In silico Screening and Validation of Achyranthes aspera as a Potential Inhibitor of BRAF and NRAS in Controlling Thyroid Cancer
- Autores: Alamri A.1, Alkhilaiwi F.2, Khan N.3, Tasleem M.4
-
Afiliações:
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar
- School of Electronic Science and Engineering,, University of Electronic Science and Technology of China
- Edição: Volume 23, Nº 19 (2023)
- Páginas: 2111-2126
- Seção: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694380
- DOI: https://doi.org/10.2174/1871520623666230607125258
- ID: 694380
Citar
Texto integral
Resumo
Background: Thyroid carcinoma (THCA) is one of the most prevalent endocrine tumors, accounting for 3.4% of all cancers diagnosed annually. Single Nucleotide Polymorphisms (SNPs) are the most prevalent genetic variation associated with thyroid cancer. Understanding thyroid cancer genetics will enhance diagnosis, prognosis, and treatment.
Methods: This TCGA-based study analyzes thyroid cancer-associated highly mutated genes through highly robust in silico techniques. Pathway, gene expression, and survival studies were performed on the top 10 highly mutated genes (BRAF, NRAS, TG, TTN, HRAS, MUC16, ZFHX3, CSMD2, EIFIAX, SPTA1). Novel natural compounds from Achyranthes aspera Linn were discovered to target two highly mutated genes. The natural compounds and synthetic drugs used to treat thyroid cancer were subjected to comparative molecular docking against BRAF and NRAS targets. The ADME characteristics of Achyranthes aspera Linn compounds were also investigated
Results: The gene expression analysis revealed that the expression of ZFHX3, MCU16, EIF1AX, HRAS, and NRAS was up-regulated in tumor cells while BRAF, TTN, TG, CSMD2, and SPTA1 were down-regulated in tumor cells. In addition, the protein-protein interaction network demonstrated that HRAS, BRAF, NRAS, SPTA1, and TG proteins have strong interactions with each other as compared to other genes. The ADMET analysis shows that seven compounds have druglike properties. These compounds were further studied for molecular docking studies. The compounds MPHY012847, IMPHY005295, and IMPHY000939 show higher binding affinity with BRAF than pimasertib. In addition, IMPHY000939, IMPHY000303, IMPHY012847, and IMPHY005295 showed a better binding affinity with NRAS than Guanosine Triphosphate.
Conclusion: The outcomes of docking experiments conducted on BRAF and NRAS provide insight into natural compounds with pharmacological characteristics. These findings indicate that natural compounds derived from plants as a more promising cancer treatment option. Thus, the results of docking investigations conducted on BRAF and NRAS substantiate the conclusions that the molecule possesses the most suited drug-like qualities. Compared to other compounds, natural compounds are superior, and they are also druggable. This demonstrates that natural plant compounds can be an excellent source of potential anti-cancer agents. The preclinical research will pave the road for a possible anti-cancer agent.
Palavras-chave
Sobre autores
Ahmad Alamri
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University
Autor responsável pela correspondência
Email: info@benthamscience.net
Faris Alkhilaiwi
Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University
Email: info@benthamscience.net
Najeeb Khan
Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar
Email: info@benthamscience.net
Munazzah Tasleem
School of Electronic Science and Engineering,, University of Electronic Science and Technology of China
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Thyroid Cancer. StatPearls; StatPearls Publishing: Treasure Island, FL, 2022. Internet
- Vaccarella, S.; Franceschi, S.; Bray, F.; Wild, C.P.; Plummer, M.; Dal Maso, L. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N. Engl. J. Med., 2016, 375(7), 614-617. doi: 10.1056/NEJMp1604412 PMID: 27532827
- Noone, A.M.; Cronin, K.A.; Altekruse, S.F.; Howlader, N.; Lewis, D.R.; Petkov, V.I.; Penberthy, L. Cancer incidence and survival trends by subtype using data from the surveillance epidemiology and end results program, 19922013. Cancer Epidemiol. Biomarkers Prev., 2017, 26(4), 632-641. doi: 10.1158/1055-9965.EPI-16-0520 PMID: 27956436
- Nikiforova, M.N.; Nikiforov, Y.E. Molecular diagnostics and predictors in thyroid cancer. Thyroid, 2009, 19(12), 1351-1361. doi: 10.1089/thy.2009.0240 PMID: 19895341
- Fagin, J.A.; Wells, S.A., Jr Biologic and clinical perspectives on thyroid cancer. N. Engl. J. Med., 2016, 375(11), 1054-1067. doi: 10.1056/NEJMra1501993 PMID: 27626519
- Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa, S.L.; Auman, J.T.; Balasundaram, M.; Balu, S.; Baylin, S.B.; Behera, M.; Bernard, B.; Beroukhim, R.; Bishop, J.A.; Black, A.D.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Bowen, J.; Bowlby, R.; Bristow, C.A.; Brookens, R.; Brooks, D.; Bryant, R.; Buda, E.; Butterfield, Y.S.N.; Carling, T.; Carlsen, R.; Carter, S.L.; Carty, S.E.; Chan, T.A.; Chen, A.Y.; Cherniack, A.D.; Cheung, D.; Chin, L.; Cho, J.; Chu, A.; Chuah, E.; Cibulskis, K.; Ciriello, G.; Clarke, A.; Clayman, G.L.; Cope, L.; Copland, J.A.; Covington, K.; Danilova, L.; Davidsen, T.; Demchok, J.A.; DiCara, D.; Dhalla, N.; Dhir, R.; Dookran, S.S.; Dresdner, G.; Eldridge, J.; Eley, G.; El-Naggar, A.K.; Eng, S.; Fagin, J.A.; Fennell, T.; Ferris, R.L.; Fisher, S.; Frazer, S.; Frick, J.; Gabriel, S.B.; Ganly, I.; Gao, J.; Garraway, L.A.; Gastier-Foster, J.M.; Getz, G.; Gehlenborg, N.; Ghossein, R.; Gibbs, R.A.; Giordano, T.J.; Gomez-Hernandez, K.; Grimsby, J.; Gross, B.; Guin, R.; Hadjipanayis, A.; Harper, H.A.; Hayes, D.N.; Heiman, D.I.; Herman, J.G.; Hoadley, K.A.; Hofree, M.; Holt, R.A.; Hoyle, A.P.; Huang, F.W.; Huang, M.; Hutter, C.M.; Ideker, T.; Iype, L.; Jacobsen, A.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Kasaian, K.; Kebebew, E.; Khuri, F.R.; Kim, J.; Kramer, R.; Kreisberg, R.; Kucherlapati, R.; Kwiatkowski, D.J.; Ladanyi, M.; Lai, P.H.; Laird, P.W.; Lander, E.; Lawrence, M.S.; Lee, D.; Lee, E.; Lee, S.; Lee, W.; Leraas, K.M.; Lichtenberg, T.M.; Lichtenstein, L.; Lin, P.; Ling, S.; Liu, J.; Liu, W.; Liu, Y. LiVolsi, V.A.; Lu, Y.; Ma, Y.; Mahadeshwar, H.S.; Marra, M.A.; Mayo, M.; McFadden, D.G.; Meng, S.; Meyerson, M.; Mieczkowski, P.A.; Miller, M.; Mills, G.; Moore, R.A.; Mose, L.E.; Mungall, A.J.; Murray, B.A.; Nikiforov, Y.E.; Noble, M.S.; Ojesina, A.I.; Owonikoko, T.K.; Ozenberger, B.A.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Paull, E.O.; Pedamallu, C.S.; Perou, C.M.; Prins, J.F.; Protopopov, A.; Ramalingam, S.S.; Ramirez, N.C.; Ramirez, R.; Raphael, B.J.; Rathmell, W.K.; Ren, X.; Reynolds, S.M.; Rheinbay, E.; Ringel, M.D.; Rivera, M.; Roach, J.; Robertson, A.G.; Rosenberg, M.W.; Rosenthal, M.; Sadeghi, S.; Saksena, G.; Sander, C.; Santoso, N.; Schein, J.E.; Schultz, N.; Schumacher, S.E.; Seethala, R.R.; Seidman, J.; Senbabaoglu, Y.; Seth, S.; Sharpe, S.; Shaw, K.R.M.; Shen, J.P.; Shen, R.; Sherman, S.; Sheth, M.; Shi, Y.; Shmulevich, I.; Sica, G.L.; Simons, J.V.; Sinha, R.; Sipahimalani, P.; Smallridge, R.C.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sougnez, C.; Stewart, C.; Stojanov, P.; Stuart, J.M.; Sumer, S.O.; Sun, Y.; Tabak, B.; Tam, A.; Tan, D.; Tang, J.; Tarnuzzer, R.; Taylor, B.S.; Thiessen, N.; Thorne, L.; Thorsson, V.; Tuttle, R.M.; Umbricht, C.B.; Van Den Berg, D.J.; Vandin, F.; Veluvolu, U.; Verhaak, R.G.W.; Vinco, M.; Voet, D.; Walter, V.; Wang, Z.; Waring, S.; Weinberger, P.M.; Weinhold, N.; Weinstein, J.N.; Weisenberger, D.J.; Wheeler, D.; Wilkerson, M.D.; Wilson, J.; Williams, M.; Winer, D.A.; Wise, L.; Wu, J.; Xi, L.; Xu, A.W.; Yang, L.; Yang, L.; Zack, T.I.; Zeiger, M.A.; Zeng, D.; Zenklusen, J.C.; Zhao, N.; Zhang, H.; Zhang, J.; Zhang, J.J.; Zhang, W.; Zmuda, E.; Zou, L. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3), 676-690. doi: 10.1016/j.cell.2014.09.050 PMID: 25417114
- Kim, J.; Gosnell, J.E.; Roman, S.A. Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol., 2020, 16(1), 17-29. doi: 10.1038/s41574-019-0263-x PMID: 31616074
- Davies, L.; Ouellette, M.; Hunter, M.; Welch, H.G. The increasing incidence of small thyroid cancers: Where are the cases coming from? Laryngoscope, 2010, 120(12), 2446-2451. doi: 10.1002/lary.21076 PMID: 21108428
- Olson, E.; Wintheiser, G.; Wolfe, K.M.; Droessler, J.; Silberstein, P.T. Epidemiology of thyroid cancer: A review of the national cancer database, 2000-2013. Cureus, 2019, 11(2), e4127. doi: 10.7759/cureus.4127 PMID: 31049276
- Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA, 2006, 295(18), 2164-2167. doi: 10.1001/jama.295.18.2164 PMID: 16684987
- Morris, L.G.T.; Myssiorek, D. Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: A population-based analysis. Am. J. Surg., 2010, 200(4), 454-461. doi: 10.1016/j.amjsurg.2009.11.008 PMID: 20561605
- Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther., 2003, 99(1), 1-13. doi: 10.1016/S0163-7258(03)00042-1 PMID: 12804695
- Savithramma, N.; Yugandhar, P.; Gaddala, B. A review on medicinal plants as a potential source for cancer. Int. J. Pharm. Sci. Rev. Res., 2014, 26, 235-248.
- Akbar, S. Handbook of 200 medicinal plants: A comprehensive review of their traditional medical uses and scientific justifications; Springer, 2020. doi: 10.1007/978-3-030-16807-0
- Chakraborty, A.; Brantner, A.; Mukainaka, T.; Nobukuni, Y.; Kuchide, M.; Konoshima, T.; Tokuda, H.; Nishino, H. Cancer chemopreventive activity of Achyranthes aspera leaves on EpsteinBarr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett., 2002, 177(1), 1-5. doi: 10.1016/S0304-3835(01)00766-2 PMID: 11809524
- Subbarayan, P.R.; Sarkar, M.; Impellizzeri, S.; Raymo, F.; Lokeshwar, B.L.; Kumar, P.; Agarwal, R.P.; Ardalan, B. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells. J. Ethnopharmacol., 2010, 131(1), 78-82. doi: 10.1016/j.jep.2010.06.002 PMID: 20541002
- Anuja, M.N.M.K.; Nithya, R.N.S.A.; Rajamanickam, C.; Madambath, I. Spermatotoxicity of a protein isolated from the root of Achyranthes aspera: A comparative study with gossypol. Contraception, 2010, 82(4), 385-390. doi: 10.1016/j.contraception.2010.04.011 PMID: 20851234
- Sandhyakumary, K.; Boby, R.G.; Indira, M. Impact of feeding ethanolic extracts of Achyranthes aspera Linn. on reproductive functions in male rats. Indian J. Exp. Biol., 2002, 40(11), 1307-1309. PMID: 13677636
- Bhosale, U.; Pophale, P.; Somani, R.; Yegnanarayan, R. Effect of aqueous extracts of Achyranthes aspera Linn. on experimental animal model for inflammation. Anc. Sci. Life, 2012, 31(4), 202-206. doi: 10.4103/0257-7941.107362 PMID: 23661870
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. String v10: Proteinprotein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(D1), D447-D452. doi: 10.1093/nar/gku1003 PMID: 25352553
- Gonzalez-Del Pino, G.L.; Li, K.; Park, E.; Schmoker, A.M.; Ha, B.H.; Eck, M.J. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. Proc. Natl. Acad. Sci. USA, 2021, 118(36), e2107207118. doi: 10.1073/pnas.2107207118 PMID: 34470822
- Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.P.; Chand, R.P.B.; Aparna, S.R.; Mangalapandi, P.; Samal, A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep., 2018, 8(1), 4329. doi: 10.1038/s41598-018-22631-z PMID: 29531263
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14. doi: 10.1093/nar/gkab255 PMID: 33893803
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
- Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(S1)(Suppl. 1), S33. doi: 10.1186/1471-2105-12-S1-S33 PMID: 21342564
- Riesco-Eizaguirre, G.; Santisteban, P. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome. Eur. J. Endocrinol., 2016, 175(5), R203-R217. doi: 10.1530/EJE-16-0202 PMID: 27666535
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954. doi: 10.1038/nature00766 PMID: 12068308
- Vidinov, K.; Dodova, R.; Mitev, P.; Mitkova, A.; Dimitrova, I.; Shinkov, A.; Ivanova, R.; Mitev, V.; Kaneva, R. Clinicopathological significance of BRAF (V600E), NRAS (Q61K) and TERT (C228T, C250T and SNP Rs2853669) mutations in bulgarian papillary thyroid carcinoma patients. Acta Med. Bulg., 2021, 48(1), 1-8. doi: 10.2478/amb-2021-0001
- Alzahrani, A.S.; Murugan, A.K.; Qasem, E.; Alswailem, M.M.; AlGhamdi, B.; Moria, Y.; Al-Hindi, H. Absence of EIF1AX, PPM1D, and CHEK2 mutations reported in Thyroid Cancer Genome Atlas (TCGA) in a large series of thyroid cancer. Endocrine, 2019, 63(1), 94-100. doi: 10.1007/s12020-018-1762-6 PMID: 30269267
- Rashid, F.; Bhat, G.; Khan, M.; Tabassum, S.; Bhat, M. Variations in MAP kinase gladiators and risk of differentiated thyroid carcinoma. Mol. Clin. Oncol., 2021, 16(2), 45. doi: 10.3892/mco.2021.2478 PMID: 35003743
- Masoodi, T.; Siraj, A.K.; Siraj, S.; Azam, S.; Qadri, Z.; Albalawy, W.N.; Parvathareddy, S.K.; Al-Sobhi, S.S.; Al-Dayel, F.; Alkuraya, F.S.; Al-Kuraya, K.S. Whole-exome sequencing of matched primary and metastatic papillary thyroid cancer. Thyroid, 2020, 30(1), 42-56. doi: 10.1089/thy.2019.0052 PMID: 31668133
- Vasko, V.; Ferrand, M.; Di Cristofaro, J.; Carayon, P.; Henry, J.F.; de Micco, C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab., 2003, 88(6), 2745-2752. doi: 10.1210/jc.2002-021186 PMID: 12788883
- Nikiforova, M.N.; Lynch, R.A.; Biddinger, P.W.; Alexander, E.K.; Dorn, G.W., II; Tallini, G.; Kroll, T.G.; Nikiforov, Y.E. RAS point mutations and PAX8-PPAR γ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab., 2003, 88(5), 2318-2326. doi: 10.1210/jc.2002-021907 PMID: 12727991
- Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5), 635-647. doi: 10.1016/j.cell.2005.01.014 PMID: 15766527
- Yang, C. Next-generation sequencing identified somatic alterations that may underlie the etiology of Chinese papillary thyroid carcinoma. Eur. J. Cancer Prev., 2023, 32(3), 264-274.
- Cui, Z.; Luo, Z.; Lin, Z.; Shi, L.; Hong, Y.; Yan, C. Long non‐coding RNA TTN‐AS1 facilitates tumorigenesis of papillary thyroid cancer through modulating the miR‐153‐3p/ZNRF2 axis. J. Gene Med., 2019, 21(5), e3083. doi: 10.1002/jgm.3083 PMID: 30811764
- Oh, J.H.; Jang, S.J.; Kim, J.; Sohn, I.; Lee, J.Y.; Cho, E.J.; Chun, S.M.; Sung, C.O. Spontaneous mutations in the single TTN gene represent high tumor mutation burden. NPJ Genom. Med., 2020, 5(1), 33. doi: 10.1038/s41525-019-0107-6 PMID: 32821429
- Han, X.; Chen, J.; Wang, J.; Xu, J.; Liu, Y. TTN mutations predict a poor prognosis in patients with thyroid cancer. Biosci. Rep., 2022, 42(7), BSR20221168. doi: 10.1042/BSR20221168 PMID: 35766333
- Kahara, T. Thyroglobulin gene mutation with cold nodule on thyroid scintigraphy. Case Rep. Endocrinol., 2012, 2012, 280319. doi: 10.1155/2012/280319
- Lin, J.D. Thyroglobulin and human thyroid cancer. Clin. Chim. Acta, 2008, 388(1-2), 15-21. doi: 10.1016/j.cca.2007.11.002 PMID: 18060877
- Hishinuma, A.; Fukata, S.; Kakudo, K.; Murata, Y.; Ieiri, T. High incidence of thyroid cancer in long-standing goiters with thyroglobulin mutations. Thyroid, 2005, 15(9), 1079-1084. doi: 10.1089/thy.2005.15.1079 PMID: 16187918
- Xu, Q.; Song, A.; Xie, Q. The integrated analyses of driver genes identify key biomarkers in thyroid cancer. Technol. Cancer Res. Treat., 2020, 19, 1533033820940440. doi: 10.1177/1533033820940440 PMID: 32812852
- Xie, Z.; Li, X.; Lun, Y.; He, Y.; Wu, S.; Wang, S.; Sun, J.; He, Y.; Xin, S.; Zhang, J. Papillary thyroid carcinoma with a high tumor mutation burden has a poor prognosis. Int. Immunopharmacol., 2020, 89(Pt B), 107090. doi: 10.1016/j.intimp.2020.107090 PMID: 33091816
- Aithal, A.; Rauth, S.; Kshirsagar, P.; Shah, A.; Lakshmanan, I.; Junker, W.M.; Jain, M.; Ponnusamy, M.P.; Batra, S.K. MUC16 as a novel target for cancer therapy. Expert Opin. Ther. Targets, 2018, 22(8), 675-686. doi: 10.1080/14728222.2018.1498845 PMID: 29999426
- Felder, M.; Kapur, A.; Gonzalez-Bosquet, J.; Horibata, S.; Heintz, J.; Albrecht, R.; Fass, L.; Kaur, J.; Hu, K.; Shojaei, H.; Whelan, R.J.; Patankar, M.S. MUC16 (CA125): Tumor biomarker to cancer therapy, a work in progress. Mol. Cancer, 2014, 13(1), 129. doi: 10.1186/1476-4598-13-129 PMID: 24886523
- Haridas, D.; Ponnusamy, M.P.; Chugh, S.; Lakshmanan, I.; Seshacharyulu, P.; Batra, S.K. MUC16: Molecular analysis and its functional implications in benign and malignant conditions. FASEB J., 2014, 28(10), 4183-4199. doi: 10.1096/fj.14-257352 PMID: 25002120
- Thériault, C.; Pinard, M.; Comamala, M.; Migneault, M.; Beaudin, J.; Matte, I.; Boivin, M.; Piché, A.; Rancourt, C. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol. Oncol., 2011, 121(3), 434-443. doi: 10.1016/j.ygyno.2011.02.020 PMID: 21421261
- Xiang, X.; Feng, M.; Felder, M.; Connor, J.P.; Man, Y.; Patankar, M.S.; Ho, M. HN125: A novel immunoadhesin targeting MUC16 with potential for cancer therapy. J. Cancer, 2011, 2, 280-291. doi: 10.7150/jca.2.280 PMID: 21611109
- Das, S.; Batra, S.K. Understanding the unique attributes of MUC16 (CA125): Potential implications in targeted therapy. Cancer Res., 2015, 75(22), 4669-4674. doi: 10.1158/0008-5472.CAN-15-1050 PMID: 26527287
- Simões-Pereira, J.; Moura, M.M.; Marques, I.J.; Rito, M.; Cabrera, R.A.; Leite, V.; Cavaco, B.M. The role of EIF1AX in thyroid cancer tumourigenesis and progression. J. Endocrinol. Invest., 2019, 42(3), 313-318. doi: 10.1007/s40618-018-0919-8 PMID: 29968046
- Karunamurthy, A.; Panebianco, F.; Hsiao, S.J.; Vorhauer, J.; Nikiforova, M.N.; Chiosea, S.; Nikiforov, Y.E. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr. Relat. Cancer, 2016, 23(4), 295-301. doi: 10.1530/ERC-16-0043 PMID: 26911375
- Karslioglu French, E.; Nikitski, A.V.; Yip, L.; Nikiforova, M.N.; Nikiforov, Y.E.; Carty, S.E. Clinicopathological features and outcomes of thyroid nodules with EIF1AX mutations. Endocr. Relat. Cancer, 2022, 29(8), 467-473. doi: 10.1530/ERC-22-0041 PMID: 35609001
- Cha, Y.J.; Koo, J.S. Next-generation sequencing in thyroid cancer. J. Transl. Med., 2016, 14(1), 322. doi: 10.1186/s12967-016-1074-7 PMID: 27871285
- Sponziello, M.; Silvestri, G.; Verrienti, A.; Perna, A.; Rosignolo, F.; Brunelli, C.; Pecce, V.; Rossi, E.D.; Lombardi, C.P.; Durante, C.; Filetti, S.; Fadda, G. A novel nonsense EIF1AX mutation identified in a thyroid nodule histologically diagnosed as oncocytic carcinoma. Endocrine, 2018, 62(2), 492-495. doi: 10.1007/s12020-018-1611-7 PMID: 29700698
- Yang, C.; Xu, W.; Gong, J.; Liu, Z.; Cui, D. Novel somatic alterations underlie Chinese papillary thyroid carcinoma. Cancer Biomark., 2020, 27(4), 445-460. doi: 10.3233/CBM-191200 PMID: 32065787
- Zhang, H.; Huang, T.; Ren, X.; Fang, X.; Chen, X.; Wei, H.; Sun, W.; Wang, Y. Integrated pan-cancer analysis of CSMD2 as a potential prognostic, diagnostic, and immune biomarker. Front. Genet., 2022, 13, 918486. doi: 10.3389/fgene.2022.918486 PMID: 36061177
- Yi, Q.; Peng, J.; Xu, Z.; Liang, Q.; Cai, Y.; Peng, B.; He, Q.; Yan, Y. Spectrum of BRAF aberrations and its potential clinical implications: Insights from integrative pan-cancer analysis. Front. Bioeng. Biotechnol., 2022, 10, 806851. doi: 10.3389/fbioe.2022.806851 PMID: 35910024
- Affinito, O.; Orlandella, F.M.; Luciano, N.; Salvatore, M.; Salvatore, G.; Franzese, M. Evolution of intra-tumoral heterogeneity across different pathological stages in papillary thyroid carcinoma. Cancer Cell Int., 2022, 22(1), 263. doi: 10.1186/s12935-022-02680-1 PMID: 35996174
- Stanzione, F.; Giangreco, I.; Cole, J.C. Chapter Four - Use of molecular docking computational tools in drug discovery.Progress in Medicinal Chemistry; Witty, D.R; Cox, B., Ed.; Elsevier, 2021, pp. 273-343.
- Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.
Arquivos suplementares
