Novel Synthetic Indazoles Abrogate Angiogenesis in Erlich Ascites Tumor Bearing Mice


Цитировать

Полный текст

Аннотация

Background: Indazoles are known for their anti-cancer properties.

Objective: The current investigation was on the synthesis and evaluation of novel indazole derivatives for their anticancer properties.

Methods: A series of novel indazoles were synthesized and characterized by IR, NMR and LCMS. We performed cytotoxic studies for all synthesized compounds on different cell lines such as HeLa, MCF-7 and EAC using MTT assay. The lead compound was tested further for its anti-tumor and anti-angiogenic effect on EAT tumor model.

Results: Amongst the series of compounds synthesized, compound KA8 showed potent antiproliferative effect against Hela, MCF-7 and EAC cell lines with IC50 values 10.4 to 11.5 and 13.5µM respectively. In addition, our compound KA8 significantly decreased the cell viability, body weight, ascites volume and it also showed superior survival ability of mice compared to control groups. Furthermore, it suppressed the formation of neovasculature in the peritoneum of EAT-bearing mice.

Conclusion: The findings reveal that the lead compound KA8 possesses potent anti-tumor and anti-angiogenic properties thereby promising it to be developed as a novel anticancer agent with further mechanistic studies.

Об авторах

Nanjundaswamy Ashwini

Department of Chemistry, Teresian College

Email: info@benthamscience.net

Kyathegowdanadoddi Balaji

Department of Physiology, Eastern Virginia Medical School

Email: info@benthamscience.net

Bettadahalli Sadashivaiah

Department of Molecular Biology, Yuvaraja's College, University of Mysore

Email: info@benthamscience.net

Toreshettahally Swaroop

Department of Studies in Organic Chemistry, University of Mysore

Email: info@benthamscience.net

Shankar Jayarama

Department of Studies in Food Technology, Davangere University

Email: info@benthamscience.net

Kempegowda Mantelingu

Department of Studies in Chemistry, University of Mysore

Автор, ответственный за переписку.
Email: info@benthamscience.net

Kanchugarakoppal Rangappa

Institution of Excellence, University of Mysore

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. World Health Organization, Global health estimates 2015: deaths by cause, age, sex, by country and by region, 2000–2015., 2016. Available from: https://www.who.int/data/global-health-estimates=
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  3. Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614-1614. doi: 10.3389/fphar.2019.01614 PMID: 32116665
  4. Demain, A.L.; Vaishnav, P. Natural products for cancer chemotherapy. Microb. Biotechnol., 2011, 4(6), 687-699. doi: 10.1111/j.1751-7915.2010.00221.x PMID: 21375717
  5. Schmidt, E.V.; Chisamore, M.J.; Chaney, M.F.; Maradeo, M.E.; Anderson, J.; Baltus, G.A.; Pinheiro, E.M.; Uebele, V.N. Assessment of clinical activity of PD-1 checkpoint inhibitor combination therapies reported in clinical trials. JAMA Netw. Open, 2020, 3(2), e1920833-e1920833. doi: 10.1001/jamanetworkopen.2019.20833 PMID: 32049290
  6. Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274. doi: 10.1021/jm501100b PMID: 25255204
  7. Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold: a review. Adv. Biol. Res., 2011, 5(3), 120-144.
  8. Thangadurai, A.; Minu, M.; Wakode, S.; Agrawal, S.; Narasimhan, B. Indazole: a medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 21(7), 1509-1523. doi: 10.1007/s00044-011-9631-3
  9. Wan, Y.; He, S.; Li, W.; Tang, Z. Indazole derivatives: promising anti-tumor agents. Anticancer. Agents Med. Chem., 2018, 18(9), 1228-1234. doi: 10.2174/1871520618666180510113822 PMID: 29745343
  10. Cheekavolu, C.; Muniappan, M. In vivo and in vitro anti-inflammatory activity of indazole and its derivatives. J. Clin. Diagn. Res., 2016, 10(9), FF01-FF06. doi: 10.7860/JCDR/2016/19338.8465 PMID: 27790461
  11. Al-Bogami, A.S. Mechanochemical synthesis of cyclohexenones and indazoles as potential antimicrobial agents. Res. Chem. Intermed., 2016, 42(6), 5457-5477. doi: 10.1007/s11164-015-2379-5
  12. Feng, S.; Li, C.; Chen, D.; Zheng, X.; Yun, H.; Gao, L.; Shen, H.C. Discovery of methylsulfonyl indazoles as potent and orally active res-piratory syncytial Virus (RSV) fusion inhibitors. Eur. J. Med. Chem., 2017, 138, 1147-1157. doi: 10.1016/j.ejmech.2017.07.032 PMID: 28772235
  13. Khan, I.; Ibrar, A.; Abbas, N. Oxadiazoles as privileged motifs for promising anticancer leads: recent advances and future prospects. Arch. Pharm., 2014, 347(1), 1-20. doi: 10.1002/ardp.201300231 PMID: 24265208
  14. Uppulapu, S.K.; Alam, M.J.; Kumar, S.; Banerjee, S.K. Indazole and its derivatives in cardiovascular diseases: overview, current scenario, and future perspectives. Curr. Top. Med. Chem., 2022, 22(14), 1177-1188. doi: 10.2174/1568026621666211214151534 PMID: 34906057
  15. Dong, J.; Zhang, Q.; Wang, Z.; Huang, G.; Li, S. Recent advances in the development of indazole‐based anticancer agents. ChemMedChem, 2018, 13(15), 1490-1507. doi: 10.1002/cmdc.201800253 PMID: 29863292
  16. Touat, M.; Ileana, E.; Postel-Vinay, S.; André, F.; Soria, J.C. Targeting FGFR signaling in cancer. Clin. Cancer Res., 2015, 21(12), 2684-2694. doi: 10.1158/1078-0432.CCR-14-2329 PMID: 26078430
  17. van Geel, R.M.J.M.; Beijnen, J.H.; Schellens, J.H.M. Concise drug review: pazopanib and axitinib. Oncologist, 2012, 17(8), 1081-1089. doi: 10.1634/theoncologist.2012-0055 PMID: 22733795
  18. Denya, I.; Malan, S.F.; Joubert, J. Indazole derivatives and their therapeutic applications: a patent review (2013-2017). Expert Opin. Ther. Pat., 2018, 28(6), 441-453. doi: 10.1080/13543776.2018.1472240 PMID: 29718740
  19. Roopashree, R.; Mohan, C.D.; Swaroop, T.R.; Jagadish, S.; Rangappa, K.S. Synthesis, characterization and in vivo biological evaluation of novel benzimidazoles as potential anticancer agents. Asian J. Pharm. Clin. Res., 2014, 5(7), 309-313.
  20. Ray, U.; Raul, S.K.; Gopinatha, V.K.; Ghosh, D.; Rangappa, K.S.; Mantelingu, K.; Raghavan, S.C. Identification and characterization of novel SCR7-based small-molecule inhibitor of DNA end-joining, SCR130 and its relevance in cancer therapeutics. Mol. Carcinog., 2020, 59(6), 618-628. doi: 10.1002/mc.23186 PMID: 32189406
  21. Hegde, M.; Mantelingu, K.; Swarup, H.A.; Pavankumar, C.S.; Qamar, I.; Raghavan, S.C.; Rangappa, K.S. Novel PARP inhibitors sensitize human leukemic cells in an endogenous PARP activity dependent manner. RSC Advances, 2016, 6(8), 6308-6319. doi: 10.1039/C5RA19150E
  22. Rakesh, K.S.; Jagadish, S.; Swaroop, T.R.; Mohan, C.D.; Ashwini, N.; Harsha, K.B.; Zameer, F.; Girish, K.S.; Rangappa, K.S. Anticancer activity of 2,4-disubstituted thiophene derivatives: dual inhibitors of lipoxygenase and cyclooxygenase. Med. Chem., 2015, 11(5), 462-472. doi: 10.2174/1573406411666141210141918 PMID: 25494807
  23. Hegde, M.; Mantelingu, K.; Pandey, M.; Pavankumar, C.S.; Rangappa, K.S.; Raghavan, S.C. Combinatorial study of a novel poly (ADP-ribose) polymerase inhibitor and an HDAC inhibitor, SAHA, in leukemic cell lines. Target. Oncol., 2016, 11(5), 655-665. doi: 10.1007/s11523-016-0441-x PMID: 27188390
  24. Rakesh, K.S.; Jagadish, S.; Balaji, K.S.; Zameer, F.; Swaroop, T.R.; Mohan, C.D.; Jayarama, S.; Rangappa, K.S. 3,5-Disubstituted isoxazole derivatives: potential inhibitors of inflammation and cancer. Inflammation, 2016, 39(1), 269-280. doi: 10.1007/s10753-015-0247-5 PMID: 26363638
  25. Preethi, S.D.; Balaji, K.S.; Prasanna, D.S.; Swaroop, T.R.; Shankar, J.; Rangappa, K.S.; Lokesh, S. Synthesis, characterization of 4-anilino-6,7-dimethoxyquinazoline derivatives as potential anti-angionic agents. Anticancer. Agents Med. Chem., 2017, 17, 1931-1941.
  26. De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 2017, 17(8), 457-474. doi: 10.1038/nrc.2017.51 PMID: 28706266
  27. Ribatti, D. targeting angiogenesis in neuroblastoma. In: Neuroblastoma; Academic Press: Cambridge.: MA, USA, 2019.
  28. Kerr, J F R.; Wyllie, A.H.; Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257. doi: 10.1038/bjc.1972.33 PMID: 4561027
  29. Prabhakar, B.T.; Khanum, S.A.; Jayashree, K.; Salimath, B.P.; Shashikanth, S. Anti-tumor and proapoptotic effect of novel synthetic benzophenone analogues in Ehrlich ascites tumor cells. Bioorg. Med. Chem., 2006, 14(2), 435-446. doi: 10.1016/j.bmc.2005.08.039 PMID: 16214348

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2023