Venetoclax Synergizes Sunitinib in Renal Cell Carcincoma through Inhibition of Bcl-2


Citar

Texto integral

Resumo

Aims:More effective treatment options for patients with renal cell carcinoma (RCC) are needed, in particular advanced RCC.

Background: Sunitinib, a multitarget tyrosine kinase inhibitor, is a first-line treatment of metastatic RCC. However, the management of sunitinib-induced adverse events and resistance is complex. In hematological malignancies, effective targeting of anti-apoptotic proteins such as Bcl-2 has been achieved, but limited progress has been made in solid tumors.

Objective: This work systematically investigated the therapeutic potential of the combination of sunitinib and venetoclax, a Bcl-2 inhibitor, in preclinical RCC models.

Methods: Quantitative analysis of drug interactions was performed. Cell viability was examined after drug treatment or Bcl-2 siRNA depletion. RCC xenograft mouse model was applied to validate the efficacy of sunitinib and venetoclax.

Results: A strong synergistic interaction between sunitinib and venetoclax was observed across a range of different dose levels in all tested RCC cell lines. Sequential treatment studies show that the sequential addition of venetoclax and then sunitinib is superior to concurrent treatment and the sequential addition of sunitinib and then venetoclax in decreasing RCC cell viability. The sensitivity of RCC cell lines to venetoclax treatment negatively correlates with their Bcl-2 levels. Specific depletion of Bcl-2 mimics the synergistic effects of venetoclax with sunitinib. Treatment of mice implanted with high Bcl-2-expressing RCC cells reveals that a combination of venetoclax and sunitinib at a non-toxic dose displays complete regression of tumor growth throughout the whole duration of treatment.

Conclusion: Our work demonstrates that inhibiting Bcl-2 by venetoclax synergistically enhances sunitinib's efficacy in RCC. Venetoclax holds great potential as a viable option for clinical use.

Sobre autores

Yuanjia Tang

Department of Urology, Xiangyang No.1 People's Hospital,of Urology, Hubei University of Medicine

Email: info@benthamscience.net

Tao Song

Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine

Email: info@benthamscience.net

Liangkui Gao

Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine

Autor responsável pela correspondência
Email: info@benthamscience.net

Fei Mao

Department of Urology, Xiangyang No.1 People's Hospital,, Hubei University of Medicine

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Klatte, T.; Rossi, S.H.; Stewart, G.D. Prognostic factors and prognostic models for renal cell carcinoma: A literature review. World J. Urol., 2018, 36(12), 1943-1952. doi: 10.1007/s00345-018-2309-4 PMID: 29713755
  2. Zhao, J.; Eyzaguirre, E. Clear cell papillary renal cell carcinoma. Arch. Pathol. Lab. Med., 2019, 143(9), 1154-1158. doi: 10.5858/arpa.2018-0121-RS PMID: 30672334
  3. Porta, C.; Schmidinger, M. Renal cell carcinoma treatment after first-line combinations. Lancet Oncol., 2019, 20(10), 1332-1334. doi: 10.1016/S1470-2045(19)30510-8 PMID: 31427203
  4. Hahn, A.W.; Klaassen, Z.; Agarwal, N.; Haaland, B.; Esther, J.; Ye, X.Y.; Wang, X.; Pal, S.K.; Wallis, C.J.D. First-line treatment of metastatic renal cell carcinoma: A systematic review and network meta-analysis. Eur. Urol. Oncol., 2019, 2(6), 708-715. doi: 10.1016/j.euo.2019.09.002 PMID: 31588018
  5. Joosten, S.C.; Hamming, L.; Soetekouw, P.M.; Aarts, M.J.; Veeck, J.; van Engeland, M.; Tjan-Heijnen, V.C. Resistance to sunitinib in renal cell carcinoma: From molecular mechanisms to predictive markers and future perspectives. Biochim. Biophys. Acta, 2015, 1855(1), 1-16. PMID: 25446042
  6. Sharma, R.; Kadife, E.; Myers, M.; Kannourakis, G.; Prithviraj, P.; Ahmed, N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J. Exp. Clin. Cancer Res., 2021, 40(1), 186. doi: 10.1186/s13046-021-01961-3 PMID: 34099013
  7. Guerra, V.A.; DiNardo, C.; Konopleva, M. Venetoclax-based therapies for acute myeloid leukemia. Best Pract. Res. Clin. Haematol., 2019, 32(2), 145-153. doi: 10.1016/j.beha.2019.05.008 PMID: 31203996
  8. Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000. doi: 10.1038/nrd2658 PMID: 19043450
  9. Timucin, A.C.; Basaga, H.; Kutuk, O. Selective targeting of antiapoptotic BCL-2 proteins in cancer. Med. Res. Rev., 2019, 39(1), 146-175. doi: 10.1002/med.21516 PMID: 29846950
  10. Nordin, N.; Abd Ghani, M.F.; Othman, R. Molecular docking study of naturally derived flavonoids with antiapoptotic BCL-2 and BCLXL proteins toward ovarian cancer treatment. J. Pharm. Bioallied Sci., 2020, 12(6 2), 676-175. doi: 10.4103/jpbs.JPBS_272_19 PMID: 33828360
  11. Song, S.; Chen, Q.; Li, Y.; Lei, G.; Scott, A.; Huo, L.; Li, C.Y.; Estrella, J.S.; Correa, A.; Pizzi, M.P.; Ma, L.; Jin, J.; Liu, B.; Wang, Y.; Xiao, L.; Hofstetter, W.L.; Lee, J.H.; Weston, B.; Bhutani, M.; Shanbhag, N.; Johnson, R.L.; Gan, B.; Wei, S.; Ajani, J.A. Targeting cancer stem cells with a pan-BCL-2 inhibitor in preclinical and clinical settings in patients with gastroesophageal carcinoma. Gut, 2021, 70(12), 2238-2248. doi: 10.1136/gutjnl-2020-321175 PMID: 33487592
  12. Maji, S.; Panda, S.; Samal, S.K.; Shriwas, O.; Rath, R.; Pellecchia, M.; Emdad, L.; Das, S.K.; Fisher, P.B.; Dash, R. Bcl-2 antiapoptotic family proteins and chemoresistance in cancer. Adv. Cancer Res., 2018, 137, 37-75. doi: 10.1016/bs.acr.2017.11.001 PMID: 29405977
  13. Kausch, I.; Jiang, H.; Thode, B.; Doehn, C.; Krüger, S.; Jocham, D. Inhibition of bcl-2 enhances the efficacy of chemotherapy in renal cell carcinoma. Eur. Urol., 2005, 47(5), 703-709. doi: 10.1016/j.eururo.2004.11.013 PMID: 15826766
  14. Brodaczewska, K.K.; Szczylik, C.; Fiedorowicz, M.; Porta, C.; Czarnecka, A.M. Choosing the right cell line for renal cell cancer research. Mol. Cancer, 2016, 15(1), 83. doi: 10.1186/s12943-016-0565-8 PMID: 27993170
  15. Yadav, B.; Wennerberg, K.; Aittokallio, T.; Tang, J. Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput. Struct. Biotechnol. J., 2015, 13, 504-513. doi: 10.1016/j.csbj.2015.09.001 PMID: 26949479
  16. Kontos, C.; Christodoulou, M.I.; Scorilas, A. Apoptosis-related BCL2-family members: Key players in chemotherapy. Anticancer. Agents Med. Chem., 2014, 14(3), 353-374. doi: 10.2174/18715206113139990091 PMID: 23848200
  17. Cardenas, L.M.; Deluce, J.E.; Khan, S.; Gulam, O.; Maleki Vareki, S.; Fernandes, R.; Lalani, A.K.A. Next wave of targets in the treatment of advanced renal cell carcinoma. Curr. Oncol., 2022, 29(8), 5426-5441. doi: 10.3390/curroncol29080429 PMID: 36005167
  18. Jia, Y.; Han, L.; Ramage, C.L.; Wang, Z.; Wang, C.C.; Yang, L.; Colla, S.; Ma, H.; Zhang, W.; Andreeff, M.; Daver, N.; Jain, N.; Jain, N.; Pemmaraju, N.; Bhalla, K.; Mustjoki, S.; Zhang, P.; Zheng, G.; Zhou, D.; Zhang, Q.; Konopleva, M. Co-targeting BCL-XL and BCL-2 by PROTAC 753B eliminates leukemia cells and enhances efficacy of chemotherapy by targeting senescent cells. Haematologica, 2023.
  19. Daver, N.G.; Dail, M.; Garcia, J.S.; Jonas, B.A.; Yee, K.W.L.; Kelly, K.R.; Vey, N.; Assouline, S.; Roboz, G.J.; Paolini, S.; Pollyea, D.A.; Tafuri, A.; Brandwein, J.M.; Pigneux, A.; Powell, B.L.; Fenaux, P.; Olin, R.L.; Visani, G.; Martinelli, G.; Onishi, M.; Wang, J.; Huang, W.; Green, C.; Ott, M.G.; Hong, W.J.; Konopleva, M.Y.; Andreeff, M. Venetoclax and idasanutlin in relapsed/refractory AML: A nonrandomized, open-label phase 1b trial. Blood, 2023, 141(11), 1265-1276. doi: 10.1182/blood.2022016362 PMID: 36265087
  20. Lew, T.E.; Seymour, J.F. Clinical experiences with venetoclax and other pro-apoptotic agents in lymphoid malignancies: lessons from monotherapy and chemotherapy combination. J. Hematol. Oncol., 2022, 15(1), 75. doi: 10.1186/s13045-022-01295-3 PMID: 35659041
  21. Valko, Z.; Megyesfalvi, Z.; Schwendenwein, A.; Lang, C.; Paku, S.; Barany, N.; Ferencz, B.; Horvath-Rozsas, A.; Kovacs, I.; Schlegl, E.; Pozonec, V.; Boettiger, K.; Rezeli, M.; Marko-Varga, G.; Renyi-Vamos, F.; Hoda, M.A.; Klikovits, T.; Hoetzenecker, K.; Grusch, M.; Laszlo, V.; Dome, B.; Schelch, K. Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer. Br. J. Cancer, 2023, 128(10), 1850-1861. doi: 10.1038/s41416-023-02219-9 PMID: 36918717
  22. Jin, J.; Xie, Y.; Zhang, J.S.; Wang, J.Q.; Dai, S.J.; He, W.; Li, S.Y.; Ashby, C.R., Jr; Chen, Z.S.; He, Q. Sunitinib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Drug Resist. Updat., 2023, 67100929 doi: 10.1016/j.drup.2023.100929 PMID: 36739809
  23. Wang, D.; Jiang, Z.; Zhang, L. Concurrent and sequential administration of sunitinib malate and docetaxel in human non-small cell lung cancer cells and xenografts. Med. Oncol., 2012, 29(2), 600-606. doi: 10.1007/s12032-011-9905-0 PMID: 21455800
  24. Porta, C.; Procopio, G.; Cartenì, G.; Sabbatini, R.; Bearz, A.; Chiappino, I.; Ruggeri, E.M.; Re, G.L.; Ricotta, R.; Zustovich, F.; Landi, L.; Calcagno, A.; Imarisio, I.; Verzoni, E.; Rizzo, M.; Paglino, C.; Guadalupi, V.; Bajetta, E. Sequential use of sorafenib and sunitinib in advanced renal-cell carcinoma (RCC): An Italian multicentre retrospective analysis of 189 patient cases. BJU Int., 2011, 108(8b), E250-E257. doi: 10.1111/j.1464-410X.2011.10186.x PMID: 21599821
  25. O'Farrell, A.C.; Jarzabek, M.A.; Lindner, A.U.; Carberry, S.; Conroy, E.; Miller, I.S.; Connor, K.; Shiels, L.; Zanella, E.R.; Lucantoni, F.; Lafferty, A.; White, K.; Meyer Villamandos, M.; Dicker, P.; Gallagher, W.M.; Keek, S.A.; Sanduleanu, S.; Lambin, P.; Woodruff, H.C.; Bertotti, A.; Trusolino, L.; Byrne, A.T.; Prehn, J.H.M. Implementing systems modelling and molecular imaging to predict the efficacy of bcl-2 inhibition in colorectal cancer patient-derived xenograft models. Cancers, 2020, 12(10), 2978. doi: 10.3390/cancers12102978 PMID: 33066609
  26. Song, T.; Zhang, M.; Liu, P.; Xue, Z.; Fan, Y.; Zhang, Z. Identification of JNK1 as a predicting biomarker for ABT-199 and paclitaxel combination treatment. Biochem. Pharmacol., 2018, 155, 102-109. doi: 10.1016/j.bcp.2018.06.019 PMID: 29953843
  27. Koessinger, A.L.; Cloix, C.; Koessinger, D.; Heiland, D.H.; Bock, F.J.; Strathdee, K.; Kinch, K.; Martínez-Escardó, L.; Paul, N.R.; Nixon, C.; Malviya, G.; Jackson, M.R.; Campbell, K.J.; Stevenson, K.; Davis, S.; Elmasry, Y.; Ahmed, A.; O'Prey, J.; Ichim, G.; Schnell, O.; Stewart, W.; Blyth, K.; Ryan, K.M.; Chalmers, A.J.; Norman, J.C.; Tait, S.W.G. Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death Differ., 2022, 29(10), 2089-2104. doi: 10.1038/s41418-022-01001-3 PMID: 35473984
  28. Zhou, L.; Liu, X-D.; Sun, M.; Zhang, X.; German, P.; Bai, S.; Ding, Z.; Tannir, N.; Wood, C.G.; Matin, S.F.; Karam, J.A.; Tamboli, P.; Sircar, K.; Rao, P.; Rankin, E.B.; Laird, D.A.; Hoang, A.G.; Walker, C.L.; Giaccia, A.J.; Jonasch, E. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene, 2016, 35(21), 2687-2697. doi: 10.1038/onc.2015.343 PMID: 26364599
  29. Sekino, Y.; Takemoto, K.; Murata, D.; Babasaki, T.; Kobatake, K.; Kitano, H.; Ikeda, K.; Goto, K.; Inoue, S.; Hayashi, T.; Taniyama, D.; Shigeta, M.; Kuraoka, K.; Mita, K.; Kaneko, M.; Sentani, K.; Oue, N.; Teishima, J. CD44 is involved in sunitinib resistance and poor progression-free survival after sunitinib treatment of renal cell carcinoma. Anticancer Res., 2021, 41(10), 4875-4883. doi: 10.21873/anticanres.15301 PMID: 34593435
  30. Shibasaki, N.; Yamasaki, T.; Kanno, T.; Arakaki, R.; Sakamoto, H.; Utsunomiya, N.; Inoue, T.; Tsuruyama, T.; Nakamura, E.; Ogawa, O.; Kamba, T. Role of IL13RA2 in sunitinib resistance in clear cell renal cell carcinoma. PLoS One, 2015, 10(6)e0130980 doi: 10.1371/journal.pone.0130980 PMID: 26114873
  31. Reed, J.C.; Miyashita, T.; Takayama, S.; Wang, H.G.; Sato, T.; Krajewski, S.; Aimé-Sempé, C.; Bodrug, S.; Kitada, S.; Hanada, M. BCL-2 family proteins: Regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J. Cell. Biochem., 1996, 60(1), 23-32. doi: 10.1002/(SICI)1097-4644(19960101)60:1<23:AID-JCB5>3.0.CO;2-5 PMID: 8825412

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023