Quercetin-based Nanoformulation: A Potential Approach for Cancer Treatment


Дәйексөз келтіру

Толық мәтін

Аннотация

Nanoformulations derived from natural products are gaining popularity as a treatment option for several human diseases, including cancer, as they offer a viable alternative to conventional cancer therapies, which are often associated with numerous side effects and complications. Quercetin (Que), a plant-derived phenolic molecule, has demonstrated potential as a chemotherapeutic agent for different types of cancer. However, Que's low water solubility, instability towards antioxidants, low bioavailability, and severe biotransformation constraints make it challenging to use in vivo. Nanoparticles have emerged as a promising technology for the precise targeting of tumor cells, leading to improved efficacy and specificity in cancer therapies. In this review, the impact of flavonoid nanoformulations on enhancing the safety, therapeutic potential, and bioavailability of Que in cancer treatment is highlighted. A variety of nanoparticle types have been developed, including polymeric micelles, liposomes, PLGA nanoparticles, coencapsulation, chitosan NPs, lipid carriers, silver and gold NPs, inorganic NPs, organic metal frameworks, and biomacromolecule- based NPs, all aimed at improving the antineoplastic efficacy of Que. These nanoparticles offer several advantages, including prolonged circulation time, tumor-specific biodistribution, high encapsulation efficiency, enhanced therapeutic efficacy, and controlled release. This review provides fresh insights into the arena of drug discovery for tumor therapies by focusing on the influence of flavonoid nanoformulations on the enhancement of their safety, therapeutic, and bioavailability characteristics.

Авторлар туралы

Shivani

Institute of Pharmaceutical Sciences, Kurukshetra University

Email: info@benthamscience.net

Gurvirender Singh

Institute of Pharmaceutical Sciences, Kurukshetra University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Smita Narwal

, Global Research Institute of Pharmacy

Email: info@benthamscience.net

Bhawna Chopra

, Guru Gobind Singh College of Pharmacy

Email: info@benthamscience.net

Ashwani Dhingra

, Guru Gobind Singh College of Pharmacy

Email: info@benthamscience.net

Әдебиет тізімі

  1. Cronin, K.A.; Lake, A.J.; Scott, S.; Sherman, R.L.; Noone, A.M.; Howlader, N.; Henley, S.J.; Anderson, R.N.; Firth, A.U.; Ma, J.; Kohler, B.A.; Jemal, A. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer, 2018, 124(13), 2785-2800. doi: 10.1002/cncr.31551 PMID: 29786848
  2. Soerjomataram, I.; Bray, F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol., 2021, 18(10), 663-672. doi: 10.1038/s41571-021-00514-z PMID: 34079102
  3. Sathishkumar, K.; Chaturvedi, M.; Das, P.; Stephen, S.; Mathur, P. Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer Registry Programme, India. Indian J. Med. Res., 2022, 156, 598-607. PMID: 36510887
  4. Huminiecki, L. Horbańczuk, J. The functional genomic studies of resveratrol in respect to its anti-cancer effects. Biotechnol. Adv., 2018, 36(6), 1699-1708. doi: 10.1016/j.biotechadv.2018.02.011 PMID: 29476886
  5. Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199. doi: 10.7150/ijms.3635 PMID: 22408567
  6. Zhou, Z.; Liu, Y.; Jiang, X.; Zheng, C.; Luo, W.; Xiang, X.; Qi, X.; Shen, J. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int. J. Biol. Macromol., 2023, 224, 797-809. doi: 10.1016/j.ijbiomac.2022.10.167 PMID: 36283555
  7. Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl. 2), 41-59. doi: 10.1159/000443404 PMID: 26679767
  8. Estrada-Muñiz, E.; Guerrero-Palomo, G.; Vega, L. Natural products: New anti-cancer agents derived from plants. Curr. Top. Toxicol., 2006, 8(1)
  9. Rahman, M.; Ahmad, M.Z.; Imran, K.; Akhter, S.; Kumar, Y.; Ahmad, F.J.; Anwar, F. Novel approach for the treatment of cancer: Theranostic nanomedicine. Pharmacologia, 2012, 3(9), 371-376. doi: 10.5567/pharmacologia.2012.371.376
  10. Pandey, P.; Rahman, M.; Bhatt, P.C.; Beg, S.; Paul, B.; Hafeez, A.; Al-Abbasi, F.A.; Nadeem, M.S.; Baothman, O.; Anwar, F.; Kumar, V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 2018, 13(8), 849-870. doi: 10.2217/nnm-2017-0306 PMID: 29565220
  11. Ahmed, E.; Arshad, M.; Khan, M.Z.; Amjad, M.S.; Sadaf, H.M.; Riaz, I.; Sabir, S.; Ahmad, N. Secondary metabolites and their multidimensional prospective in plant life. J. Pharmacogn. Phytochem., 2017, 6(2), 205-214.
  12. Morand, C.; Crespy, V.; Manach, C.; Besson, C.; Demigné, C.; Rémésy, C. Plasma metabolites of quercetin and their antioxidant properties. Am. J. Physiol., 1998, 275(1), R212-R219. PMID: 9688981
  13. Cornard, J.P.; Dangleterre, L.; Lapouge, C. Computational and spectroscopic characterization of the molecular and electronic structure of the Pb(II)-quercetin complex. J. Phys. Chem. A, 2005, 109(44), 10044-10051. doi: 10.1021/jp053506i PMID: 16838923
  14. Fischer, C.; Speth, V.; Fleig-Eberenz, S.; Neuhaus, G. Induction of zygotic polyembryos in wheat: Influence of auxin polar transport. Plant Cell, 1997, 9(10), 1767-1780. doi: 10.2307/3870523 PMID: 12237347
  15. Williams, C.A.; Grayer, R.J. Anthocyanins and other flavonoids. Nat. Prod. Rep., 2004, 21(4), 539-573. doi: 10.1039/b311404j PMID: 15282635
  16. Dal Santo, S.; Tornielli, G.B.; Zenoni, S.; Fasoli, M.; Farina, L.; Anesi, A.; Guzzo, F.; Delledonne, M.; Pezzotti, M. The plasticity of the grapevine berry transcriptome. Genome Biol., 2013, 14(6), r54. doi: 10.1186/gb-2013-14-6-r54 PMID: 23759170
  17. Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem., 1999, 47(3), 1035-1040. doi: 10.1021/jf980496s PMID: 10552412
  18. Fang, N.; Yu, S.; Mabry, T.J. Flavonoids from ageratina calophylla. Phytochemistry, 1986, 25(11), 2684-2686. doi: 10.1016/S0031-9422(00)84545-8
  19. Zeng, L.M.; Wang, C.J.; Su, J.Y.; Li, D.; Owen, N.L.; Lu, Y.; Lu, N.; Zheng, Q.T. Flavonoids from the red alga Acanthophora spicifera. Chin. J. Chem., 2001, 19(11), 1097-1100. doi: 10.1002/cjoc.20010191116
  20. Borghetti, G.S.; Carini, J.P.; Honorato, S.B.; Ayala, A.P.; Moreira, J.C.F.; Bassani, V.L. Physicochemical properties and thermal stability of quercetin hydrates in the solid state. Thermochim. Acta, 2012, 539, 109-114. doi: 10.1016/j.tca.2012.04.015
  21. Tamura, G.; Gold, C.; Ferro-Luzzi, A.; Ames, B.N. Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora. Proc. Natl. Acad. Sci., 1980, 77(8), 4961-4965. doi: 10.1073/pnas.77.8.4961 PMID: 6933540
  22. Chabane, M.N.; Ahmad, A.A.; Peluso, J.; Muller, C.D.; Ubeaud-Séquier, G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J. Pharm. Pharmacol., 2010, 61(11), 1473-1483. doi: 10.1211/jpp.61.11.0006 PMID: 19903372
  23. Moon, J.H.; Tsushida, T.; Nakahara, K.; Terao, J. Identification of quercetin 3- O -β-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic. Biol. Med., 2001, 30(11), 1274-1285. doi: 10.1016/S0891-5849(01)00522-6 PMID: 11368925
  24. Conquer, J.A.; Maiani, G.; Azzini, E.; Raguzzini, A.; Holub, B.J. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J. Nutr., 1998, 128(3), 593-597. doi: 10.1093/jn/128.3.593 PMID: 9482769
  25. Vafadar, A.; Shabaninejad, Z.; Movahedpour, A.; Fallahi, F.; Taghavipour, M.; Ghasemi, Y.; Akbari, M.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Razi, E.; Savardashtaki, A.; Mirzaei, H. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells. Cell Biosci., 2020, 10(1), 32. doi: 10.1186/s13578-020-00397-0 PMID: 32175075
  26. Lou, G.; Liu, Y.; Wu, S.; Xue, J.; Yang, F.; Fu, H.; Zheng, M.; Chen, Z. The p53/miR-34a/SIRT1 positive feedback loop in quercetin-induced apoptosis. Cell. Physiol. Biochem., 2015, 35(6), 2192-2202. doi: 10.1159/000374024 PMID: 25896587
  27. Senthilkumar, K.; Arunkumar, R.; Elumalai, P.; Sharmila, G.; Gunadharini, D.N.; Banudevi, S.; Krishnamoorthy, G.; Benson, C.S.; Arunakaran, J. Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochem. Funct., 2011, 29(2), 87-95. doi: 10.1002/cbf.1725 PMID: 21308698
  28. Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem. Biol. Interact., 2019, 300, 91-100. doi: 10.1016/j.cbi.2019.01.008 PMID: 30639267
  29. Lu, X.; Liu, T.; Chen, K.; Xia, Y.; Dai, W.; Xu, S.; Xu, L.; Wang, F.; Wu, L.; Li, J.; Li, S.; Wang, W.; Yu, Q.; Feng, J.; Fan, X.; Zhou, Y.; Niu, P.; Guo, C. Isorhamnetin: A hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice. Biomed. Pharmacother., 2018, 103, 800-811. doi: 10.1016/j.biopha.2018.04.016 PMID: 29684859
  30. Moon, J.H.; Eo, S.K.; Lee, J.H.; Park, S.Y. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol. Rep., 2015, 34(1), 375-381. doi: 10.3892/or.2015.3991 PMID: 25997470
  31. Filipits, M. Mechanisms of cancer: Multidrug resistance. Drug Discov. Today Dis. Mech., 2004, 1(2), 229-234. doi: 10.1016/j.ddmec.2004.10.001
  32. Chen, C.; Zhou, J.; Ji, C. Quercetin: A potential drug to reverse multidrug resistance. Life Sci., 2010, 87(11-12), 333-338. doi: 10.1016/j.lfs.2010.07.004 PMID: 20637779
  33. Lan, C-Y.; Chen, S-Y.; Kuo, C-W.; Lu, C-C.; Yen, G-C. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. Yao Wu Shi Pin Fen Xi, 2019, 27(4), 887-896. PMID: 31590760
  34. Chen, Z.; Huang, C.; Ma, T.; Jiang, L.; Tang, L.; Shi, T.; Zhang, S.; Zhang, L.; Zhu, P.; Li, J.; Shen, A. Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine, 2018, 43, 37-45. doi: 10.1016/j.phymed.2018.03.040 PMID: 29747752
  35. Maruszewska, A.; Tarasiuk, J. Quercetin triggers induction of apoptotic and lysosomal death of sensitive and multidrug resistant leukaemia HL60 cells. Nutr. Cancer, 2021, 73(3), 484-501. doi: 10.1080/01635581.2020.1752745 PMID: 32329631
  36. Li, S.; Zhao, Q.; Wang, B.; Yuan, S.; Wang, X.; Li, K. Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation. Phytother. Res., 2018, 32(8), 1530-1536. doi: 10.1002/ptr.6081 PMID: 29635751
  37. Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol., 2019, 9, 1370. doi: 10.3389/fonc.2019.01370 PMID: 31921634
  38. Liu, Y.; Tang, Z.G.; Yang, J.Q.; Zhou, Y.; Meng, L.H.; Wang, H.; Li, C.L. Low concentration of quercetin antagonizes the invasion and angiogenesis of human glioblastoma U251 cells. OncoTargets Ther., 2017, 10, 4023-4028. doi: 10.2147/OTT.S136821 PMID: 28860810
  39. Yang, F.; Jiang, X.; Song, L.; Wang, H.; Mei, Z.; Xu, Z.; Xing, N. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol. Rep., 2016, 35(3), 1602-1610. doi: 10.3892/or.2015.4481 PMID: 26676551
  40. Zhao, X.; Wang, Q.; Yang, S.; Chen, C.; Li, X.; Liu, J.; Zou, Z.; Cai, D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol., 2016, 781, 60-68. doi: 10.1016/j.ejphar.2016.03.063 PMID: 27041643
  41. Fan, J.J.; Hsu, W.H.; Lee, K.H.; Chen, K.C.; Lin, C.W.; Lee, Y.L.; Ko, T.P.; Lee, L.T.; Lee, M.T.; Chang, M.S.; Cheng, C.H. Dietary flavonoids luteolin and quercetin inhibit migration and invasion of squamous carcinoma through reduction of Src/Stat3/S100A7 signaling. Antioxidants, 2019, 8(11), 557. doi: 10.3390/antiox8110557 PMID: 31731716
  42. Kim, S.R.; Lee, E.Y.; Kim, D.J.; Kim, H.J.; Park, H.R. Quercetin inhibits cell survival and metastatic ability via the EMT-mediated pathway in oral squamous cell carcinoma. Molecules, 2020, 25(3), 757. doi: 10.3390/molecules25030757 PMID: 32050534
  43. Dhanaraj, T.; Mohan, M.; Arunakaran, J. Quercetin attenuates metastatic ability of human metastatic ovarian cancer cells via modulating multiple signaling molecules involved in cell survival, proliferation, migration and adhesion. Arch. Biochem. Biophys., 2021, 701, 108795. doi: 10.1016/j.abb.2021.108795 PMID: 33577840
  44. Wang, B.; Tian, T.; Kalland, K.H.; Ke, X.; Qu, Y. Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol. Sci., 2018, 39(7), 648-658. doi: 10.1016/j.tips.2018.03.008 PMID: 29678298
  45. Kim, H.; Seo, E.M.; Sharma, A.R.; Ganbold, B.; Park, J.; Sharma, G.; Kang, Y.H.; Song, D.K.; Lee, S.S.; Nam, J.S. Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. Int. J. Oncol., 2013, 43(4), 1319-1325. doi: 10.3892/ijo.2013.2036 PMID: 23900432
  46. Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925. doi: 10.1021/acsnano.7b01522 PMID: 28414916
  47. Sheng, L.; Tang, T.; Liu, Y.; Ma, Y.; Wang, Z.; Tao, H.; Zhang, Y.; Qi, Z. Inducible HSP70 antagonizes cisplatin induced cell apoptosis through inhibition of the MAPK signaling pathway in HGC 27 cells. Int. J. Mol. Med., 2018, 42(4), 2089-2097. doi: 10.3892/ijmm.2018.3789 PMID: 30066840
  48. Yousuf, M.; Khan, P.; Shamsi, A.; Shahbaaz, M.; Hasan, G.M.; Haque, Q.M.R.; Christoffels, A.; Islam, A.; Hassan, M.I. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega, 2020, 5(42), 27480-27491. doi: 10.1021/acsomega.0c03975 PMID: 33134711
  49. Soll, F.; Ternent, C.; Berry, I.M.; Kumari, D.; Moore, T.C. Quercetin inhibits proliferation and induces apoptosis of B16 melanoma cells in vitro. Assay Drug Dev. Technol., 2020, 18(6), 261-268. doi: 10.1089/adt.2020.993 PMID: 32799543
  50. Brito, A.; Ribeiro, M.; Abrantes, A.; Pires, A.; Teixo, R.; Tralhão, J.; Botelho, M. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr. Med. Chem., 2015, 22(26), 3025-3039. doi: 10.2174/0929867322666150812145435 PMID: 26264923
  51. Ji, Y.; Li, L.; Ma, Y.X.; Li, W.T.; Li, L.; Zhu, H.Z.; Wu, M.H.; Zhou, J.R. Quercetin inhibits growth of hepatocellular carcinoma by apoptosis induction in part via autophagy stimulation in mice. J. Nutr. Biochem., 2019, 69, 108-119. doi: 10.1016/j.jnutbio.2019.03.018 PMID: 31078904
  52. Wu, L.; Li, J.; Liu, T.; Li, S.; Feng, J.; Yu, Q.; Zhang, J.; Chen, J.; Zhou, Y.; Ji, J.; Chen, K.; Mao, Y.; Wang, F.; Dai, W.; Fan, X.; Wu, J.; Guo, C. Quercetin shows anti-tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med., 2019, 8(10), 4806-4820. doi: 10.1002/cam4.2388 PMID: 31273958
  53. Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D'Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136. doi: 10.1016/j.jnutbio.2016.12.011 PMID: 28092744
  54. Zhang, J.; Yi, T.; Liu, J.; Zhao, Z.; Chen, H. Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. J. Agric. Food Chem., 2013, 61(9), 2188-2195. doi: 10.1021/jf305263r PMID: 23410218
  55. Hassanzadeh, A.; Hosseinzadeh, E.; Rezapour, S.; Vahedi, G.; Haghnavaz, N.; Marofi, F. Quercetin promotes cell cycle arrest and apoptosis and attenuates the proliferation of human chronic myeloid leukemia cell line-K562 through interaction with HSPs (70 and 90), MAT2A and FOXM1. Anticancer. Agents Med. Chem., 2019, 19(12), 1523-1534.
  56. Gong, C.; Yang, Z.; Zhang, L.; Wang, Y.; Gong, W.; Liu, Y. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. OncoTargets Ther., 2017, 11, 17-27. doi: 10.2147/OTT.S147316 PMID: 29317830
  57. Li, Y.; Wang, Z.; Jin, J.; Zhu, S.X.; He, G.Q.; Li, S.H.; Wang, J.; Cai, Y. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway. Biochem. Biophys. Res. Commun., 2020, 523(4), 947-953. doi: 10.1016/j.bbrc.2020.01.048 PMID: 31964531
  58. Wang, Q.; Chen, Y.; Lu, H.; Wang, H.; Feng, H.; Xu, J.; Zhang, B. Quercetin radiosensitizes non-small cell lung cancer cells through the regulation of miR-16-5p/WEE1 axis. IUBMB Life, 2020, 72(5), 1012-1022. doi: 10.1002/iub.2242 PMID: 32027086
  59. Kee, J.Y.; Han, Y.H.; Kim, D.S.; Mun, J.G.; Park, J.; Jeong, M.Y.; Um, J.Y.; Hong, S.H. Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine, 2016, 23(13), 1680-1690. doi: 10.1016/j.phymed.2016.09.011 PMID: 27823633
  60. Park, C.H.; Chang, J.Y.; Hahm, E.R.; Park, S.; Kim, H.K.; Yang, C.H. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun., 2005, 328(1), 227-234. doi: 10.1016/j.bbrc.2004.12.151 PMID: 15670774
  61. Prasad, S.; Phromnoi, K.; Yadav, V.; Chaturvedi, M.; Aggarwal, B. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med., 2010, 76(11), 1044-1063. doi: 10.1055/s-0030-1250111 PMID: 20635307
  62. Hsiao, W.; Liu, L. The role of traditional Chinese herbal medicines in cancer therapy from TCM theory to mechanistic insights. Planta Med., 2010, 76(11), 1118-1131. doi: 10.1055/s-0030-1250186 PMID: 20635308
  63. Payton, E.; Khubchandani, J.; Thompson, A.; Price, J.H. Parents' expectations of high schools in firearm violence prevention. J. Commun. Health., 2017, 42(6), 1118-1126. doi: 10.1007/s10900-017-0360-5 PMID: 28527100
  64. Lim, B.O.; Yu, B.P.; Cho, S.I.; Her, E.; Park, D.K. The inhibition by quercetin and ganhuangenin on oxidatively modified low density lipoprotein. Phytother. Res., 1998, 12(5), 340-345. doi: 10.1002/(SICI)1099-1573(199808)12:5<340:AID-PTR316>3.0.CO;2-U
  65. Yarahmadi, A.; Zal, F.; Bolouki, A. Protective effects of quercetin on nicotine induced oxidative stress in 'HepG2 cells'. Toxicol. Mech. Methods, 2017, 27(8), 609-614. doi: 10.1080/15376516.2017.1344338 PMID: 28627253
  66. Vickers, N.J. Animal communication: When i'm calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715. doi: 10.1016/j.cub.2017.05.064 PMID: 28743020
  67. Kim, H.P.; Mani, I.; Iversen, L.; Ziboh, V.A. Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostaglandins Leukot. Essent. Fatty Acids, 1998, 58(1), 17-24. doi: 10.1016/S0952-3278(98)90125-9 PMID: 9482162
  68. García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229. doi: 10.1016/j.ejphar.2006.11.014 PMID: 17184768
  69. K, R.M.; Ghosh, B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-α production in murine macrophages. Int. J. Immunopharmacol., 1999, 21(7), 435-443. doi: 10.1016/S0192-0561(99)00024-7 PMID: 10454017
  70. Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot., 2018, 81(1), 68-78. doi: 10.4315/0362-028X.JFP-17-214 PMID: 29271686
  71. Chen, H.; Yu, S.; Shen, X.; Chen, D.; Qiu, X.; Song, C.; Ding, C. The Mycoplasma gallisepticum α-enolase is cell surface-exposed and mediates adherence by binding to chicken plasminogen. Microb. Pathog., 2011, 51(4), 285-290. doi: 10.1016/j.micpath.2011.03.012 PMID: 21664449
  72. Hossion, A.M.L.; Zamami, Y.; Kandahary, R.K.; Tsuchiya, T.; Ogawa, W.; Iwado, A.; Sasaki, K. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J. Med. Chem., 2011, 54(11), 3686-3703. doi: 10.1021/jm200010x PMID: 21534606
  73. Lim, H.J.; Kang, S.H.; Song, Y.J.; Jeon, Y.D.; Jin, J.S. Inhibitory effect of quercetin on Propionibacterium acnes-induced skin inflammation. Int. Immunopharmacol., 2021, 96, 107557. doi: 10.1016/j.intimp.2021.107557 PMID: 33812252
  74. Bachmetov, L.; Gal-Tanamy, M.; Shapira, A.; Vorobeychik, M.; Giterman-Galam, T.; Sathiyamoorthy, P.; Golan-Goldhirsh, A.; Benhar, I.; Tur-Kaspa, R.; Zemel, R. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J. Viral Hepat., 2012, 19(2), e81-e88. doi: 10.1111/j.1365-2893.2011.01507.x PMID: 22239530
  75. Chondrogianni, N.; Kapeta, S.; Chinou, I.; Vassilatou, K.; Papassideri, I.; Gonos, E.S. Anti-ageing and rejuvenating effects of quercetin. Exp. Gerontol., 2010, 45(10), 763-771. doi: 10.1016/j.exger.2010.07.001 PMID: 20619334
  76. Gopalakrishnan, A.; Ram, M.; Kumawat, S.; Tandan, S.; Kumar, D. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J. Exp. Biol., 2016, 54(3), 187-195.
  77. Choi, M.H.; Shin, H.J. Anti-melanogenesis effect of quercetin. Cosmetics, 2016, 3(2), 18. doi: 10.3390/cosmetics3020018
  78. Yuan, Z.; Min, J.; Zhao, Y.; Cheng, Q.; Wang, K.; Lin, S.; Luo, J.; Liu, H. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats. Am. J. Transl. Res., 2018, 10(12), 4313-4321. PMID: 30662673
  79. Erden Inal, M.; Kahraman, A.; Köken, T. Beneficial effects of quercetin on oxidative stress induced by ultraviolet A. Clin. Exp. Dermatol., 2001, 26(6), 536-539. doi: 10.1046/j.1365-2230.2001.00884.x PMID: 11678884
  80. Zang, X.; Cheng, M.; Zhang, X.; Chen, X. Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct., 2021, 12(15), 6664-6681. doi: 10.1039/D1FO00851J PMID: 34152346
  81. Khushnud, T.; Mousa, S.A. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer. Mol. Biotechnol., 2013, 55(1), 78-86. doi: 10.1007/s12033-012-9623-7 PMID: 23371307
  82. Wang, S.; Zhang, J.; Chen, M.; Wang, Y. Delivering flavonoids into solid tumors using nanotechnologies. Expert Opin. Drug Deliv., 2013, 10(10), 1411-1428. doi: 10.1517/17425247.2013.807795 PMID: 23862581
  83. Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y.; Zheng, Y.; Gou, M.; Huang, M.; Guo, G.; Huang, N.; Qian, Z.; Wei, Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 2012, 4(22), 7021-7030. doi: 10.1039/c2nr32181e PMID: 23044718
  84. Aghapour, F.; Moghadamnia, A.A.; Nicolini, A.; Kani, S.N.M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 500(4), 860-865. doi: 10.1016/j.bbrc.2018.04.174 PMID: 29698680
  85. de Oliveira Pedro, R.; Goycoolea, F.M.; Pereira, S.; Schmitt, C.C.; Neumann, M.G. Synergistic effect of quercetin and pH-responsive DEAE-chitosan carriers as drug delivery system for breast cancer treatment. Int. J. Biol. Macromol., 2018, 106, 579-586. doi: 10.1016/j.ijbiomac.2017.08.056 PMID: 28807690
  86. Li, J.; Zhang, J.; Wang, Y.; Liang, X.; Wusiman, Z.; Yin, Y.; Shen, Q. Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int. J. Pharm., 2017, 523(1), 300-309. doi: 10.1016/j.ijpharm.2017.03.040 PMID: 28336457
  87. Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697. doi: 10.1111/cpr.12296 PMID: 27641938
  88. Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231. doi: 10.1002/cbf.3266 PMID: 28498520
  89. Sarkar, A.; Ghosh, S.; Chowdhury, S.; Pandey, B.; Sil, P.C. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2016, 1860(10), 2065-2075. doi: 10.1016/j.bbagen.2016.07.001 PMID: 27392941
  90. Lv, L.; Liu, C.; Chen, C.; Yu, X.; Chen, G.; Shi, Y.; Qin, F.; Ou, J.; Qiu, K.; Li, G. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget, 2016, 7(22), 32184-32199. doi: 10.18632/oncotarget.8607 PMID: 27058756
  91. Sharma, G.; Park, J.; Sharma, A.R.; Jung, J.S.; Kim, H.; Chakraborty, C.; Song, D.K.; Lee, S.S.; Nam, J.S. Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm. Res., 2015, 32(2), 723-735. doi: 10.1007/s11095-014-1504-2 PMID: 25186442
  92. Sun, M.; Nie, S.; Pan, X.; Zhang, R.; Fan, Z.; Wang, S. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro. Colloids Surf. B Biointerfaces, 2014, 113, 15-24. doi: 10.1016/j.colsurfb.2013.08.032 PMID: 24060926
  93. Rajesh Kumar, S.; Priyatharshni, S.; Babu, V.N.; Mangalaraj, D.; Viswanathan, C.; Kannan, S.; Ponpandian, N. Quercetin conjugated superparamagnetic magnetite nanoparticles for in vitro analysis of breast cancer cell lines for chemotherapy applications. J. Colloid Interface Sci., 2014, 436, 234-242. doi: 10.1016/j.jcis.2014.08.064 PMID: 25278361
  94. Jain, A.K.; Thanki, K.; Jain, S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: Implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol. Pharm., 2013, 10(9), 3459-3474. doi: 10.1021/mp400311j PMID: 23927416
  95. Gurunathan, S.; Han, J.W.; Eppakayala, V.; Jeyaraj, M.; Kim, J-H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res. Int., 2013. doi: 10.1155/2013/535796
  96. Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm., 2020, 587, 119705. doi: 10.1016/j.ijpharm.2020.119705 PMID: 32738456
  97. Bagde, A.; Patel, K.; Mondal, A.; Kutlehria, S.; Chowdhury, N.; Gebeyehu, A.; Patel, N.; Kumar, N.; Singh, M. Combination of UVB absorbing titanium dioxide and quercetin nanogel for skin cancer chemoprevention. AAPS PharmSciTech, 2019, 20(6), 240. doi: 10.1208/s12249-019-1424-x PMID: 31250221
  98. Nan, W.; Ding, L.; Chen, H.; Khan, F.U.; Yu, L.; Sui, X.; Shi, X. Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation. Front. Pharmacol., 2018, 9, 826. doi: 10.3389/fphar.2018.00826 PMID: 30140227
  99. Zhu, X.; Zeng, X.; Zhang, X.; Cao, W.; Wang, Y.; Chen, H.; Wang, T.; Tsai, H.I.; Zhang, R.; Chang, D.; He, S.; Mei, L.; Shi, X. The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine, 2016, 12(3), 623-632. doi: 10.1016/j.nano.2015.10.016 PMID: 26656634
  100. Wang, C.; Su, L.; Wu, C.; Wu, J.; Zhu, C.; Yuan, G. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev. Ind. Pharm., 2016, 42(12), 1938-1944. doi: 10.1080/03639045.2016.1185435 PMID: 27142812
  101. Bishayee, K.; Khuda-Bukhsh, A.R.; Huh, S.O. PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells, 2015, 38(6), 518-527. doi: 10.14348/molcells.2015.2339 PMID: 25947292
  102. Varshosaz, J.; Jafarian, A.; Salehi, G.; Zolfaghari, B. Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma. J. Liposome Res., 2014, 24(3), 191-203. doi: 10.3109/08982104.2013.868476 PMID: 24354715
  103. Mandal, A.K.; Ghosh, D.; Sarkar, S.; Ghosh, A.; Swarnakar, S.; Das, N. Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma. Nanomedicine, 2014, 9(15), 2323-2337. doi: 10.2217/nnm.14.11 PMID: 24593002
  104. Yuan, Y.G.; Wang, Y.H.; Xing, H.H.; Gurunathan, S. Quercetin-mediated synthesis of graphene oxide–silver nanoparticle nanocomposites: A suitable alternative nanotherapy for neuroblastoma. Int. J. Nanomedicine, 2017, 12, 5819-5839. doi: 10.2147/IJN.S140605 PMID: 28860751
  105. Zhang, J.; Shen, L.; Li, X.; Song, W.; Liu, Y.; Huang, L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano, 2019, 13(11), 12511-12524. doi: 10.1021/acsnano.9b02875 PMID: 31664821
  106. Alkahtani, S.; Alarifi, S.; Aljarba, N.H.; Alghamdi, H.A.; Alkahtane, A.A. Mesoporous SBA-15 silica–loaded nano-formulation of quercetin: A probable radio-sensitizer for lung carcinoma. Dose Response, 2022, 20(1) doi: 10.1177/15593258211050532 PMID: 35110975
  107. Li, K.; Zang, X.; Meng, X.; Li, Y.; Xie, Y.; Chen, X. Targeted delivery of quercetin by biotinylated mixed micelles for non-small cell lung cancer treatment. Drug Deliv., 2022, 29(1), 970-985. doi: 10.1080/10717544.2022.2055225 PMID: 35343862
  108. Tan, B-J.; Liu, Y.; Chang, K-L.; Lim, B.K.; Chiu, G.N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomedicine, 2012, 7, 651-661. PMID: 22334787
  109. Wang, R.; Xiao, R.; Zeng, Z.; Xu, L.; Wang, J. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int. J. Nanomedicine, 2012, 7, 4185-4198. PMID: 22904628
  110. Fang, J.; Zhang, S.; Xue, X.; Zhu, X.; Song, S.; Wang, B.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int. J. Nanomedicine, 2018, 13, 5113-5126. doi: 10.2147/IJN.S170862 PMID: 30233175
  111. Ganea, G.M.; Fakayode, S.O.; Losso, J.N.; van Nostrum, C.F.; Sabliov, C.M.; Warner, I.M. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide- co -glycolide) (PLGA) nanoparticles. Nanotechnology, 2010, 21(28), 285104. doi: 10.1088/0957-4484/21/28/285104 PMID: 20585163
  112. Luo, C.; Liu, Y.; Wang, P.; Song, C.; Wang, K.; Dai, L.; Zhang, J.; Ye, H. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother., 2016, 82, 595-605. doi: 10.1016/j.biopha.2016.05.029 PMID: 27470402
  113. Baksi, R.; Singh, D.P.; Borse, S.P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother., 2018, 106, 1513-1526. doi: 10.1016/j.biopha.2018.07.106 PMID: 30119227
  114. Liu, Z.; Balasubramanian, V.; Bhat, C.; Vahermo, M.; Mäkilä, E.; Kemell, M.; Fontana, F.; Janoniene, A.; Petrikaite, V.; Salonen, J.; Yli-Kauhaluoma, J.; Hirvonen, J.; Zhang, H.; Santos, H.A. Quercetin-based modified porous silicon nanoparticles for enhanced inhibition of doxorubicin-resistant cancer cells. Adv. Healthc. Mater., 2017, 6(3), 1601009. doi: 10.1002/adhm.201601009 PMID: 27943644
  115. Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine, 2017, 12, 2689-2702. doi: 10.2147/IJN.S131973 PMID: 28435252
  116. Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep., 2016, 43(2), 99-105. doi: 10.1007/s11033-016-3942-x PMID: 26748999
  117. Lu, S.; Wu, J.; Gao, Y.; Han, G.; Ding, W.; Huang, X. MicroRNA-4262 activates the NF-κB and enhances the proliferation of hepatocellular carcinoma cells. Int. J. Biol. Macromol., 2016, 86, 43-49. doi: 10.1016/j.ijbiomac.2016.01.019 PMID: 26778158
  118. Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 128-134. doi: 10.3109/21691401.2014.926456 PMID: 24959911
  119. El-Gogary, R.I.; Rubio, N.; Wang, J.T.W.; Al-Jamal, W.T.; Bourgognon, M.; Kafa, H.; Naeem, M.; Klippstein, R.; Abbate, V.; Leroux, F.; Bals, S.; Van Tendeloo, G.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D.; Al-Jamal, K.T. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano, 2014, 8(2), 1384-1401. doi: 10.1021/nn405155b PMID: 24397686
  120. Moorthi, C.; Kathiresan, K. Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual drug-loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. J. Med. Hypotheses and Ideas, 2013, 7(1), 15-20. doi: 10.1016/j.jmhi.2012.10.005
  121. Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys., 2003, 417(1), 12-17. doi: 10.1016/S0003-9861(03)00284-4 PMID: 12921774
  122. Gupta, A.; Birhman, K.; Raheja, I.; Sharma, S.K.; Kar, H.K. Quercetin: A wonder bioflavonoid with therapeutic potential in disease management. Asian Pac. J. Trop. Dis., 2016, 6(3), 248-252. doi: 10.1016/S2222-1808(15)61024-6
  123. Graefe, E.U.; Wittig, J.; Mueller, S.; Riethling, A.K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol., 2001, 41(5), 492-499. doi: 10.1177/00912700122010366 PMID: 11361045
  124. D'Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271. doi: 10.1016/j.fitote.2015.09.018 PMID: 26393898
  125. Thilakarathna, S.; Rupasinghe, H. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387. doi: 10.3390/nu5093367 PMID: 23989753
  126. Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol., 2012, 83(1), 6-15. doi: 10.1016/j.bcp.2011.08.010 PMID: 21856292
  127. Nemeth, K.; Piskula, M.K. Food content, processing, absorption and metabolism of onion flavonoids. Crit. Rev. Food Sci. Nutr., 2007, 47(4), 397-409. doi: 10.1080/10408390600846291 PMID: 17457724
  128. Chen, Y.C.; Shen, S.C.; Lee, W.R.; Hou, W.C.; Yang, L.L.; Lee, T.J.F. Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J. Cell. Biochem., 2001, 82(4), 537-548. doi: 10.1002/jcb.1184 PMID: 11500931
  129. Hashiguchi, N.; Ogura, H.; Tanaka, H.; Koh, T.; Nakamori, Y.; Noborio, M.; Shiozaki, T.; Nishino, M.; Kuwagata, Y.; Shimazu, T.; Sugimoto, H. Enhanced expression of heat shock proteins in activated polymorphonuclear leukocytes in patients with sepsis. J. Trauma, 2001, 51(6), 1104-1109. doi: 10.1097/00005373-200112000-00015 PMID: 11740261
  130. Tang, D.; Kang, R.; Xiao, W.; Zhang, H.; Lotze, M.T.; Wang, H.; Xiao, X. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am. J. Respir. Cell Mol. Biol., 2009, 41(6), 651-660. doi: 10.1165/rcmb.2008-0119OC PMID: 19265175
  131. Angeloni, C.; Hrelia, S. Quercetin reduces inflammatory responses in LPS-stimulated cardiomyoblasts. Oxid. Med. Cell. Longev., 2012, 2012, 1-8. doi: 10.1155/2012/837104 PMID: 22685622
  132. Rayamajhi, N.; Kim, S.K.; Go, H.; Joe, Y.; Callaway, Z.; Kang, J.G.; Ryter, S.W.; Chung, H.T. Quercetin induces mitochondrial biogenesis through activation of HO-1 in HepG2 cells. Oxid. Med. Cell. Longev., 2013, 2013, 1-10. doi: 10.1155/2013/154279 PMID: 24288584
  133. Chang, Y.C.; Tsai, M.H.; Sheu, W.H.H.; Hsieh, S.C.; Chiang, A.N. The therapeutic potential and mechanisms of action of quercetin in relation to lipopolysaccharide-induced sepsis in vitro and in vivo. PLoS One, 2013, 8(11), e80744. doi: 10.1371/journal.pone.0080744 PMID: 24260470
  134. Liu, S.H.; Lu, T.H.; Su, C.C.; Lay, I.S.; Lin, H.Y.; Fang, K.M.; Ho, T.J.; Chen, K.L.; Su, Y.C.; Chiang, W.C.; Chen, Y.W. Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NF-κB signaling pathway. Am. J. Chin. Med., 2014, 42(4), 869-889. doi: 10.1142/S0192415X14500554 PMID: 25004880
  135. Tao, J.; Wei, Y.; Hu, T. Flavonoids of Polygonum hydropiper L. attenuates lipopolysaccharide-induced inflammatory injury via suppressing phosphorylation in MAPKs pathways. BMC Complement. Altern. Med., 2015, 16(1), 25. doi: 10.1186/s12906-016-1001-8 PMID: 26801102
  136. Zhu, Y.; Fan, S.; Lu, Y.; Wei, Y.; Tang, J.; Yang, Y.; Li, F.; Chen, Q.; Zheng, J.; Liu, X. Quercetin confers protection of murine sepsis by inducing macrophage M2 polarization via the TRPM2 dependent calcium influx and AMPK/ATF3 activation. J. Funct. Foods, 2019, 56, 1-13. doi: 10.1016/j.jff.2019.03.001
  137. Shu, B.; Feng, Y.; Gui, Y.; Lu, Q.; Wei, W.; Xue, X.; Sun, X.; He, W.; Yang, J.; Dai, C. Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-κB signaling suppression. Cell. Signal., 2018, 42, 249-258. doi: 10.1016/j.cellsig.2017.10.014 PMID: 29080804
  138. Reis, J.; Xiaoyu, Tan Rongjie Yang; Rockwell, C.E.; Papasian, C.J.; Vogel, S.N.; Morrison, D.C.; Qureshi, A.A.; Qureshi, N. A combination of proteasome inhibitors and antibiotics prevents lethality in a septic shock model. Innate Immun., 2008, 14(5), 319-329. doi: 10.1177/1753425908096855 PMID: 18809656
  139. He, S.; Zhao, J.; Xu, X.; Cui, X.; Wang, N.; Han, X.; Guo, Y.; Liu, Q. Uncovering the molecular mechanism of the qiang-xin 1 formula on sepsis-induced cardiac dysfunction based on systems pharmacology. Oxid. Med. Cell. Longev., 2020, 2020, 1-26. doi: 10.1155/2020/3815185 PMID: 32908632
  140. Abd el-gawad, H.M.; Khalifa, A.E. Quercetin, Coenzyme Q10, and l -canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol. Res., 2001, 43(3), 257-263. doi: 10.1006/phrs.2000.0781 PMID: 11401418
  141. Bharrhan, S.; Chopra, K.; Arora, S.K.; Toor, J.S.; Rishi, P. Down-regulation of NF-κB signalling by polyphenolic compounds prevents endotoxin-induced liver injury in a rat model. Innate Immun., 2012, 18(1), 70-79. doi: 10.1177/1753425910393369 PMID: 21239456
  142. Wang, L.; Chen, J.; Wang, B.; Wu, D.; Li, H.; Lu, H.; Wu, H.; Chai, Y. Protective effect of quercetin on lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammatory cell influx. Exp. Biol. Med., 2014, 239(12), 1653-1662. doi: 10.1177/1535370214537743 PMID: 24912504
  143. Meng, L.; Lv, Z.; Yu, Z.Z.; Xu, D.; Yan, X. Protective effect of quercetin on acute lung injury in rats with sepsis and its influence on ICAM-1 and MIP-2 expression. Genet. Mol. Res., 2016, 15(3), gmr726529. doi: 10.4238/gmr.15037265 PMID: 27525872
  144. Penalva, R.; González-Navarro, C.J.; Gamazo, C.; Esparza, I.; Irache, J.M. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine, 2017, 13(1), 103-110. doi: 10.1016/j.nano.2016.08.033 PMID: 27615118
  145. Park, H.J.; Lee, S.J.; Cho, J.; Gharbi, A.; Han, H.D.; Kang, T.H.; Kim, Y.; Lee, Y.; Park, W.S.; Jung, I.D.; Park, Y.M. Tamarixetin exhibits anti-inflammatory activity and prevents bacterial sepsis by increasing IL-10 production. J. Nat. Prod., 2018, 81(6), 1435-1443. doi: 10.1021/acs.jnatprod.8b00155 PMID: 29851490
  146. Cui, W.; Hu, G.; Peng, J.; Mu, L.; Liu, J.; Qiao, L. Quercetin exerted protective effects in a rat model of sepsis via inhibition of reactive oxygen species (ROS) and downregulation of high mobility group box 1 (HMGB1) protein expression. Med. Sci. Monit., 2019, 25, 5795-5800. doi: 10.12659/MSM.916044 PMID: 31377749
  147. Masuda, Y.; Sumita, S.; Fujimura, N.; Namiki, A. Geranylgeranylacetone attenuates septic diaphragm dysfunction by induction of heat shock protein 70. Crit. Care Med., 2003, 31(11), 2585-2591. doi: 10.1097/01.CCM.0000094230.44674.D8 PMID: 14605528
  148. Singleton, K.D.; Serkova, N.; Beckey, V.E.; Wischmeyer, P.E. Glutamine attenuates lung injury and improves survival after sepsis: Role of enhanced heat shock protein expression. Crit. Care Med., 2005, 33(6), 1206-1213. doi: 10.1097/01.CCM.0000166357.10996.8A PMID: 15942332
  149. Kwon, W.Y.; Suh, G.J.; Kim, K.S.; Jo, Y.H.; Lee, J.H.; Kim, K.; Jung, S.K. Glutamine attenuates acute lung injury by inhibition of high mobility group box protein-1 expression during sepsis. Br. J. Nutr., 2010, 103(6), 890-898. doi: 10.1017/S0007114509992509 PMID: 19825222
  150. Kukongviriyapan, U.; Sompamit, K.; Pannangpetch, P.; Kukongviriyapan, V.; Donpunha, W. Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. Can. J. Physiol. Pharmacol., 2012, 90(10), 1345-1353. doi: 10.1139/y2012-101 PMID: 22873715
  151. Liao, Y.R.; Lin, J.Y. Quercetin intraperitoneal administration ameliorates lipopolysaccharide-induced systemic inflammation in mice. Life Sci., 2015, 137, 89-97. doi: 10.1016/j.lfs.2015.07.015 PMID: 26209141
  152. Gerin, F.; Sener, U.; Erman, H.; Yilmaz, A.; Aydin, B.; Armutcu, F.; Gurel, A. The effects of quercetin on acute lung injury and biomarkers of inflammation and oxidative stress in the rat model of sepsis. Inflammation, 2016, 39(2), 700-705. doi: 10.1007/s10753-015-0296-9 PMID: 26670180
  153. Khajevand-Khazaei, M.R.; Mohseni-Moghaddam, P.; Hosseini, M.; Gholami, L.; Baluchnejadmojarad, T.; Roghani, M. Rutin, a quercetin glycoside, alleviates acute endotoxemic kidney injury in C57BL/6 mice via suppression of inflammation and up-regulation of antioxidants and SIRT1. Eur. J. Pharmacol., 2018, 833, 307-313. doi: 10.1016/j.ejphar.2018.06.019 PMID: 29920283
  154. Wei, X.; Meng, X.; Yuan, Y.; Shen, F.; Li, C.; Yang, J. Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity. Mol. Cell. Biochem., 2018, 446(1-2), 43-52. doi: 10.1007/s11010-018-3271-6 PMID: 29322353
  155. Shoskes, D.A.; Zeitlin, S.I.; Shahed, A.; Rajfer, J. Quercetin in men with category III chronic prostatitis: A preliminary prospective, double-blind, placebo-controlled trial. Urology, 1999, 54(6), 960-963. doi: 10.1016/S0090-4295(99)00358-1 PMID: 10604689
  156. Ferry, D.R.; Smith, A.; Malkhandi, J.; Fyfe, D.W.; deTakats, P.G.; Anderson, D.; Baker, J.; Kerr, D.J. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin. Cancer Res., 1996, 2(4), 659-668. PMID: 9816216
  157. Kooshyar, M.M.; Mozafari, P.M.; Amirchaghmaghi, M.; Pakfetrat, A.; Karoos, P.; Mohasel, M.R.; Orafai, H.; Azarian, A.A. A randomized placebo-controlled double blind clinical trial of quercetin in the prevention and treatment of chemotherapy-induced oral mucositis. J. Clin. Diagn. Res., 2017, 11(3), ZC46-ZC50. doi: 10.7860/JCDR/2017/23975.9571 PMID: 28511508
  158. Amirchaghmaghi, M.; Delavarian, Z.; Iranshahi, M.; Shakeri, M.T.; Mosannen Mozafari, P.; Mohammadpour, A.H.; Farazi, F.; Iranshahy, M. A randomized placebo-controlled double blind clinical trial of quercetin for treatment of oral lichen planus. J. Dent. Res. Dent. Clin. Dent. Prospect., 2015, 9(1), 23-28. doi: 10.15171/joddd.2015.005 PMID: 25973150
  159. Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi Foroushani, A.; Jazayeri, S. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J. Am. Coll. Nutr., 2017, 36(1), 9-15. doi: 10.1080/07315724.2016.1140093 PMID: 27710596
  160. Rezvan, N.; Moini, A.; Janani, L.; Mohammad, K.; Saedisomeolia, A.; Nourbakhsh, M.; Gorgani-Firuzjaee, S.; Mazaherioun, M.; Hosseinzadeh-Attar, M.J. Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: A randomized placebo-controlled double-blind clinical trial. Horm. Metab. Res., 2017, 49(2), 115-121. PMID: 27824398
  161. Zahedi, M.; Ghiasvand, R.; Feizi, A.; Asgari, G.; Darvish, L. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: A double-blind randomized controlled clinical trial. Int. J. Prev. Med., 2013, 4(7), 777-785. PMID: 24049596

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2023