A Combination of EGFR Inhibitors and AE-PDT Could Synergistically Suppress Breast Cancer Progression


Citar

Texto integral

Resumo

Background: Breast cancer is the most frequently diagnosed malignancy and the leading cause of cancerrelated deaths in women. Activation of EGFR by EC-secreted EGFR ligands promotes breast cancer progression. Current treatments provide limited benefits in triple-negative breast cancer (TNBC). Photodynamic therapy (PDT) has been proven effective for the treatment of TNBC through the EGFR pathway, but the underlying mechanism is still unclear.

Purpose:The purpose of this study was to determine the role of the EGFR pathway in the treatment of PDT on TNBC in a co-culture system.

Methods: MB-231 and HUVEC were co-cultured for experiments (HU-231). Cell viability and ROS production were detected after AE-PDT, a combination of EGFR inhibitors (AEE788)with PDT to test angiogenesis, apoptosis, and pyroptosis. WB detects expression of EGFR. EGFR, P-EGFR, VEGF, caspase-1, capase-3, and GSDMD .

Results: AE-PDT inhibited HU-231 cell proliferation and tumor angiogenesis, and induced cell apoptosis and pyroptosis by promoting ROS production. AEE788, an inhibitor of the EGFR, enhanced HU-231 cell killing after AE-PDT

Conclusion: Our study suggested that the combination of EGFR inhibitors and AE-PDT could synergistically suppress breast cancer progression, providing a new treatment strategy.

Sobre autores

Yajuan Niu

Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University

Email: info@benthamscience.net

Xiya Guo

Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University

Email: info@benthamscience.net

Wang Han

Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University

Email: info@benthamscience.net

Xiaoyu Han

Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University

Email: info@benthamscience.net

Kaiting Li

Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University

Email: info@benthamscience.net

Si Tian

Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University

Email: info@benthamscience.net

Ying Zhu

Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University

Email: info@benthamscience.net

DingQun Bai

Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University

Email: info@benthamscience.net

Qing Chen

Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Griffiths, C.L.; Olin, J.L. Triple negative breast cancer: A brief review of its characteristics and treatment options. J. Pharm. Pract., 2012, 25(3), 319-323. doi: 10.1177/0897190012442062 PMID: 22551559
  2. Zhang, Y.; Sun, Y.; Ding, L.; Shi, W.; Ding, K.; Zhu, Y. Long non-coding RNA LINC00467 correlates to poor prognosis and aggressiveness of breast cancer. Front. Oncol., 2021, 11, 643394. doi: 10.3389/fonc.2021.643394 PMID: 33996559
  3. Salomon, D.S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol., 1995, 19(3), 183-232. doi: 10.1016/1040-8428(94)00144-I PMID: 7612182
  4. Uhlman, D.L.; Nguyen, P.; Manivel, J.C.; Zhang, G.; Hagen, K.; Fraley, E.; Aeppli, D.; Niehans, G.A. Epidermal growth factor receptor and transforming growth factor alpha expression in papillary and nonpapillary renal cell carcinoma: Correlation with metastatic behavior and prognosis. Clin. Cancer Res., 1995, 1(8), 913-920. PMID: 9816062
  5. Sutton, T.A.; Fisher, C.J.; Molitoris, B.A. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int., 2002, 62(5), 1539-1549. doi: 10.1046/j.1523-1755.2002.00631.x PMID: 12371954
  6. Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7(3), 169-181. doi: 10.1038/nrc2088 PMID: 17318210
  7. Mehta, V.K. Radiotherapy and erlotinib combined: review of the preclinical and clinical evidence. Front. Oncol., 2012, 2, 31. doi: 10.3389/fonc.2012.00031 PMID: 22645717
  8. Kawczyk-Krupka, A.; Bugaj, A.M.; Latos, W.; Zaremba, K.; Wawrzyniec, K.; Sieroń, A. Photodynamic therapy in colorectal cancer treatment: The state of the art in clinical trials. Photodiagn. Photodyn. Ther., 2015, 12(3), 545-553. doi: 10.1016/j.pdpdt.2015.04.004 PMID: 25930668
  9. Mashayekhi, V.; Xenaki, K.T. van Bergen en Henegouwen, P.M.P.; Oliveira, S. Dual targeting of endothelial and cancer cells potentiates in vitro nanobody-targeted photodynamic therapy. Cancers, 2020, 12(10), 2732. doi: 10.3390/cancers12102732 PMID: 32977602
  10. Chen, C.; Yang, S.; Liu, Y.; Qiu, Y. Yao, J. Metal ions-bridged Jaggregation mediated nanoassembly composition for breast cancer phototherapy. Asian J. Pharma. Sci., 2022, 17(2), 230-240. doi: 10.1016/j.ajps.2022.01.003 PMID: 35582644
  11. Verebová, V.; Beneš, J.; Staničová, J. Biophysical characterization and anticancer activities of photosensitive phytoanthraquinones represented by hypericin and its model compounds. Molecules, 2020, 25(23), 5666. doi: 10.3390/molecules25235666 PMID: 33271809
  12. Patan, S. Vasculogenesis and angiogenesis. Cancer Treat. Res., 2004, 117, 3-32. doi: 10.1007/978-1-4419-8871-3_1 PMID: 15015550
  13. Mukherjee, B.; Mayer, D. Dihydrotestosterone interacts with EGFR/MAPK signalling and modulates EGFR levels in androgen receptor-positive LNCaP prostate cancer cells. Int. J. Oncol., 2008, 33(3), 623-629. PMID: 18695894
  14. Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget, 2016, 7(22), 33440-33450. doi: 10.18632/oncotarget.7961 PMID: 26967052
  15. Raymond, E.; Faivre, S.; Armand, J.P. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs, 2000, 60(1), 15-23. doi: 10.2165/00003495-200060001-00002 PMID: 11129168
  16. Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737. doi: 10.1038/s41416-019-0573-8 PMID: 31564718
  17. Wei, X.; Liu, L.; Guo, X.; Wang, Y.; Zhao, J.; Zhou, S. Light-activated ros-responsive nanoplatform codelivering apatinib and doxorubicin for enhanced chemo-photodynamic therapy of multidrug-resistant tumors. ACS Appl. Mater. Interfaces, 2018, 10(21), 17672-17684. doi: 10.1021/acsami.8b04163 PMID: 29737828
  18. Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8. doi: 10.1016/j.jphotobiol.2009.04.001 PMID: 19406659
  19. Ahmad, N.; Kalka, K.; Mukhtar, H. In vitro and in vivo inhibition of epidermal growth factor receptor-tyrosine kinase pathway by photodynamic therapy. Oncogene, 2001, 20(18), 2314-2317. doi: 10.1038/sj.onc.1204313 PMID: 11402326
  20. Koon, H.K.; Chan, P.S.; Wong, R.N.S.; Wu, Z.G.; Lung, M.L.; Chang, C.K.; Mak, N.K. Targeted inhibition of the EGFR pathways enhances Zn-BC-AM PDT-induced apoptosis in well-differentiated nasopharyngeal carcinoma cells. J. Cell. Biochem., 2009, 108(6), 1356-1363. doi: 10.1002/jcb.22366 PMID: 19816982
  21. Chung, P.S.; He, P.; Shin, J.I.; Hwang, H.J.; Lee, S.J.; Ahn, J.C. Photodynamic therapy with 9-hydroxypheophorbide α on AMC-HN-3 human head and neck cancer cells: Induction of apoptosis via photoactivation of mitochondria and endoplasmic reticulum. Cancer Biol. Ther., 2009, 8(14), 1343-1351. doi: 10.4161/cbt.8.14.8693 PMID: 19421004
  22. Edmonds, C.; Hagan, S.; Gallagher-Colombo, S.M.; Busch, T.M.; Cengel, K.A. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3. Cancer Biol. Ther., 2012, 13(14), 1463-1470. doi: 10.4161/cbt.22256 PMID: 22986230
  23. Dimitroff, C.J.; Klohs, W.; Sharma, A.; Pera, P.; Driscoll, D.; Veith, J.; Steinkampf, R.; Schroeder, M.; Klutchko, S.; Sumlin, A.; Henderson, B.; Dougherty, T.J.; Bernacki, R.J. Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy. Invest. New Drugs, 1999, 17(2), 121-135. doi: 10.1023/A:1006367032156 PMID: 10638483
  24. Decaussin, M.; Sartelet, H.; Robert, C.; Moro, D.; Claraz, C.; Brambilla, C.; Brambilla, E. Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): Correlation with angiogenesis and survival. J. Pathol., 1999, 188(4), 369-377. doi: 10.1002/(SICI)1096-9896(199908)188:4<369:AID-PATH381>3.0.CO;2-X PMID: 10440746

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023