QSAR Research of Novel Tetrandrine Derivatives against Human Hepatocellular Carcinoma


Citar

Texto integral

Resumo

Background: The new tetrandrine derivative is an anti-human liver cancer cell inhibitor which can be used to design and develop anti-human-liver-cancer drugs.

Objective: A quantitative structure-activity relationship (QSAR) model was established to predict the physical properties of new tetrandrine derivatives using their chemical structures.

Methods: The best descriptors were selected through CODESSA software to build a multiple linear regression model. Then, gene expression programming (GEP) was used to establish a nonlinear quantitative QSAR model with descriptors to predict the activity of a series of novel tetrandrine chemotherapy drugs. The best active compound 31 was subjected to molecular docking experiments through SYBYL software with a small fragment of the protein receptor (PDB ID:2J6M).

Results: Four descriptors were selected to build a multiple linear regression model with correlation coefficients R2, R2CV and S2 with the values of 0.8352, 0.7806 and 0.0119, respectively. The training and test sets with a correlation coefficient of 0.85 and 0.83 were obtained via an automatic problem-solving program (APS) using the four selected operators as parameters, with a mean error of 1.49 and 1.08. Compound 31 had a good docking ability with an overall score of 5.8892, a collision rate of -2.8004 and an extreme value of 0.9836.

Conclusion: The computer-constructed drug molecular model reveals the factors affecting the activity of human hepatocellular carcinoma cells, which provides directions and guidance for the development of highly effective anti-humanhepatocellular- carcinoma drugs in the future.

Sobre autores

Meng Wang

Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University

Email: info@benthamscience.net

Bin Qiu

Department of Thoracic Surgeryrsity, Affiliated Hospital of Weifang Medical University

Email: info@benthamscience.net

Wenhui Wang

Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University

Email: info@benthamscience.net

Xiang Li

, Weifang Medical University

Email: info@benthamscience.net

Huixia Huo

Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2018, 15(10), 599-616. doi: 10.1038/s41571-018-0073-4 PMID: 30061739
  2. Clark, T.; Maximin, S.; Meier, J.; Pokharel, S.; Bhargava, P. Hepatocellular carcinoma: Review of epidemiology, screening, imaging diagnosis, response assessment, and treatment. Curr. Probl. Diagn. Radiol., 2015, 44(6), 479-486. doi: 10.1067/j.cpradiol.2015.04.004 PMID: 25979220
  3. Liu, T.; Liu, X.; Li, W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget, 2016, 7(26), 40800-40815. doi: 10.18632/oncotarget.8315 PMID: 27027348
  4. Luan, F.; He, X.; Zeng, N. Tetrandrine: A review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J. Pharm. Pharmacol., 2020, 72(11), 1491-1512. doi: 10.1111/jphp.13339 PMID: 32696989
  5. Chen, Z.; Zhao, L.; Zhao, F.; Yang, G.; Wang, J. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway. Oncol. Lett., 2018, 15(5), 7433-7437. doi: 10.3892/ol.2018.8190 PMID: 29849794
  6. Wang, W.; Bu, B.; Xie, M.; Zhang, M.; Yu, Z.; Tao, D. Neural cell cycle dysregulation and central nervous system diseases. Prog. Neurobiol., 2009, 89(1), 1-17. doi: 10.1016/j.pneurobio.2009.01.007 PMID: 19619927
  7. Lei, R.R.; Hu, H.F.; Bai, F.; Liu, Y.; Wu, C.Z.; Huang, X.X.; Xie, L.P.; Hu, Y.J. Anti-proliferative and apoptotic effects of S1, a tetrandrine derivative, in human gastric cancer BGC-823 cells. Chin. J. Nat. Med., 2016, 14(7), 527-533. doi: 10.1016/S1875-5364(16)30062-0 PMID: 27507203
  8. Yu, V.W.L.; Ho, W.S. Tetrandrine inhibits hepatocellular carcinoma cell growth through the caspase pathway and G2/M phase. Oncol. Rep., 2013, 29(6), 2205-2210. doi: 10.3892/or.2013.2352 PMID: 23525490
  9. Kou, B.; Liu, W.; Xu, X.; Yang, Y.; Yi, Q.; Guo, F.; Li, J.; Zhou, J.; Kou, Q. Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells. Oncol. Rep., 2017, 38(5), 3137-3143. doi: 10.3892/or.2017.5988 PMID: 29048631
  10. Gong, K.; Chen, C.; Zhan, Y.; Chen, Y.; Huang, Z.; Li, W. Autophagy-related gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma. J. Biol. Chem., 2012, 287(42), 35576-35588. doi: 10.1074/jbc.M112.370585 PMID: 22927446
  11. Ong, S.K.L.; Shanmugam, M.K.; Fan, L. Focus on formononetin: Anticancer potential and molecular targets. Cancers, 2019, 11(5), 611. doi: 10.3390/cancers11050611
  12. Zhang, Z.; Liu, T.; Yu, M.; Li, K.; Li, W. The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. J. Exp. Clin. Cancer Res., 2018, 37(1), 7. doi: 10.1186/s13046-018-0678-6 PMID: 29334999
  13. Wu, J.M.; Chen, Y.; Chen, J.C.; Lin, T.Y.; Tseng, S.H. Tetrandrine induces apoptosis and growth suppression of colon cancer cells in mice. Cancer Lett., 2010, 287(2), 187-195. doi: 10.1016/j.canlet.2009.06.009 PMID: 19586712
  14. Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz'min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010. doi: 10.1021/jm4004285 PMID: 24351051
  15. Marzaro, G.; Chilin, A. QSAR and 3D-QSAR models in the field of tubulin inhibitors as anticancer agents. Curr. Top. Med. Chem., 2014, 14(20), 2253-2262. doi: 10.2174/1568026614666141130092853 PMID: 25434357
  16. Keyvanpour, M.R.; Shirzad, M.B. An analysis of QSAR research based on machine learning concepts. Curr. Drug Discov. Technol., 2021, 18(1), 17-30. doi: 10.2174/1570163817666200316104404 PMID: 32178612
  17. Lan, J.; Wang, N.; Huang, L.; Liu, Y.; Ma, X.; Lou, H.; Chen, C.; Feng, Y.; Pan, W. Design and synthesis of novel tetrandrine derivatives as potential anti-tumor agents against human hepatocellular carcinoma. Eur. J. Med. Chem., 2017, 127, 554-566. doi: 10.1016/j.ejmech.2017.01.008 PMID: 28109948
  18. 0, Hypercube, 1994.
  19. Stewart, M.O.P.A.C. 6.0, QCPE, No. 455, Quantum Chemistry rogram Exchange; Indiana University: Bloomington, IN, 1989.
  20. Atritzky, A.R.; Lobanov, V.S.; Karelson, M.; Murugan, R.; Grendze, M.P.; Toomey, J.E. Rev. Roum. Chim., 1996, 41, 851-868.
  21. Chen, L.P.; Chen, W.H.; Shi, N.; Yang, H.; Xu, W. Wuli Huaxue Xuebao, 2012, 12, 2790-2796.
  22. Wei, L.X.; Hua, C.Z. Application of a novel GEP algorithm in evolutionary modeling and forecasting. Comput. Appl., 2005, 25, 2783-2786.
  23. Holland, J.H. Genetic algorithms. Sci. Am., 1992, 267(1), 66-72. doi: 10.1038/scientificamerican0792-66
  24. Tai, Y.; Lian, Z.; Xia, H.; Zhai, H. QSAR study of novel 1, 8-naphthimide derivatives targeting nuclear DNA. Anticancer. Agents Med. Chem., 2023, 23(6), 726-733. doi: 10.2174/1871520622666220822010953 PMID: 36017845
  25. Teodorescu, L.; Sherwood, D. High energy physics event selection with gene expression programming. Comput. Phys. Commun., 2008, 178(6), 409-419. doi: 10.1016/j.cpc.2007.10.003
  26. Kaydani, H.; Mohebbi, A.; Eftekhari, M. Permeability estimation in heterogeneous oil reservoirs by multi-gene genetic programming algorithm. J. Petrol. Sci. Eng., 2014, 123, 201-206. doi: 10.1016/j.petrol.2014.07.035
  27. Zhang, L.; Chen, J.; Gao, C.; Liu, C.; Xu, K. An efficient model for auxiliary diagnosis of hepatocellular carcinoma based on gene expression programming. Med. Biol. Eng. Comput., 2018, 56(10), 1771-1779. doi: 10.1007/s11517-018-1811-6 PMID: 29546505
  28. Zhong, J.; Feng, L.; Ong, Y.S. Gene expression programming: A survey. IEEE Comput. Intell. Mag., 2017, 12(3), 54-72. doi: 10.1109/MCI.2017.2708618
  29. Ren, W.; Kong, D.X. Comp. Appl. Chem., 2009, 11, 1455-1458.
  30. Franke, R. Theoretical compound design methods. In: Pharmacochemistry library, 1985, 239-55.
  31. Clementi, E. Supercomputing and super computers: For science and engineering in general and for chemistry and biosciences in particular. In: Spectroscopy of Inorganic Bioactivators; NATO ASI Series, 1980; pp. 1-112.
  32. Kirpichenok, M.A.; Zefirov, N.S. J. Org. Chem., 1987, 23, 673-703.
  33. Ojha, P.; Roy, K. Exploration of important sites of antimalarial Endochins for optimum structural modification using group-based QSAR (G-QSAR) modeling. Curr. Computeraided Drug Des., 2013, 9(3), 336-349. doi: 10.2174/15734099113099990019 PMID: 24010932

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023