Four Decades of the Comet Assay: pH Optimum of Lysis Buffer Still Needs to be Elucidated


Цитировать

Полный текст

Аннотация

The proper course and reproducibility of diagnostic techniques depend on narrowly defined reaction conditions, including the reaction pH. Nevertheless, numerous assays are affected by an inaccurately defined reaction pH. Buffers are sometimes suggested for use outside their useful pH ranges, which complicates the reproducibility of results because the buffering capacity is insufficient to retain the disclosed pH. Here, we focus on the comet assay lysis buffer. Comet assay is broadly used for quantifying DNA breaks in eukaryotic cells. The most widespread comet assay protocols employ lysis of the cells before electrophoresis in a buffer containing Triton X-100, a high concentration of NaCl, sodium sarcosinate, EDTA, and Tris, with some modifications. However, nearly all researchers report that they use Tris buffer at pH 10, and some report the pH of the Tris additive alone. Alternatively, others report the pH of the final lysis buffer. However, the lysis solution used in the comet assay is buffered at a pH outside the useful range of Tris. Tris-based buffers have a useful pH range of 7.0 - 9.0. The buffer composed of 10 mM Tris has pKa 8.10 at 25°C and 8.69 at 4°C. The cell lysis conditions used in nearly all modifications of comet assay protocols remain imprecise and uncritically employed. Despite the pH of the lysis buffer likely has negligible effect on the detection of DNA breaks, precise lysis conditions are highly important for the use of comet assay in the detection of base modifications, which are often unstable and sensitive to pH.

Об авторах

Petr Heneberg

Third Faculty of Medicine, Charles University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Stoll, V.S.; Blanchard, J.S. Buffers. Methods Enzymol., 2009, 463, 43-56. doi: 10.1016/S0076-6879(09)63006-8 PMID: 19892166
  2. Šimčíková, D.; Heneberg, P. Identification of alkaline pH optimum of human glucokinase because of ATP-mediated bias correction in outcomes of enzyme assays. Sci. Rep., 2019, 9(1), 11422. doi: 10.1038/s41598-019-47883-1 PMID: 31388064
  3. Salas, J.; Salas, M.; Viñuela, E.; Sols, A. Glucokinase of rabbit liver. J. Biol. Chem., 1965, 240(3), 1014-1018. doi: 10.1016/S0021-9258(18)97530-7 PMID: 14284695
  4. Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191. doi: 10.1016/0014-4827(88)90265-0 PMID: 3345800
  5. Rydberg, B.; Johanson, K.J. Estimation of DNA strand breaks in single mammalian cells. DNA Repair Mechanisms; Hanawalt, P.C.; Friedberg, E.C; Fox, C.F., Ed.; Academic Press: New York, 1978, pp. 465-468. doi: 10.1016/B978-0-12-322650-1.50090-4
  6. Östling, O.; Johanson, K.J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun., 1984, 123(1), 291-298. doi: 10.1016/0006-291X(84)90411-X PMID: 6477583
  7. Olive, P.L.; Banáth, J.P.; Durand, R.E.; Banath, J.P. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat. Res., 1990, 122(1), 86-94. doi: 10.2307/3577587 PMID: 2320728
  8. Collins, A.R.; Dusinská, M. Oxidation of cellular DNA measured with the comet assay. Methods Mol. Biol., 2002, 186, 147-160. doi: 10.1385/1-59259-173-6:147 PMID: 12013763
  9. Fairbairn, D.W.; Olive, P.L.; O'Neill, K.L. The comet assay: A comprehensive review. Mutat. Res. Rev. Genet. Toxicol., 1995, 339(1), 37-59. doi: 10.1016/0165-1110(94)00013-3 PMID: 7877644
  10. Tice, R.R.; Andrews, P.W.; Hirai, O.; Singh, N.P. The single cell gel (SCG) assay: An electrophoretic technique for the detection of DNA damage in individual cells. Adv. Exp. Med. Biol., 1991, 283, 157-164. doi: 10.1007/978-1-4684-5877-0_17 PMID: 2068983
  11. Rathke, C.; Baarends, W.M.; Awe, S.; Renkawitz-Pohl, R. Chromatin dynamics during spermiogenesis. Biochim. Biophys. Acta. Gene Regul. Mech., 2014, 1839(3), 155-168. doi: 10.1016/j.bbagrm.2013.08.004 PMID: 24091090
  12. Bao, J.; Bedford, M.T. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction, 2016, 151(5), R55-R70. doi: 10.1530/REP-15-0562 PMID: 26850883
  13. Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Costa Pereira, C.; Dusinska, M.; Godschalk, R.; Brunborg, G.; Gutzkow, K.B.; Giovannelli, L.; Cooke, M.S.; Richling, E.; Laffon, B.; Valdiglesias, V.; Basaran, N.; Del Bo', C.; Zegura, B.; Novak, M.; Stopper, H.; Vodicka, P.; Vodenkova, S.; de Andrade, V.M.; Sramkova, M.; Gabelova, A.; Collins, A.; Langie, S.A.S. Minimum information for reporting on the comet assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc., 2020, 15(12), 3817-3826. doi: 10.1038/s41596-020-0398-1 PMID: 33106678
  14. Collins, A.R. Measuring oxidative damage to DNA and its repair with the comet assay. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(2), 794-800. doi: 10.1016/j.bbagen.2013.04.022 PMID: 23618695
  15. Mikloš, M.; Gajski, G.; Garaj-Vrhovac, V. Usage of the standard and modified comet assay in assessment of DNA damage in human lymphocytes after exposure to ionizing radiation. Radiol. Oncol., 2009, 43(2), 97-107. doi: 10.2478/v10019-009-0015-y
  16. Muruzabal, D.; Collins, A.; Azqueta, A. The enzyme-modified comet assay: Past, present and future. Food Chem. Toxicol., 2021, 147, 111865. doi: 10.1016/j.fct.2020.111865 PMID: 33217526
  17. Collins, A.R.; Duthie, S.J.; Dobson, V.L. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 1993, 14(9), 1733-1735. doi: 10.1093/carcin/14.9.1733 PMID: 8403192
  18. Lewies, A.; Van Dyk, E.; Wentzel, J.F.; Pretorius, P.J. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells. Front. Genet., 2014, 5, 215. doi: 10.3389/fgene.2014.00215 PMID: 25071840
  19. Ramos, A.A.; Pedro, D.F.N.; Lima, C.F.; Collins, A.R.; Pereira-Wilson, C. Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth). Free Radic. Biol. Med., 2013, 60, 41-48. doi: 10.1016/j.freeradbiomed.2013.01.028 PMID: 23391575
  20. Townsend, T.A.; Parrish, M.C.; Engelward, B.P.; Manjanatha, M.G. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status. Environ. Mol. Mutagen., 2017, 58(7), 508-521. doi: 10.1002/em.22101 PMID: 28755435
  21. Wentzel, J.F.; Gouws, C.; Huysamen, C.; Dyk, E.; Koekemoer, G.; Pretorius, P.J. Assessing the DNA methylation status of single cells with the comet assay. Anal. Biochem., 2010, 400(2), 190-194. doi: 10.1016/j.ab.2010.02.008 PMID: 20156416
  22. Wu, J.H.; Jones, N.J. Assessment of DNA interstrand crosslinks using the modified alkaline comet assay. Methods Mol. Biol., 2012, 817, 165-181. doi: 10.1007/978-1-61779-421-6_9 PMID: 22147573
  23. Spanswick, V.J.; Hartley, J.M.; Hartley, J.A. Measurement of DNA interstrand crosslinking in individual cells using the Single Cell Gel Electrophoresis (Comet) assay. Methods Mol. Biol., 2010, 613, 267-282. doi: 10.1007/978-1-60327-418-0_17 PMID: 19997890
  24. Collins, A.; Møller, P.; Gajski, G.; Vodenková, S.; Abdulwahed, A.; Anderson, D.; Bankoglu, E.E.; Bonassi, S.; Boutet-Robinet, E.; Brun-borg, G.; Chao, C.; Cooke, M.S.; Costa, C.; Costa, S.; Dhawan, A.; de Lapuente, J.; Bo', C.D.; Dubus, J.; Dusinska, M.; Duthie, S.J.; Yamani, N.E.; Engelward, B.; Gaivão, I.; Giovannelli, L.; Godschalk, R.; Guilherme, S.; Gutzkow, K.B.; Habas, K.; Hernández, A.; Herrero, O.; Isidori, M.; Jha, A.N.; Knasmüller, S.; Kooter, I.M.; Koppen, G.; Kruszewski, M.; Ladeira, C.; Laffon, B.; Larramendy, M.; Hégarat, L.L.; Lewies, A.; Lewinska, A.; Liwszyc, G.E.; de Cerain, A.L.; Manjanatha, M.; Marcos, R.; Milić, M.; de Andrade, V.M.; Moretti, M.; Muruzabal, D.; Novak, M.; Oliveira, R.; Olsen, A.K.; Owiti, N.; Pacheco, M.; Pandey, A.K.; Pfuhler, S.; Pourrut, B.; Reisinger, K.; Rojas, E.; Rundén-Pran, E.; Sanz-Serrano, J.; Shaposhnikov, S.; Sipinen, V.; Smeets, K.; Stopper, H.; Teixeira, J.P.; Valdiglesias, V.; Valverde, M.; van Acker, F.; van Schooten, F.J.; Vasquez, M.; Wentzel, J.F.; Wnuk, M.; Wouters, A.; Žegura, B.; Zikmund, T.; Langie, S.A.S.; Azqueta, A. Measuring DNA modifications with the comet assay: A compendium of protocols. Nat. Protoc., 2023, 18(3), 929-989. doi: 10.1038/s41596-022-00754-y PMID: 36707722
  25. McKelvey-Martin, V.J.; Green, M.H.L.; Schmezer, P.; Pool-Zobel, B.L.; De Méo, M.P.; Collins, A. The single cell gel electrophoresis assay (comet assay): A European review. Mutat. Res., 1993, 288(1), 47-63. doi: 10.1016/0027-5107(93)90207-V PMID: 7686265
  26. Singh, N.P.; Danner, D.B.; Tice, R.R.; McCoy, M.T.; Collins, G.D.; Schneider, E.L. Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp. Cell Res., 1989, 184(2), 461-470. doi: 10.1016/0014-4827(89)90344-3 PMID: 2806399
  27. Olive, P.L.; Banáth, J.P.; Durand, R.E. Detection of etoposide resistance by measuring DNA damage in individual Chinese hamster cells. J. Natl. Cancer Inst., 1990, 82(9), 779-783. doi: 10.1093/jnci/82.9.779 PMID: 2325148
  28. Olive, P.L.; Banáth, J.P.; Evans, H.H. Cell killing and DNA damage by etoposide in Chinese hamster V79 monolayers and spheroids: Influence of growth kinetics, growth environment and DNA packaging. Br. J. Cancer, 1993, 67(3), 522-530. doi: 10.1038/bjc.1993.97 PMID: 8382510
  29. Olive, P.L.; Durand, R.E.; Banáth, J.P.; Evans, H.H. Etoposide sensitivity and topoisomerase II activity in Chinese hamster V79 monolayers and small spheroids. Int. J. Radiat. Biol., 1991, 60(3), 453-466. doi: 10.1080/09553009114552311 PMID: 1679086
  30. Higami, Y.; Shimokawa, I.; Okimoto, T.; Ikeda, T. An age-related increase in the basal level of DNA damage and DNA vulnerability to oxygen radicals in the individual hepatocytes of male F344 rats. Mutation Research/DNAging, 1994, 316(2), 59-67. doi: 10.1016/0921-8734(94)90008-6 PMID: 7521003
  31. Fairbairn, D.W.; Reyes, W.A.; Van Grigsby, R.; O'Neill, K.L. Laser scanning microscopic analysis of DNA damage in frozen tissues. Cancer Lett., 1994, 76(2-3), 127-132. doi: 10.1016/0304-3835(94)90388-3 PMID: 8149341
  32. Ward, A.J.; Olive, P.L.; Burr, A.H.; Rosin, M.P. A sensitivity to oxidative stress is linked to chromosome 11 but is not due to a difference in single strand DNA breakage or repair. Mutat. Res. DNA Repair, 1993, 294(3), 299-308. doi: 10.1016/0921-8777(93)90012-6 PMID: 7692269
  33. Vijayalaxmi; Tice, RR; Strauss, GH Assessment of radiation-induced DNA damage in human blood lymphocytes using the single-cell electrophoresis technique. Mutat. Res., 1992, 271, 243-252. doi: 10.1016/0165-1161(92)90019-I PMID: 1378197
  34. Vijayalaxmi, G.H.; Tice, R.R. An analysis of γ-ray-induced DNA damage in human blood leukocytes, lymphocytes and granulocytes. Mutat. Res. Envir. Mutag. Relat. Subj., 1993, 292(2), 123-128. doi: 10.1016/0165-1161(93)90139-Q PMID: 7692248
  35. Tice, R.R.; Strauss, G.H.S.; Peters, W.P. High-dose combination alkylating agents with autologous bone-marrow support in patients with breast cancer: Preliminary assessment of DNA damage in individual peripheral blood lymphocytes using the single cell gel electrophoresis assay. Mutat. Res. Envir. Mutag. Relat. Subj., 1992, 271(2), 101-113. doi: 10.1016/0165-1161(92)91083-4 PMID: 1372680
  36. Singh, N.P.; Tice, R.R.; Stephens, R.E.; Schneider, E.L. A microgel electrophoresis technique for the direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope slides. Mutat. Res. Envir. Mutag. Relat. Subj., 1991, 252(3), 289-296. doi: 10.1016/0165-1161(91)90008-V PMID: 2052008
  37. Véras, J.H.; Do Vale, C.R.; Luiz, C.B. E.F.; Dos Anjos, M.M.; Cardoso, C.G.; de Oliveira, M.G.; de Paula, J.R.; de Oliveira, G.R.; Silva, C.R.E.; Chen-Chen, L. Protective effects and DNA repair induction of a coumarin-chalcone hybrid against genotoxicity induced by mutagens. J. Toxicol. Environ. Health A, 2022, 85(22), 937-951. doi: 10.1080/15287394.2022.2120585 PMID: 36068785
  38. Vodenkova, S.; Azqueta, A.; Collins, A.; Dusinska, M.; Gaivão, I.; Møller, P.; Opattova, A.; Vodicka, P.; Godschalk, R.W.L.; Langie, S.A.S. An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat. Protoc., 2020, 15(12), 3844-3878. doi: 10.1038/s41596-020-0401-x PMID: 33199871
  39. Lima, D.C.S.; Vale, C.R.; Véras, J.H.; Bernardes, A.; Pérez, C.N.; Chen-Chen, L. Absence of genotoxic effects of the chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one) and its potential chemoprevention against DNA damage using in vitro and in vivo assays. PLoS One, 2017, 12(2), e0171224. doi: 10.1371/journal.pone.0171224 PMID: 28207781
  40. Vasquez, M.; Frötschl, R. The in vivo comet assay test.Genetic Toxicology Testing. A Laboratory Manual; Proudlock, R., Ed.; Elsevier: London, 2016, pp. 345-382. doi: 10.1016/B978-0-12-800764-8.00010-0
  41. Carneiro, C.C.; da Costa Santos, S.; de Souza Lino, R., Jr; Bara, M.T.F.; Chaibub, B.A.; de Melo Reis, P.R.; Chaves, D.A.; da Silva, A.J.R.; Silva, L.S. de Melo e Silva, D.; Chen-Chen, L. Chemopreventive effect and angiogenic activity of punicalagin isolated from leaves of Lafoensia pacari A. St.-Hil. Toxicol. Appl. Pharmacol., 2016, 310, 1-8. doi: 10.1016/j.taap.2016.08.015 PMID: 27546523
  42. Grigsby, R.; Fairbairn, D.; O'Neill, K.L. Differential DNA damage detected in hybridomas. Hybridoma, 1993, 12(6), 755-761. doi: 10.1089/hyb.1993.12.755 PMID: 8288274
  43. Fairbairn, D.; O'Neill, K.L.; Standing, M.D. Application of confocal laser scanning microscopy to analysis of H2O2-induced DNA damage in human cells. Scanning, 1993, 15(3), 136-139. doi: 10.1002/sca.4950150305 PMID: 8275279
  44. O'Neill, K.L.; Fairbairn, D.W.; Standing, M.D. Analysis of single-cell gel electrophoresis using laser-scanning microscopy. Mutat. Res. Genet. Toxicol. Test., 1993, 319(2), 129-134. doi: 10.1016/0165-1218(93)90071-K PMID: 7692288
  45. Delaney, C.A.; Green, M.H.L.; Lowe, J.E.; Green, I.C. Endogenous nitric oxide induced by interleukin-1β in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the 'comet' assay. FEBS Lett., 1993, 333(3), 291-295. doi: 10.1016/0014-5793(93)80673-I PMID: 8224196
  46. Betti, C.; Davini, T.; Giannessi, L.; Loprieno, N.; Barale, R. Microgel electrophoresis assay (comet test) and SCE analysis in human lym-phocytes from 100 normal subjects. Mutat. Res., 1994, 307(1), 323-333. doi: 10.1016/0027-5107(94)90306-9 PMID: 7513812
  47. Enciso, J.M.; Sánchez, O.; López de Cerain, A.; Azqueta, A. Does the duration of lysis affect the sensitivity of the in vitro alkaline comet assay? Mutagenesis, 2015, 30(1), 21-28. doi: 10.1093/mutage/geu047 PMID: 25527724
  48. Enciso, J.M.; Gutzkow, K.B.; Brunborg, G.; Olsen, A.K.; López de Cerain, A.; Azqueta, A. Standardisation of the in vitro comet assay: Influence of lysis time and lysis solution composition on the detection of DNA damage induced by X-rays. Mutagenesis, 2018, 33(1), 25-30. doi: 10.1093/mutage/gex039 PMID: 29329446
  49. Karbaschi, M.; Ji, Y.; Abdulwahed, A.M.S.; Alohaly, A.; Bedoya, J.F.; Burke, S.L.; Boulos, T.M.; Tempest, H.G.; Cooke, M.S. Evaluation of the major steps in the conventional protocol for the alkaline comet assay. Int. J. Mol. Sci., 2019, 20(23), 6072. doi: 10.3390/ijms20236072 PMID: 31810189
  50. Hansen, S.H.; Pawlowicz, A.J.; Kronberg, L.; Gützkow, K.B.; Olsen, A.K.; Brunborg, G. Using the comet assay and lysis conditions to characterize DNA lesions from the acrylamide metabolite glycidamide. Mutagenesis, 2018, 33(1), 31-39. doi: 10.1093/mutage/gex036 PMID: 29240951
  51. Muruzabal, D.; Sanz-Serrano, J.; Sauvaigo, S.; Gützkow, K.B.; López de Cerain, A.; Vettorazzi, A.; Azqueta, A. Novel approach for the detection of alkylated bases using the enzyme-modified comet assay. Toxicol. Lett., 2020, 330, 108-117. doi: 10.1016/j.toxlet.2020.04.021 PMID: 32380118
  52. Gates, K.S.; Nooner, T.; Dutta, S. Biologically relevant chemical reactions of N7-alkylguanine residues in DNA. Chem. Res. Toxicol., 2004, 17(7), 839-856. doi: 10.1021/tx049965c PMID: 15257608
  53. Lau, A.Y.; Schärer, O.D.; Samson, L.; Verdine, G.L.; Ellenberger, T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: Mechanisms for nucleotide flipping and base excision. Cell, 1998, 95(2), 249-258. doi: 10.1016/S0092-8674(00)81755-9 PMID: 9790531
  54. Bradley, M.O.; Kohn, K.W. X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution. Nucleic Acids Res., 1979, 7(3), 793-804. doi: 10.1093/nar/7.3.793 PMID: 92010
  55. Collins, A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol., 2004, 26(3), 249-261. doi: 10.1385/MB:26:3:249 PMID: 15004294
  56. Collins, A.R.; Dobson, V.L.; Dušinská, M.; Kennedy, G.; Štětina, R. The comet assay: What can it really tell us? Mutat. Res., 1997, 375(2), 183-193. doi: 10.1016/S0027-5107(97)00013-4 PMID: 9202728
  57. Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y.F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen., 2000, 35(3), 206-221. doi: 10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J PMID: 10737956
  58. Gedik, C.M.; Ewen, S.W.B.; Collins, A.R. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int. J. Radiat. Biol., 1992, 62(3), 313-320. doi: 10.1080/09553009214552161 PMID: 1356133
  59. Collins, A.R.; Dusinská, M.; Gedik, C.M.; Stĕtina, R. Oxidative damage to DNA: Do we have a reliable biomarker? Environ. Health Perspect., 1996, 104(Suppl. 3), 465-469. doi: 10.1289/ehp.96104s3465 PMID: 8781365
  60. Sauvaigo, S.; Serres, C.; Signorini, N.; Emonet, N.; Richard, M.J.; Cadet, J. Use of the single-cell gel electrophoresis assay for the immuno-fluorescent detection of specific DNA damage. Anal. Biochem., 1998, 259(1), 1-7. doi: 10.1006/abio.1998.2628 PMID: 9606136

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2023