In silico Screening and Validation of Achyranthes aspera as a Potential Inhibitor of BRAF and NRAS in Controlling Thyroid Cancer


Citar

Texto integral

Resumo

Background: Thyroid carcinoma (THCA) is one of the most prevalent endocrine tumors, accounting for 3.4% of all cancers diagnosed annually. Single Nucleotide Polymorphisms (SNPs) are the most prevalent genetic variation associated with thyroid cancer. Understanding thyroid cancer genetics will enhance diagnosis, prognosis, and treatment.

Methods: This TCGA-based study analyzes thyroid cancer-associated highly mutated genes through highly robust in silico techniques. Pathway, gene expression, and survival studies were performed on the top 10 highly mutated genes (BRAF, NRAS, TG, TTN, HRAS, MUC16, ZFHX3, CSMD2, EIFIAX, SPTA1). Novel natural compounds from Achyranthes aspera Linn were discovered to target two highly mutated genes. The natural compounds and synthetic drugs used to treat thyroid cancer were subjected to comparative molecular docking against BRAF and NRAS targets. The ADME characteristics of Achyranthes aspera Linn compounds were also investigated

Results: The gene expression analysis revealed that the expression of ZFHX3, MCU16, EIF1AX, HRAS, and NRAS was up-regulated in tumor cells while BRAF, TTN, TG, CSMD2, and SPTA1 were down-regulated in tumor cells. In addition, the protein-protein interaction network demonstrated that HRAS, BRAF, NRAS, SPTA1, and TG proteins have strong interactions with each other as compared to other genes. The ADMET analysis shows that seven compounds have druglike properties. These compounds were further studied for molecular docking studies. The compounds MPHY012847, IMPHY005295, and IMPHY000939 show higher binding affinity with BRAF than pimasertib. In addition, IMPHY000939, IMPHY000303, IMPHY012847, and IMPHY005295 showed a better binding affinity with NRAS than Guanosine Triphosphate.

Conclusion: The outcomes of docking experiments conducted on BRAF and NRAS provide insight into natural compounds with pharmacological characteristics. These findings indicate that natural compounds derived from plants as a more promising cancer treatment option. Thus, the results of docking investigations conducted on BRAF and NRAS substantiate the conclusions that the molecule possesses the most suited drug-like qualities. Compared to other compounds, natural compounds are superior, and they are also druggable. This demonstrates that natural plant compounds can be an excellent source of potential anti-cancer agents. The preclinical research will pave the road for a possible anti-cancer agent.

Sobre autores

Ahmad Alamri

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University

Autor responsável pela correspondência
Email: info@benthamscience.net

Faris Alkhilaiwi

Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University

Email: info@benthamscience.net

Najeeb Khan

Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar

Email: info@benthamscience.net

Munazzah Tasleem

School of Electronic Science and Engineering,, University of Electronic Science and Technology of China

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Thyroid Cancer. StatPearls; StatPearls Publishing: Treasure Island, FL, 2022. Internet
  2. Vaccarella, S.; Franceschi, S.; Bray, F.; Wild, C.P.; Plummer, M.; Dal Maso, L. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N. Engl. J. Med., 2016, 375(7), 614-617. doi: 10.1056/NEJMp1604412 PMID: 27532827
  3. Noone, A.M.; Cronin, K.A.; Altekruse, S.F.; Howlader, N.; Lewis, D.R.; Petkov, V.I.; Penberthy, L. Cancer incidence and survival trends by subtype using data from the surveillance epidemiology and end results program, 1992–2013. Cancer Epidemiol. Biomarkers Prev., 2017, 26(4), 632-641. doi: 10.1158/1055-9965.EPI-16-0520 PMID: 27956436
  4. Nikiforova, M.N.; Nikiforov, Y.E. Molecular diagnostics and predictors in thyroid cancer. Thyroid, 2009, 19(12), 1351-1361. doi: 10.1089/thy.2009.0240 PMID: 19895341
  5. Fagin, J.A.; Wells, S.A., Jr Biologic and clinical perspectives on thyroid cancer. N. Engl. J. Med., 2016, 375(11), 1054-1067. doi: 10.1056/NEJMra1501993 PMID: 27626519
  6. Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa, S.L.; Auman, J.T.; Balasundaram, M.; Balu, S.; Baylin, S.B.; Behera, M.; Bernard, B.; Beroukhim, R.; Bishop, J.A.; Black, A.D.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Bowen, J.; Bowlby, R.; Bristow, C.A.; Brookens, R.; Brooks, D.; Bryant, R.; Buda, E.; Butterfield, Y.S.N.; Carling, T.; Carlsen, R.; Carter, S.L.; Carty, S.E.; Chan, T.A.; Chen, A.Y.; Cherniack, A.D.; Cheung, D.; Chin, L.; Cho, J.; Chu, A.; Chuah, E.; Cibulskis, K.; Ciriello, G.; Clarke, A.; Clayman, G.L.; Cope, L.; Copland, J.A.; Covington, K.; Danilova, L.; Davidsen, T.; Demchok, J.A.; DiCara, D.; Dhalla, N.; Dhir, R.; Dookran, S.S.; Dresdner, G.; Eldridge, J.; Eley, G.; El-Naggar, A.K.; Eng, S.; Fagin, J.A.; Fennell, T.; Ferris, R.L.; Fisher, S.; Frazer, S.; Frick, J.; Gabriel, S.B.; Ganly, I.; Gao, J.; Garraway, L.A.; Gastier-Foster, J.M.; Getz, G.; Gehlenborg, N.; Ghossein, R.; Gibbs, R.A.; Giordano, T.J.; Gomez-Hernandez, K.; Grimsby, J.; Gross, B.; Guin, R.; Hadjipanayis, A.; Harper, H.A.; Hayes, D.N.; Heiman, D.I.; Herman, J.G.; Hoadley, K.A.; Hofree, M.; Holt, R.A.; Hoyle, A.P.; Huang, F.W.; Huang, M.; Hutter, C.M.; Ideker, T.; Iype, L.; Jacobsen, A.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Kasaian, K.; Kebebew, E.; Khuri, F.R.; Kim, J.; Kramer, R.; Kreisberg, R.; Kucherlapati, R.; Kwiatkowski, D.J.; Ladanyi, M.; Lai, P.H.; Laird, P.W.; Lander, E.; Lawrence, M.S.; Lee, D.; Lee, E.; Lee, S.; Lee, W.; Leraas, K.M.; Lichtenberg, T.M.; Lichtenstein, L.; Lin, P.; Ling, S.; Liu, J.; Liu, W.; Liu, Y. LiVolsi, V.A.; Lu, Y.; Ma, Y.; Mahadeshwar, H.S.; Marra, M.A.; Mayo, M.; McFadden, D.G.; Meng, S.; Meyerson, M.; Mieczkowski, P.A.; Miller, M.; Mills, G.; Moore, R.A.; Mose, L.E.; Mungall, A.J.; Murray, B.A.; Nikiforov, Y.E.; Noble, M.S.; Ojesina, A.I.; Owonikoko, T.K.; Ozenberger, B.A.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Paull, E.O.; Pedamallu, C.S.; Perou, C.M.; Prins, J.F.; Protopopov, A.; Ramalingam, S.S.; Ramirez, N.C.; Ramirez, R.; Raphael, B.J.; Rathmell, W.K.; Ren, X.; Reynolds, S.M.; Rheinbay, E.; Ringel, M.D.; Rivera, M.; Roach, J.; Robertson, A.G.; Rosenberg, M.W.; Rosenthal, M.; Sadeghi, S.; Saksena, G.; Sander, C.; Santoso, N.; Schein, J.E.; Schultz, N.; Schumacher, S.E.; Seethala, R.R.; Seidman, J.; Senbabaoglu, Y.; Seth, S.; Sharpe, S.; Shaw, K.R.M.; Shen, J.P.; Shen, R.; Sherman, S.; Sheth, M.; Shi, Y.; Shmulevich, I.; Sica, G.L.; Simons, J.V.; Sinha, R.; Sipahimalani, P.; Smallridge, R.C.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sougnez, C.; Stewart, C.; Stojanov, P.; Stuart, J.M.; Sumer, S.O.; Sun, Y.; Tabak, B.; Tam, A.; Tan, D.; Tang, J.; Tarnuzzer, R.; Taylor, B.S.; Thiessen, N.; Thorne, L.; Thorsson, V.; Tuttle, R.M.; Umbricht, C.B.; Van Den Berg, D.J.; Vandin, F.; Veluvolu, U.; Verhaak, R.G.W.; Vinco, M.; Voet, D.; Walter, V.; Wang, Z.; Waring, S.; Weinberger, P.M.; Weinhold, N.; Weinstein, J.N.; Weisenberger, D.J.; Wheeler, D.; Wilkerson, M.D.; Wilson, J.; Williams, M.; Winer, D.A.; Wise, L.; Wu, J.; Xi, L.; Xu, A.W.; Yang, L.; Yang, L.; Zack, T.I.; Zeiger, M.A.; Zeng, D.; Zenklusen, J.C.; Zhao, N.; Zhang, H.; Zhang, J.; Zhang, J.J.; Zhang, W.; Zmuda, E.; Zou, L. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3), 676-690. doi: 10.1016/j.cell.2014.09.050 PMID: 25417114
  7. Kim, J.; Gosnell, J.E.; Roman, S.A. Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol., 2020, 16(1), 17-29. doi: 10.1038/s41574-019-0263-x PMID: 31616074
  8. Davies, L.; Ouellette, M.; Hunter, M.; Welch, H.G. The increasing incidence of small thyroid cancers: Where are the cases coming from? Laryngoscope, 2010, 120(12), 2446-2451. doi: 10.1002/lary.21076 PMID: 21108428
  9. Olson, E.; Wintheiser, G.; Wolfe, K.M.; Droessler, J.; Silberstein, P.T. Epidemiology of thyroid cancer: A review of the national cancer database, 2000-2013. Cureus, 2019, 11(2), e4127. doi: 10.7759/cureus.4127 PMID: 31049276
  10. Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA, 2006, 295(18), 2164-2167. doi: 10.1001/jama.295.18.2164 PMID: 16684987
  11. Morris, L.G.T.; Myssiorek, D. Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: A population-based analysis. Am. J. Surg., 2010, 200(4), 454-461. doi: 10.1016/j.amjsurg.2009.11.008 PMID: 20561605
  12. Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther., 2003, 99(1), 1-13. doi: 10.1016/S0163-7258(03)00042-1 PMID: 12804695
  13. Savithramma, N.; Yugandhar, P.; Gaddala, B. A review on medicinal plants as a potential source for cancer. Int. J. Pharm. Sci. Rev. Res., 2014, 26, 235-248.
  14. Akbar, S. Handbook of 200 medicinal plants: A comprehensive review of their traditional medical uses and scientific justifications; Springer, 2020. doi: 10.1007/978-3-030-16807-0
  15. Chakraborty, A.; Brantner, A.; Mukainaka, T.; Nobukuni, Y.; Kuchide, M.; Konoshima, T.; Tokuda, H.; Nishino, H. Cancer chemopreventive activity of Achyranthes aspera leaves on Epstein–Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett., 2002, 177(1), 1-5. doi: 10.1016/S0304-3835(01)00766-2 PMID: 11809524
  16. Subbarayan, P.R.; Sarkar, M.; Impellizzeri, S.; Raymo, F.; Lokeshwar, B.L.; Kumar, P.; Agarwal, R.P.; Ardalan, B. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells. J. Ethnopharmacol., 2010, 131(1), 78-82. doi: 10.1016/j.jep.2010.06.002 PMID: 20541002
  17. Anuja, M.N.M.K.; Nithya, R.N.S.A.; Rajamanickam, C.; Madambath, I. Spermatotoxicity of a protein isolated from the root of Achyranthes aspera: A comparative study with gossypol. Contraception, 2010, 82(4), 385-390. doi: 10.1016/j.contraception.2010.04.011 PMID: 20851234
  18. Sandhyakumary, K.; Boby, R.G.; Indira, M. Impact of feeding ethanolic extracts of Achyranthes aspera Linn. on reproductive functions in male rats. Indian J. Exp. Biol., 2002, 40(11), 1307-1309. PMID: 13677636
  19. Bhosale, U.; Pophale, P.; Somani, R.; Yegnanarayan, R. Effect of aqueous extracts of Achyranthes aspera Linn. on experimental animal model for inflammation. Anc. Sci. Life, 2012, 31(4), 202-206. doi: 10.4103/0257-7941.107362 PMID: 23661870
  20. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. String v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(D1), D447-D452. doi: 10.1093/nar/gku1003 PMID: 25352553
  21. Gonzalez-Del Pino, G.L.; Li, K.; Park, E.; Schmoker, A.M.; Ha, B.H.; Eck, M.J. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. Proc. Natl. Acad. Sci. USA, 2021, 118(36), e2107207118. doi: 10.1073/pnas.2107207118 PMID: 34470822
  22. Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.P.; Chand, R.P.B.; Aparna, S.R.; Mangalapandi, P.; Samal, A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep., 2018, 8(1), 4329. doi: 10.1038/s41598-018-22631-z PMID: 29531263
  23. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14. doi: 10.1093/nar/gkab255 PMID: 33893803
  24. Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
  25. Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(S1)(Suppl. 1), S33. doi: 10.1186/1471-2105-12-S1-S33 PMID: 21342564
  26. Riesco-Eizaguirre, G.; Santisteban, P. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome. Eur. J. Endocrinol., 2016, 175(5), R203-R217. doi: 10.1530/EJE-16-0202 PMID: 27666535
  27. Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954. doi: 10.1038/nature00766 PMID: 12068308
  28. Vidinov, K.; Dodova, R.; Mitev, P.; Mitkova, A.; Dimitrova, I.; Shinkov, A.; Ivanova, R.; Mitev, V.; Kaneva, R. Clinicopathological significance of BRAF (V600E), NRAS (Q61K) and TERT (C228T, C250T and SNP Rs2853669) mutations in bulgarian papillary thyroid carcinoma patients. Acta Med. Bulg., 2021, 48(1), 1-8. doi: 10.2478/amb-2021-0001
  29. Alzahrani, A.S.; Murugan, A.K.; Qasem, E.; Alswailem, M.M.; AlGhamdi, B.; Moria, Y.; Al-Hindi, H. Absence of EIF1AX, PPM1D, and CHEK2 mutations reported in Thyroid Cancer Genome Atlas (TCGA) in a large series of thyroid cancer. Endocrine, 2019, 63(1), 94-100. doi: 10.1007/s12020-018-1762-6 PMID: 30269267
  30. Rashid, F.; Bhat, G.; Khan, M.; Tabassum, S.; Bhat, M. Variations in MAP kinase gladiators and risk of differentiated thyroid carcinoma. Mol. Clin. Oncol., 2021, 16(2), 45. doi: 10.3892/mco.2021.2478 PMID: 35003743
  31. Masoodi, T.; Siraj, A.K.; Siraj, S.; Azam, S.; Qadri, Z.; Albalawy, W.N.; Parvathareddy, S.K.; Al-Sobhi, S.S.; Al-Dayel, F.; Alkuraya, F.S.; Al-Kuraya, K.S. Whole-exome sequencing of matched primary and metastatic papillary thyroid cancer. Thyroid, 2020, 30(1), 42-56. doi: 10.1089/thy.2019.0052 PMID: 31668133
  32. Vasko, V.; Ferrand, M.; Di Cristofaro, J.; Carayon, P.; Henry, J.F.; de Micco, C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab., 2003, 88(6), 2745-2752. doi: 10.1210/jc.2002-021186 PMID: 12788883
  33. Nikiforova, M.N.; Lynch, R.A.; Biddinger, P.W.; Alexander, E.K.; Dorn, G.W., II; Tallini, G.; Kroll, T.G.; Nikiforov, Y.E. RAS point mutations and PAX8-PPAR γ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab., 2003, 88(5), 2318-2326. doi: 10.1210/jc.2002-021907 PMID: 12727991
  34. Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5), 635-647. doi: 10.1016/j.cell.2005.01.014 PMID: 15766527
  35. Yang, C. Next-generation sequencing identified somatic alterations that may underlie the etiology of Chinese papillary thyroid carcinoma. Eur. J. Cancer Prev., 2023, 32(3), 264-274.
  36. Cui, Z.; Luo, Z.; Lin, Z.; Shi, L.; Hong, Y.; Yan, C. Long non‐coding RNA TTN‐AS1 facilitates tumorigenesis of papillary thyroid cancer through modulating the miR‐153‐3p/ZNRF2 axis. J. Gene Med., 2019, 21(5), e3083. doi: 10.1002/jgm.3083 PMID: 30811764
  37. Oh, J.H.; Jang, S.J.; Kim, J.; Sohn, I.; Lee, J.Y.; Cho, E.J.; Chun, S.M.; Sung, C.O. Spontaneous mutations in the single TTN gene represent high tumor mutation burden. NPJ Genom. Med., 2020, 5(1), 33. doi: 10.1038/s41525-019-0107-6 PMID: 32821429
  38. Han, X.; Chen, J.; Wang, J.; Xu, J.; Liu, Y. TTN mutations predict a poor prognosis in patients with thyroid cancer. Biosci. Rep., 2022, 42(7), BSR20221168. doi: 10.1042/BSR20221168 PMID: 35766333
  39. Kahara, T. Thyroglobulin gene mutation with cold nodule on thyroid scintigraphy. Case Rep. Endocrinol., 2012, 2012, 280319. doi: 10.1155/2012/280319
  40. Lin, J.D. Thyroglobulin and human thyroid cancer. Clin. Chim. Acta, 2008, 388(1-2), 15-21. doi: 10.1016/j.cca.2007.11.002 PMID: 18060877
  41. Hishinuma, A.; Fukata, S.; Kakudo, K.; Murata, Y.; Ieiri, T. High incidence of thyroid cancer in long-standing goiters with thyroglobulin mutations. Thyroid, 2005, 15(9), 1079-1084. doi: 10.1089/thy.2005.15.1079 PMID: 16187918
  42. Xu, Q.; Song, A.; Xie, Q. The integrated analyses of driver genes identify key biomarkers in thyroid cancer. Technol. Cancer Res. Treat., 2020, 19, 1533033820940440. doi: 10.1177/1533033820940440 PMID: 32812852
  43. Xie, Z.; Li, X.; Lun, Y.; He, Y.; Wu, S.; Wang, S.; Sun, J.; He, Y.; Xin, S.; Zhang, J. Papillary thyroid carcinoma with a high tumor mutation burden has a poor prognosis. Int. Immunopharmacol., 2020, 89(Pt B), 107090. doi: 10.1016/j.intimp.2020.107090 PMID: 33091816
  44. Aithal, A.; Rauth, S.; Kshirsagar, P.; Shah, A.; Lakshmanan, I.; Junker, W.M.; Jain, M.; Ponnusamy, M.P.; Batra, S.K. MUC16 as a novel target for cancer therapy. Expert Opin. Ther. Targets, 2018, 22(8), 675-686. doi: 10.1080/14728222.2018.1498845 PMID: 29999426
  45. Felder, M.; Kapur, A.; Gonzalez-Bosquet, J.; Horibata, S.; Heintz, J.; Albrecht, R.; Fass, L.; Kaur, J.; Hu, K.; Shojaei, H.; Whelan, R.J.; Patankar, M.S. MUC16 (CA125): Tumor biomarker to cancer therapy, a work in progress. Mol. Cancer, 2014, 13(1), 129. doi: 10.1186/1476-4598-13-129 PMID: 24886523
  46. Haridas, D.; Ponnusamy, M.P.; Chugh, S.; Lakshmanan, I.; Seshacharyulu, P.; Batra, S.K. MUC16: Molecular analysis and its functional implications in benign and malignant conditions. FASEB J., 2014, 28(10), 4183-4199. doi: 10.1096/fj.14-257352 PMID: 25002120
  47. Thériault, C.; Pinard, M.; Comamala, M.; Migneault, M.; Beaudin, J.; Matte, I.; Boivin, M.; Piché, A.; Rancourt, C. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol. Oncol., 2011, 121(3), 434-443. doi: 10.1016/j.ygyno.2011.02.020 PMID: 21421261
  48. Xiang, X.; Feng, M.; Felder, M.; Connor, J.P.; Man, Y.; Patankar, M.S.; Ho, M. HN125: A novel immunoadhesin targeting MUC16 with potential for cancer therapy. J. Cancer, 2011, 2, 280-291. doi: 10.7150/jca.2.280 PMID: 21611109
  49. Das, S.; Batra, S.K. Understanding the unique attributes of MUC16 (CA125): Potential implications in targeted therapy. Cancer Res., 2015, 75(22), 4669-4674. doi: 10.1158/0008-5472.CAN-15-1050 PMID: 26527287
  50. Simões-Pereira, J.; Moura, M.M.; Marques, I.J.; Rito, M.; Cabrera, R.A.; Leite, V.; Cavaco, B.M. The role of EIF1AX in thyroid cancer tumourigenesis and progression. J. Endocrinol. Invest., 2019, 42(3), 313-318. doi: 10.1007/s40618-018-0919-8 PMID: 29968046
  51. Karunamurthy, A.; Panebianco, F.; Hsiao, S.J.; Vorhauer, J.; Nikiforova, M.N.; Chiosea, S.; Nikiforov, Y.E. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr. Relat. Cancer, 2016, 23(4), 295-301. doi: 10.1530/ERC-16-0043 PMID: 26911375
  52. Karslioglu French, E.; Nikitski, A.V.; Yip, L.; Nikiforova, M.N.; Nikiforov, Y.E.; Carty, S.E. Clinicopathological features and outcomes of thyroid nodules with EIF1AX mutations. Endocr. Relat. Cancer, 2022, 29(8), 467-473. doi: 10.1530/ERC-22-0041 PMID: 35609001
  53. Cha, Y.J.; Koo, J.S. Next-generation sequencing in thyroid cancer. J. Transl. Med., 2016, 14(1), 322. doi: 10.1186/s12967-016-1074-7 PMID: 27871285
  54. Sponziello, M.; Silvestri, G.; Verrienti, A.; Perna, A.; Rosignolo, F.; Brunelli, C.; Pecce, V.; Rossi, E.D.; Lombardi, C.P.; Durante, C.; Filetti, S.; Fadda, G. A novel nonsense EIF1AX mutation identified in a thyroid nodule histologically diagnosed as oncocytic carcinoma. Endocrine, 2018, 62(2), 492-495. doi: 10.1007/s12020-018-1611-7 PMID: 29700698
  55. Yang, C.; Xu, W.; Gong, J.; Liu, Z.; Cui, D. Novel somatic alterations underlie Chinese papillary thyroid carcinoma. Cancer Biomark., 2020, 27(4), 445-460. doi: 10.3233/CBM-191200 PMID: 32065787
  56. Zhang, H.; Huang, T.; Ren, X.; Fang, X.; Chen, X.; Wei, H.; Sun, W.; Wang, Y. Integrated pan-cancer analysis of CSMD2 as a potential prognostic, diagnostic, and immune biomarker. Front. Genet., 2022, 13, 918486. doi: 10.3389/fgene.2022.918486 PMID: 36061177
  57. Yi, Q.; Peng, J.; Xu, Z.; Liang, Q.; Cai, Y.; Peng, B.; He, Q.; Yan, Y. Spectrum of BRAF aberrations and its potential clinical implications: Insights from integrative pan-cancer analysis. Front. Bioeng. Biotechnol., 2022, 10, 806851. doi: 10.3389/fbioe.2022.806851 PMID: 35910024
  58. Affinito, O.; Orlandella, F.M.; Luciano, N.; Salvatore, M.; Salvatore, G.; Franzese, M. Evolution of intra-tumoral heterogeneity across different pathological stages in papillary thyroid carcinoma. Cancer Cell Int., 2022, 22(1), 263. doi: 10.1186/s12935-022-02680-1 PMID: 35996174
  59. Stanzione, F.; Giangreco, I.; Cole, J.C. Chapter Four - Use of molecular docking computational tools in drug discovery.Progress in Medicinal Chemistry; Witty, D.R; Cox, B., Ed.; Elsevier, 2021, pp. 273-343.
  60. Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023