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell, 2016, 30(1), 136-146. doi: 10.1016/j.ccell.2016.06.005 PMID: 27411588
- Jardé, T.; Perrier, S.; Vasson, M.P.; Caldefie-Chézet, F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur. J. Cancer, 2011, 47(1), 33-43. doi: 10.1016/j.ejca.2010.09.005 PMID: 20889333
- Shim, H.S.; Wei, M.; Brandhorst, S.; Longo, V.D. Starvation promotes REV1 SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells. Cancer Res., 2015, 75(6), 1056-1067. doi: 10.1158/0008-5472.CAN-14-2249 PMID: 25614517
- Di Biase, S.; Shim, H.S.; Kim, K.H.; Vinciguerra, M.; Rappa, F.; Wei, M.; Brandhorst, S.; Cappello, F.; Mirzaei, H.; Lee, C.; Longo, V.D. Correction: Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy. PLoS Biol., 2017, 15(5), e1002603. doi: 10.1371/journal.pbio.1002603 PMID: 28459830
- Andrikopoulos, S.; Blair, A.R.; Deluca, N.; Fam, B.C.; Proietto, J. Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab., 2008, 295(6), E1323-E1332. doi: 10.1152/ajpendo.90617.2008 PMID: 18812462
- Di Biase, S.; Longo, V.D. Fasting-induced differential stress sensitization in cancer treatment. Mol. Cell. Oncol., 2016, 3(3), e1117701. doi: 10.1080/23723556.2015.1117701 PMID: 27314084
- Faris, A.I.E.; Kacimi, S.; Al-Kurd, R.A.; Fararjeh, M.A.; Bustanji, Y.K.; Mohammad, M.K.; Salem, M.L. Intermittent fasting during Rama-dan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr. Res., 2012, 32(12), 947-955. doi: 10.1016/j.nutres.2012.06.021 PMID: 23244540
- Esposito, K.; Chiodini, P.; Capuano, A.; Bellastella, G.; Maiorino, M.I.; Rafaniello, C.; Giugliano, D. Metabolic syndrome and postmeno-pausal breast cancer. Menopause, 2013, 20(12), 1301-1309. doi: 10.1097/GME.0b013e31828ce95d PMID: 23571527
- Hikita, H.; Nuwaysir, E.F.; Vaughan, J.; Babcock, K.; Haas, M.J.; Dragan, Y.P.; Pitot, H.C. The effect of short-term fasting, phenobarbital and refeeding on apoptotic loss, cell replication and gene expression in rat liver during the promotion stage. Carcinogenesis, 1998, 19(8), 1417-1425. doi: 10.1093/carcin/19.8.1417 PMID: 9744538
- Thakkar, N.; Shin, Y.B.; Sung, H.K. Nutritional regulation of mammary tumor microenvironment. Front. Cell Dev. Biol., 2022, 10, 803280. doi: 10.3389/fcell.2022.803280 PMID: 35186923
- Kim, K.H.; Kim, Y.H.; Son, J.E.; Lee, J.H.; Kim, S.; Choe, M.S.; Moon, J.H.; Zhong, J.; Fu, K.; Lenglin, F.; Yoo, J.A.; Bilan, P.J.; Klip, A.; Nagy, A.; Kim, J.R.; Park, J.G.; Hussein, S.M.I.; Doh, K.O.; Hui, C.; Sung, H.K. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res., 2017, 27(11), 1309-1326. doi: 10.1038/cr.2017.126 PMID: 29039412
- Nencioni, A.; Caffa, I.; Cortellino, S.; Longo, V.D. Fasting and cancer: Molecular mechanisms and clinical application. Nat. Rev. Cancer, 2018, 18(11), 707-719. doi: 10.1038/s41568-018-0061-0 PMID: 30327499
- Lee, C.; Raffaghello, L.; Brandhorst, S.; Safdie, F.M.; Bianchi, G.; Martin-Montalvo, A.; Pistoia, V.; Wei, M.; Hwang, S.; Merlino, A.; Emi-onite, L.; de Cabo, R.; Longo, V.D. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med., 2012, 4(124), 124ra27. doi: 10.1126/scitranslmed.3003293 PMID: 22323820
- Wilson, R.L.; Kang, D.W.; Christopher, C.N.; Crane, T.E.; Dieli-Conwright, C.M. Fasting and exercise in oncology: Potential synergism of combined interventions. Nutrients, 2021, 13(10), 3421. doi: 10.3390/nu13103421 PMID: 34684421
- Jaspers, R.T.; Zillikens, M.C.; Friesema, E.C.H.; Paoli, G.; Bloch, W.; Uitterlinden, A.G.; Goglia, F.; Lanni, A.; Lange, P. Exercise, fasting, and mimetics: Toward beneficial combinations? FASEB J., 2017, 31(1), 14-28. doi: 10.1096/fj.201600652r PMID: 27729415
- Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab., 2014, 25(1), 42-52. doi: 10.1016/j.tem.2013.09.002 PMID: 24140022
- Sulli, G.; Lam, M.T.Y.; Panda, S. Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer, 2019, 5(8), 475-494. doi: 10.1016/j.trecan.2019.07.002 PMID: 31421905
- Nicolò, E.; Trapani, D.; Berton Giachetti, P.P.M.; Zagami, P.; Curigliano, G. Fed or fasted state for oral therapies in breast cancer treat-ment? A comprehensive review of clinical practice recommendations. Cancer Treat. Rev., 2021, 100, 102281. doi: 10.1016/j.ctrv.2021.102281 PMID: 34500366
- Caffa, I.; D'Agostino, V.; Damonte, P.; Soncini, D.; Cea, M.; Monacelli, F.; Odetti, P.; Ballestrero, A.; Provenzani, A.; Longo, V.D.; Nencioni, A. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition. Oncotarget, 2015, 6(14), 11820-11832. doi: 10.18632/oncotarget.3689 PMID: 25909220
- Lu, Z.; Xie, J.; Wu, G.; Shen, J.; Collins, R.; Chen, W.; Kang, X.; Luo, M.; Zou, Y.; Huang, L.J.S.; Amatruda, J.F.; Slone, T.; Winick, N.; Scherer, P.E.; Zhang, C.C. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat. Med., 2017, 23(1), 79-90. doi: 10.1038/nm.4252 PMID: 27941793
- Phadngam, S.; Castiglioni, A.; Ferraresi, A.; Morani, F.; Follo, C.; Isidoro, C. PTEN dephosphorylates AKT to prevent the expression of GLUT1 on plasmamembrane and to limit glucose consumption in cancer cells. Oncotarget, 2016, 7(51), 84999-85020. doi: 10.18632/oncotarget.13113 PMID: 27829222
- Sundaram, S.; Yan, L. Time-restricted feeding mitigates high-fat diet-enhanced mammary tumorigenesis in MMTV-PyMT mice. Nutr. Res., 2018, 59, 72-79. doi: 10.1016/j.nutres.2018.07.014 PMID: 30442235
- Macis, D.; Guerrieri-Gonzaga, A.; Gandini, S. Circulating adiponectin and breast cancer risk: A systematic review and meta-analysis. Int. J. Epidemiol., 2014, 43(4), 1226-1236. doi: 10.1093/ije/dyu088 PMID: 24737805
- Palhinha, L.; Liechocki, S.; Hottz, E.D.; Pereira, J.A.S.; de Almeida, C.J.; Moraes-Vieira, P.M.M.; Bozza, P.T.; Maya-Monteiro, C.M. Lep-tin induces proadipogenic and proinflammatory signaling in adipocytes. Front. Endocrinol., 2019, 10, 841. doi: 10.3389/fendo.2019.00841 PMID: 31920961
- Sierra-Honigmann, M.R.; Nath, A.K.; Murakami, C.; García-Cardeña, G.; Papapetropoulos, A.; Sessa, W.C.; Madge, L.A.; Schechner, J.S.; Schwabb, M.B.; Polverini, P.J.; Flores-Riveros, J.R. Biological action of leptin as an angiogenic factor. Science, 1998, 281(5383), 1683-1686. doi: 10.1126/science.281.5383.1683 PMID: 9733517
- Cao, H.; Huang, Y.; Wang, L.; Wang, H.; Pang, X.; Li, K.; Dang, W.; Tang, H.; Wei, L.; Su, M.; Tang, C.; Chen, T. Leptin promotes migra-tion and invasion of breast cancer cells by stimulating IL-8 production in M2 macrophages. Oncotarget, 2016, 7(40), 65441-65453. doi: 10.18632/oncotarget.11761 PMID: 27588409
- Goodwin, P.J.; Ennis, M.; Fantus, I.G.; Pritchard, K.I.; Trudeau, M.E.; Koo, J.; Hood, N. Is leptin a mediator of adverse prognostic effects of obesity in breast cancer? J. Clin. Oncol., 2005, 23(25), 6037-6042. doi: 10.1200/JCO.2005.02.048 PMID: 16135472
- Delort, L.; Rossary, A.; Farges, M.C.; Vasson, M.P.; Caldefie-Chézet, F. Leptin, adipocytes and breast cancer: Focus on inflammation and anti-tumor immunity. Life Sci., 2015, 140, 37-48. doi: 10.1016/j.lfs.2015.04.012 PMID: 25957709
- Weng, M.; Chen, W.; Chen, X.; Lu, H.; Sun, Z.; Yu, Q.; Sun, P.; Xu, Y.; Zhu, M.; Jiang, N.; Zhang, J.; Zhang, J.; Song, Y.; Ma, D.; Zhang, X.; Miao, C. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat. Commun., 2020, 11(1), 1869. doi: 10.1038/s41467-020-15795-8 PMID: 32313017
- Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466. doi: 10.3390/ijms19113466 PMID: 30400561
- Chung, S.J.; Nagaraju, G.P.; Nagalingam, A.; Muniraj, N.; Kuppusamy, P.; Walker, A.; Woo, J.; Győrffy, B.; Gabrielson, E.; Saxena, N.K.; Sharma, D. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy, 2017, 13(8), 1386-1403. doi: 10.1080/15548627.2017.1332565 PMID: 28696138
- Bachelot, T.; Ray-Coquard, I.; Menetrier-Caux, C.; Rastkha, M.; Duc, A.; Blay, J-Y. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br. J. Cancer, 2003, 88(11), 1721-1726. doi: 10.1038/sj.bjc.6600956 PMID: 12771987
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr Obesity is associated with macrophage accumula-tion in adipose tissue. J. Clin. Invest., 2003, 112(12), 1796-1808. doi: 10.1172/JCI200319246 PMID: 14679176
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest., 2007, 117(1), 175-184. doi: 10.1172/JCI29881 PMID: 17200717
- Shivappa, N.; Hébert, J.R.; Rietzschel, E.R.; De Buyzere, M.L.; Langlois, M.; Debruyne, E.; Marcos, A.; Huybrechts, I. Associations be-tween dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr., 2015, 113(4), 665-671. doi: 10.1017/S000711451400395X PMID: 25639781
- Yeung, C.Y.; Tso, A.W.K.; Xu, A.; Wang, Y.; Woo, Y.C.; Lam, T.H.; Lo, S.V.; Fong, C.H.Y.; Wat, N.M.S.; Woo, J.; Cheung, B.M.Y.; Lam, K.S.L. Pro-inflammatory adipokines as predictors of incident cancers in a Chinese cohort of low obesity prevalence in Hong Kong. PLoS One, 2013, 8(10), e78594. doi: 10.1371/journal.pone.0078594 PMID: 24205276
- Kim, J.; Guan, K.L. Amino acid signaling in TOR activation. Annu. Rev. Biochem., 2011, 80(1), 1001-1032. doi: 10.1146/annurev-biochem-062209-094414 PMID: 21548787
- Christensen, R.A.G.; Kirkham, A.A. Time-restricted eating: A novel and simple dietary intervention for primary and secondary prevention of breast cancer and cardiovascular disease. Nutrients, 2021, 13(10), 3476. doi: 10.3390/nu13103476 PMID: 34684476
- Zeng, Q.; Dong, S.Y.; Sun, X.N.; Xie, J.; Cui, Y. Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz. J. Med. Biol. Res., 2012, 45(7), 591-600. doi: 10.1590/S0100-879X2012007500059 PMID: 22510779
- Vance, V.; Mourtzakis, M.; McCargar, L.; Hanning, R. Weight gain in breast cancer survivors: prevalence, pattern and health consequenc-es. Obes. Rev., 2011, 12(4), 282-294. doi: 10.1111/j.1467-789X.2010.00805.x PMID: 20880127
- Gabel, K.; Varady, K.A. Current research: Effect of time restricted eating on weight and cardiometabolic health. J. Physiol., 2022, 600(6), 1313-1326. doi: 10.1113/JP280542 PMID: 33002219
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; Taub, P.R. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab., 2020, 31(1), 92-104.e5. doi: 10.1016/j.cmet.2019.11.004 PMID: 31813824
- Caffa, I.; Spagnolo, V.; Vernieri, C.; Valdemarin, F.; Becherini, P.; Wei, M.; Brandhorst, S.; Zucal, C.; Driehuis, E.; Ferrando, L.; Piacente, F.; Tagliafico, A.; Cilli, M.; Mastracci, L.; Vellone, V.G.; Piazza, S.; Cremonini, A.L.; Gradaschi, R.; Mantero, C.; Passalacqua, M.; Ballestrero, A.; Zoppoli, G.; Cea, M.; Arrighi, A.; Odetti, P.; Monacelli, F.; Salvadori, G.; Cortellino, S.; Clevers, H.; De Braud, F.; Sukkar, S.G.; Provenzani, A.; Longo, V.D.; Nencioni, A. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature, 2020, 583(7817), 620-624. doi: 10.1038/s41586-020-2502-7 PMID: 32669709
- DeVita, V.T.; Steven, A.R. MD DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology (Cancer Principles and Practice of Oncology), 11th Edition; , 2019.
- Pinho, C.P.S.; Diniz, A.S.; Arruda, I.K.G.; Leite, A.P.D.L.; Rodrigues, I.G. Effects of weight loss on adipose visceral and subcutaneous tissue in overweight adults. Clin. Nutr., 2018, 37(4), 1252-1258. doi: 10.1016/j.clnu.2017.05.011 PMID: 28571712
- Bauersfeld, S.P.; Kessler, C.S.; Wischnewsky, M.; Jaensch, A.; Steckhan, N.; Stange, R.; Kunz, B.; Brückner, B.; Sehouli, J.; Michalsen, A. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: A randomized cross-over pilot study. BMC Cancer, 2018, 18(1), 476. doi: 10.1186/s12885-018-4353-2 PMID: 29699509
- Dorff, T.B.; Groshen, S.; Garcia, A.; Shah, M.; Tsao-Wei, D.; Pham, H.; Cheng, C.W.; Brandhorst, S.; Cohen, P.; Wei, M.; Longo, V.; Quinn, D.I. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer, 2016, 16(1), 360. doi: 10.1186/s12885-016-2370-6 PMID: 27282289
- Smith, W.J.; Underwood, L.E.; Clemmons, D.R. Effects of caloric or protein restriction on insulin-like growth factor-I (IGF-I) and IGF-binding proteins in children and adults. J. Clin. Endocrinol. Metab., 1995, 80(2), 443-449. doi: 10.1210/jcem.80.2.7531712 PMID: 7531712
- de Groot, S.; Vreeswijk, M.P.G.; Welters, M.J.P.; Gravesteijn, G.; Boei, J.J.W.A.; Jochems, A.; Houtsma, D.; Putter, H.; van der Hoeven, J.J.M.; Nortier, J.W.R.; Pijl, H.; Kroep, J.R. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: A randomized pilot study. BMC Cancer, 2015, 15(1), 652. doi: 10.1186/s12885-015-1663-5 PMID: 26438237
- Chan, L.N.; Chen, Z.; Braas, D.; Lee, J.W.; Xiao, G.; Geng, H.; Cosgun, K.N.; Hurtz, C.; Shojaee, S.; Cazzaniga, V.; Schjerven, H.; Ernst, T.; Hochhaus, A.; Kornblau, S.M.; Konopleva, M.; Pufall, M.A.; Cazzaniga, G.; Liu, G.J.; Milne, T.A.; Koeffler, H.P.; Ross, T.S.; Sánchez-García, I.; Borkhardt, A.; Yamamoto, K.R.; Dickins, R.A.; Graeber, T.G.; Müschen, M. Metabolic gatekeeper function of B-lymphoid tran-scription factors. Nature, 2017, 542(7642), 479-483. doi: 10.1038/nature21076 PMID: 28192788
- Dupertuis, Y.M.; Meguid, M.M.; Pichard, C. Colon cancer therapy: New perspectives of nutritional manipulations using polyunsaturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care, 2007, 10(4), 427-432. doi: 10.1097/MCO.0b013e3281e2c9d4 PMID: 17563460
- Scheim, D.E. Cytotoxicity of unsaturated fatty acids in fresh human tumor explants: concentration thresholds and implications for clinical efficacy. Lipids Health Dis., 2009, 8(1), 54. doi: 10.1186/1476-511X-8-54 PMID: 20003514
- Comba, A.; Lin, Y.H.; Eynard, A.R.; Valentich, M.A.; Fernandez-Zapico, M.E.; Pasqualini, M.E. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors. Cancer Metastasis Rev., 2011, 30(3-4), 325-342. doi: 10.1007/s10555-011-9308-x PMID: 22048864
- Dashti, S.G.; Simpson, J.A.; Viallon, V.; Karahalios, A.; Moreno-Betancur, M.; Brasky, T.; Pan, K.; Rohan, T.E.; Shadyab, A.H.; Thom-son, C.A.; Wild, R.A.; Wassertheil-Smoller, S.; Ho, G.Y.F.; Strickler, H.D.; English, D.R.; Gunter, M.J. Adiposity and breast, endometrial, and colorectal cancer risk in postmenopausal women: Quantification of the mediating effects of leptin, C‐reactive protein, fasting insulin, and estradiol. Cancer Med., 2022, 11(4), 1145-1159. doi: 10.1002/cam4.4434 PMID: 35048536
- Safdie, F.; Brandhorst, S.; Wei, M.; Wang, W.; Lee, C.; Hwang, S.; Conti, P.S.; Chen, T.C.; Longo, V.D. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One, 2012, 7(9), e44603. doi: 10.1371/journal.pone.0044603 PMID: 22984531
- Raffaghello, L.; Lee, C.; Safdie, F.M.; Wei, M.; Madia, F.; Bianchi, G.; Longo, V.D. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl. Acad. Sci., 2008, 105(24), 8215-8220. doi: 10.1073/pnas.0708100105 PMID: 18378900
- Marsh, J.; Mukherjee, P.; Seyfried, T.N. Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phospha-tase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin. Cancer Res., 2008, 14(23), 7751-7762. doi: 10.1158/1078-0432.CCR-08-0213 PMID: 19047102
- Ajona, D.; Ortiz-Espinosa, S.; Lozano, T.; Exposito, F.; Calvo, A.; Valencia, K.; Redrado, M.; Remírez, A.; Lecanda, F.; Alignani, D.; Lasarte, J.J.; Macaya, I.; Senent, Y.; Bértolo, C.; Sainz, C.; Gil-Bazo, I.; Eguren-Santamaría, I.; Lopez-Picazo, J.M.; Gonzalez, A.; Perez-Gracia, J.L.; de Andrea, C.E.; Vicent, S.; Sanmamed, M.F.; Montuenga, L.M.; Pio, R. Short-term starvation reduces IGF-1 levels to sensi-tize lung tumors to PD-1 immune checkpoint blockade. Nat. Can., 2020, 1(1), 75-85. doi: 10.1038/s43018-019-0007-9 PMID: 35121837
- Chen, H.; Zhang, H.; Cao, L.; Cui, J.; Ma, X.; Zhao, C.; Yin, S.; Hu, H. Glucose limitation sensitizes cancer cells to selenite-induced cyto-toxicity via slc7a11-mediated redox collapse. Cancers, 2022, 14(2), 345. doi: 10.3390/cancers14020345 PMID: 35053507
- Wang, X.; Xu, W.; Hu, X.; Yang, X.; Zhang, M. The prognostic role of glycemia in patients with pancreatic carcinoma: A systematic review and meta-analysis. Front. Oncol., 2022, 12, 780909. doi: 10.3389/fonc.2022.780909 PMID: 35223469
- Cheon, Y.K.; Koo, J.K.; Lee, Y.S.; Lee, T.Y.; Shim, C.S. Elevated hemoglobin A1c levels are associated with worse survival in advanced pancreatic cancer patients with diabetes. Gut Liver, 2014, 8(2), 205-214. doi: 10.5009/gnl.2014.8.2.205 PMID: 24672663
- Gapstur, S.M.; Gann, P.H.; Lowe, W.; Liu, K.; Colangelo, L.; Dyer, A. Abnormal glucose metabolism and pancreatic cancer mortality. JAMA, 2000, 283(19), 2552-2558. doi: 10.1001/jama.283.19.2552 PMID: 10815119
- D'Aronzo, M.; Vinciguerra, M.; Mazza, T.; Panebianco, C.; Saracino, C.; Pereira, S.P.; Graziano, P.; Pazienza, V. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget, 2015, 6(21), 18545-18557. doi: 10.18632/oncotarget.4186 PMID: 26176887
- Tinkum, K.L.; Stemler, K.M.; White, L.S.; Loza, A.J.; Jeter-Jones, S.; Michalski, B.M.; Kuzmicki, C.; Pless, R.; Stappenbeck, T.S.; Piwni-ca-Worms, D.; Piwnica-Worms, H. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell sur-vival. Proc. Natl. Acad. Sci., 2015, 112(51), E7148-E7154. doi: 10.1073/pnas.1509249112 PMID: 26644583
- Murphy, N.; Song, M.; Papadimitriou, N.; Carreras-Torres, R.; Langenberg, C.; Martin, R.M.; Tsilidis, K.K.; Barroso, I.; Chen, J.; Frayling, T.M.; Bull, C.J.; Vincent, E.E.; Cotterchio, M.; Gruber, S.B.; Pai, R.K.; Newcomb, P.A.; Perez-Cornago, A.; van Duijnhoven, F.J.B.; Van Guelpen, B.; Vodicka, P.; Wolk, A.; Wu, A.H.; Peters, U.; Chan, A.T.; Gunter, M.J. Associations between glycemic traits and colorectal cancer: A mendelian randomization analysis. J. Natl. Cancer Inst., 2022, 114(5), 740-752. doi: 10.1093/jnci/djac011 PMID: 35048991
- Joshi, R.K.; Kim, W.J.; Lee, S-A. Association between obesity-related adipokines and colorectal cancer: A case-control study and meta-analysis. World J. Gastroenterol., 2014, 20(24), 7941-7949. doi: 10.3748/wjg.v20.i24.7941 PMID: 24976730
- Su, J.; Wang, Y.; Zhang, X.; Ma, M.; Xie, Z.; Pan, Q.; Ma, Z.; Peppelenbosch, M.P. Remodeling of the gut microbiome during Ramadan-associated intermittent fasting. Am. J. Clin. Nutr., 2021, 113(5), 1332-1342. doi: 10.1093/ajcn/nqaa388 PMID: 33842951
- Su, J.; Braat, H.; Peppelenbosch, M.P. Gut microbiota-derived propionate production may explain beneficial effects of intermittent fasting in experimental colitis. J. Crohn's Colitis, 2021, 15(6), 1081-1082. doi: 10.1093/ecco-jcc/jjaa248 PMID: 33277656
- Bian, X.; Wu, W.; Yang, L.; Lv, L.; Wang, Q.; Li, Y.; Ye, J.; Fang, D.; Wu, J.; Jiang, X.; Shi, D.; Li, L. Administration of Akkermansia mu-ciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front. Microbiol., 2019, 10, 2259. doi: 10.3389/fmicb.2019.02259 PMID: 31632373
- Wang, L.; Tang, L.; Feng, Y.; Zhao, S.; Han, M.; Zhang, C.; Yuan, G.; Zhu, J.; Cao, S.; Wu, Q.; Li, L.; Zhang, Z. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut, 2020, 69(11), 1988-1997. doi: 10.1136/gutjnl-2019-320105 PMID: 32169907
- Hou, X.; Zhang, P.; Du, H.; Chu, W.; Sun, R.; Qin, S.; Tian, Y.; Zhang, Z.; Xu, F. Akkermansia Muciniphila potentiates the antitumor effi-cacy of FOLFOX in colon cancer. Front. Pharmacol., 2021, 12, 725583. doi: 10.3389/fphar.2021.725583 PMID: 34603035
- Su, J.; Braat, H.; Verhaar, A.; Peppelenbosch, M. Commentary: Intermittent fasting and akkermansia muciniphila potentiate the antitumor efficacy of FOLFOX in colon cancer. Front. Pharmacol., 2022, 13, 843133. doi: 10.3389/fphar.2022.843133 PMID: 35222050
- Eriau, E.; Paillet, J.; Kroemer, G.; Pol, J.G. Metabolic reprogramming by reduced calorie intake or pharmacological caloric restriction mi-metics for improved cancer immunotherapy. Cancers, 2021, 13(6), 1260. doi: 10.3390/cancers13061260 PMID: 33809187
- Qian, H.; Chao, X.; Williams, J.; Fulte, S.; Li, T.; Yang, L.; Ding, W.X. Autophagy in liver diseases: A review. Mol. Aspects Med., 2021, 82, 100973. doi: 10.1016/j.mam.2021.100973 PMID: 34120768
- Schwarz, J.M.; Linfoot, P.; Dare, D.; Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr., 2003, 77(1), 43-50. doi: 10.1093/ajcn/77.1.43 PMID: 12499321
- Minehira, K.; Bettschart, V.; Vidal, H.; Vega, N.; Di Vetta, V.; Rey, V.; Schneiter, P.; Tappy, L. Effect of carbohydrate overfeeding on whole body and adipose tissue metabolism in humans. Obes. Res., 2003, 11(9), 1096-1103. doi: 10.1038/oby.2003.150 PMID: 12972680
- Ameer, F.; Scandiuzzi, L.; Hasnain, S.; Kalbacher, H.; Zaidi, N. De novo lipogenesis in health and disease. Metabolism, 2014, 63(7), 895-902. doi: 10.1016/j.metabol.2014.04.003 PMID: 24814684
- Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777. doi: 10.1038/nrc2222 PMID: 17882277
- Alkhouri, N.; Gornicka, A.; Berk, M.P.; Thapaliya, S.; Dixon, L.J.; Kashyap, S.; Schauer, P.R.; Feldstein, A.E. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J. Biol. Chem., 2010, 285(5), 3428-3438. doi: 10.1074/jbc.M109.074252 PMID: 19940134
- Gucalp, A.; Iyengar, N.M.; Hudis, C.A.; Dannenberg, A.J. Targeting obesity-related adipose tissue dysfunction to prevent cancer develop-ment and progression. Semin. Oncol., 2016, 43(1), 154-160. doi: 10.1053/j.seminoncol.2015.09.012 PMID: 26970134
- Kubota, N.; Terauchi, Y.; Yamauchi, T.; Kubota, T.; Moroi, M.; Matsui, J.; Eto, K.; Yamashita, T.; Kamon, J.; Satoh, H.; Yano, W.; Froguel, P.; Nagai, R.; Kimura, S.; Kadowaki, T.; Noda, T. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem., 2002, 277(29), 25863-25866. doi: 10.1074/jbc.C200251200 PMID: 12032136
- Cai, L.; Xu, S.; Piao, C.; Qiu, S.; Li, H.; Du, J. Adiponectin induces CXCL1 secretion from cancer cells and promotes tumor angiogenesis by inducing stromal fibroblast senescence. Mol. Carcinog., 2016, 55(11), 1796-1806. doi: 10.1002/mc.22428 PMID: 27092462
- Zhong, Z.; Mao, S.; Lin, H.; Li, H.; Lin, J.; Lin, J.M. Alteration of intracellular metabolome in osteosarcoma stem cells revealed by liquid chromatography-tandem mass spectrometry. Talanta, 2019, 204, 6-12. doi: 10.1016/j.talanta.2019.05.088 PMID: 31357340
- Sadeghian, M.; Rahmani, S.; Khalesi, S.; Hejazi, E. A review of fasting effects on the response of cancer to chemotherapy. Clin. Nutr., 2021, 40(4), 1669-1681. doi: 10.1016/j.clnu.2020.10.037 PMID: 33153820
- Oyabu, M.; Takigawa, K.; Mizutani, S.; Hatazawa, Y.; Fujita, M.; Ohira, Y.; Sugimoto, T.; Suzuki, O.; Tsuchiya, K.; Suganami, T.; Ogawa, Y.; Ishihara, K.; Miura, S.; Kamei, Y. FOXO1 cooperates with C/EBPδ and ATF4 to regulate skeletal muscle atrophy transcriptional pro-gram during fasting. FASEB J., 2022, 36(2), e22152. doi: 10.1096/fj.202101385RR PMID: 35061305
- Ibrahim, E.M.; Al-Foheidi, M.H.; Al-Mansour, M.M. Energy and caloric restriction, and fasting and cancer: a narrative review. Support. Care Cancer, 2021, 29(5), 2299-2304. doi: 10.1007/s00520-020-05879-y PMID: 33190181
- de Groot, S.; Pijl, H.; van der Hoeven, J.J.M.; Kroep, J.R. Effects of short-term fasting on cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 209. doi: 10.1186/s13046-019-1189-9 PMID: 31113478
- Ariaans, G.; Jalving, M.; Vries, E.G.E.; Jong, S. Anti-tumor effects of everolimus and metformin are complementary and glucose-dependent in breast cancer cells. BMC Cancer, 2017, 17(1), 232. doi: 10.1186/s12885-017-3230-8 PMID: 28356082
- O'Flanagan, C.H.; Smith, L.A.; McDonell, S.B.; Hursting, S.D. When less may be more: Calorie restriction and response to cancer therapy. BMC Med., 2017, 15(1), 106. doi: 10.1186/s12916-017-0873-x PMID: 28539118
Қосымша файлдар
