Impact of Ferroptosis Inducers on Chronic Radiation-exposed Survivor Glioblastoma Cells
- Autores: Erdem İ.1
-
Afiliações:
- Brain Tumor Research Laboratory, Koç University School of Medicine
- Edição: Volume 23, Nº 19 (2023)
- Páginas: 2154-2160
- Seção: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694384
- DOI: https://doi.org/10.2174/1871520623666230825110346
- ID: 694384
Citar
Texto integral
Resumo
Introduction:The median survival of patients diagnosed with glioblastoma is very poor, despite efforts to improve the therapeutic effects of surgery, followed by treatment with temozolomide (TMZ) and ionizing radiation (IR). The utilization of TMZ or IR survivor cell models has enhanced the understanding of glioblastoma biology and the development of novel therapeutic strategies. In this present study, naïve U373 and clinically relevant U373 IRsurvivor (Surv) cells were used, as the IR-Surv cell model mimics the chronic long-term exposure to standardized radiotherapy for patients with glioblastoma in the clinic. As the role of ferroptosis in the IR survivor cell model has not previously been reported, we aimed to clarify its involvement in the clinically relevant IR-Surv glioblastoma model
Methods: Transcriptomic alterations of ferroptosis-related genes were studied on naïve U373 and IR-Surv cell populations. To determine the effects of glutathione peroxidase inhibitors, ferroptosis-inducing agent 56 (FIN56) and Ras synthetic lethal 3 (RSL3), on the cells, several properties were assessed, including colony formation, cell viability and lipid peroxidation.
Results: Results from the transcriptomic analysis identified ferroptosis as a critical mechanism after radiation exposure in glioblastoma. Our findings also identified the role of ferroptosis inducers (FINs) in IR-survivor cells and suggested using FINs to treat glioblastoma.
Conclusion: FINs serve an important role in radioresistant cells; thus, the results of the present study may contribute to improving survival in patients with glioblastoma.
Palavras-chave
Sobre autores
İlknur Erdem
Brain Tumor Research Laboratory, Koç University School of Medicine
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030. doi: 10.1002/cncr.33587 PMID: 34086348
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 20152019. Neuro-oncol., 2022, 24(Suppl. 5), v1-v95. doi: 10.1093/neuonc/noac202 PMID: 36196752
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996. doi: 10.1056/NEJMoa043330 PMID: 15758009
- Gu, J.; Mu, N.; Jia, B.; Guo, Q.; Pan, L.; Zhu, M.; Zhang, W.; Zhang, K.; Li, W.; Li, M.; Wei, L.; Xue, X.; Zhang, Y.; Zhang, W. Targeting radiation-tolerant persister cells as a strategy for inhibiting radioresistance and recurrence in glioblastoma. Neuro-oncol., 2022, 24(7), 1056-1070. doi: 10.1093/neuonc/noab288 PMID: 34905060
- Xu, Y.Y.; Gao, P.; Sun, Y.; Duan, Y.R. Development of targeted therapies in treatment of glioblastoma. Cancer Biol. Med., 2015, 12(3), 223-237. PMID: 26487967
- Sulman, E.P.; Ismaila, N.; Armstrong, T.S.; Tsien, C.; Batchelor, T.T.; Cloughesy, T.; Galanis, E.; Gilbert, M.; Gondi, V.; Lovely, M.; Mehta, M.; Mumber, M.P.; Sloan, A.; Chang, S.M. Radiation therapy for glioblastoma: American society of clinical oncology clinical practice guideline endorsement of the american society for radiation oncology guideline. J. Clin. Oncol., 2017, 35(3), 361-369. doi: 10.1200/JCO.2016.70.7562 PMID: 27893327
- Prasanna, P.G.S.; Stone, H.B.; Wong, R.S.; Capala, J.; Bernhard, E.J.; Vikram, B.; Coleman, C.N. Normal tissue protection for improving radiotherapy: Where are the Gaps? Transl. Cancer Res., 2012, 1(1), 35-48. PMID: 22866245
- Lauber, K.; Ernst, A.; Orth, M.; Herrmann, M.; Belka, C. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front. Oncol., 2012, 2, 116. doi: 10.3389/fonc.2012.00116 PMID: 22973558
- Hellevik, T.; Martinez-Zubiaurre, I. Radiotherapy and the tumor stroma: The importance of dose and fractionation. Front. Oncol., 2014, 4, 1-12. doi: 10.3389/fonc.2014.00001 PMID: 24478982
- Adjemian, S.; Oltean, T.; Martens, S.; Wiernicki, B.; Goossens, V.; Vanden Berghe, T.; Cappe, B.; Ladik, M.; Riquet, F.B.; Heyndrickx, L.; Bridelance, J.; Vuylsteke, M.; Vandecasteele, K.; Vandenabeele, P. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis., 2020, 11(11), 1003. doi: 10.1038/s41419-020-03209-y PMID: 33230108
- Shadyro, O.I.; Yurkova, I.L.; Kisel, M.A. Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int. J. Radiat. Biol., 2002, 78(3), 211-217. doi: 10.1080/09553000110104065 PMID: 11869476
- Lang, X.; Green, M.D.; Wang, W.; Yu, J.; Choi, J.E.; Jiang, L.; Liao, P.; Zhou, J.; Zhang, Q.; Dow, A.; Saripalli, A.L.; Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Stone, E.M.; Georgiou, G.; Cieslik, M.; Wahl, D.R.; Morgan, M.A.; Chinnaiyan, A.M.; Lawrence, T.S.; Zou, W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov., 2019, 9(12), 1673-1685. doi: 10.1158/2159-8290.CD-19-0338 PMID: 31554642
- Ye, L.F.; Chaudhary, K.R.; Zandkarimi, F.; Harken, A.D.; Kinslow, C.J.; Upadhyayula, P.S.; Dovas, A.; Higgins, D.M.; Tan, H.; Zhang, Y.; Buonanno, M.; Wang, T.J.C.; Hei, T.K.; Bruce, J.N.; Canoll, P.D.; Cheng, S.K.; Stockwell, B.R. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol., 2020, 15(2), 469-484. doi: 10.1021/acschembio.9b00939 PMID: 31899616
- Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162. doi: 10.1038/s41422-019-0263-3 PMID: 31949285
- Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296. doi: 10.1016/S1535-6108(03)00050-3 PMID: 12676586
- Yagoda, N.; von Rechenberg, M.; Zaganjor, E.; Bauer, A.J.; Yang, W.S.; Fridman, D.J.; Wolpaw, A.J.; Smukste, I.; Peltier, J.M.; Boniface, J.J.; Smith, R.; Lessnick, S.L.; Sahasrabudhe, S.; Stockwell, B.R. RASRAFMEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 2007, 447(7146), 865-869. doi: 10.1038/nature05859 PMID: 17568748
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
- Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E4966-E4975. doi: 10.1073/pnas.1603244113 PMID: 27506793
- Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90. doi: 10.1038/nchembio.2238 PMID: 27842066
- Shen, Z.; Song, J.; Yung, B.C.; Zhou, Z.; Wu, A.; Chen, X. Emerging strategies of cancer therapy based on ferroptosis. Adv. Mater., 2018, 30(12), 1704007. doi: 10.1002/adma.201704007 PMID: 29356212
- Gan, B. DUBbing ferroptosis in cancer cells. Cancer Res., 2019, 79(8), 1749-1750. doi: 10.1158/0008-5472.CAN-19-0487 PMID: 30987975
- Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater., 2019, 31(51), 1904197. doi: 10.1002/adma.201904197 PMID: 31595562
- Stockwell, B.R.; Jiang, X. A physiological function for ferroptosis in tumor suppression by the immune system. Cell Metab., 2019, 30(1), 14-15. doi: 10.1016/j.cmet.2019.06.012 PMID: 31269423
- Junttila, M.R.; Evan, G.I. p53 a Jack of all trades but master of none. Nat. Rev. Cancer, 2009, 9(11), 821-829. doi: 10.1038/nrc2728 PMID: 19776747
- Liu, H.; Schreiber, S.L.; Stockwell, B.R. Targeting dependency on the GPX4 lipid peroxide repair pathway for cancer therapy. Biochem., 2018, 57(14), 2059-2060. doi: 10.1021/acs.biochem.8b00307 PMID: 29584411
- Chen, L.; Li, X.; Liu, L.; Yu, B.; Xue, Y.; Liu, Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol. Rep., 2015, 33(3), 1465-1474. doi: 10.3892/or.2015.3712 PMID: 25585997
- Sleire, L.; Skeie, B.S.; Netland, I.A.; Førde, H.E.; Dodoo, E.; Selheim, F.; Leiss, L.; Heggdal, J.I.; Pedersen, P-H.; Wang, J.; Enger, P.Ø. Drug repurposing: Sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc−, leading to glutathione depletion. Oncogene, 2015, 34(49), 5951-5959. doi: 10.1038/onc.2015.60 PMID: 25798841
- Mitre, A.O.; Florian, A.I.; Buruiana, A.; Boer, A.; Moldovan, I.; Soritau, O.; Florian, S.I.; Susman, S. Ferroptosis involvement in glioblastoma treatment. Med., 2022, 58(2), 319. doi: 10.3390/medicina58020319 PMID: 35208642
- Elgendy, S.M.; Alyammahi, S.K.; Alhamad, D.W.; Abdin, S.M.; Omar, H.A. Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Crit. Rev. Oncol. Hematol., 2020, 155, 103095. doi: 10.1016/j.critrevonc.2020.103095 PMID: 32927333
- Pinarbasi-Degirmenci, N.; Sur-Erdem, I.; Akcay, V.; Bolukbasi, Y.; Selek, U.; Solaroglu, I.; Bagci-Onder, T. Chronically radiation-exposed survivor glioblastoma cells display poor response to chk1 inhibition under hypoxia. Int. J. Mol. Sci., 2022, 23(13), 7051. doi: 10.3390/ijms23137051 PMID: 35806055
- Sur Erdem, İ. Investigation of the effect of TRAIL-linked gold nanoparticles on TRAIL resistance in glioblastoma. Appl. Sci. J., 2022, 38(2), 416-425.
- Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol., 2016, 26(3), 165-176. doi: 10.1016/j.tcb.2015.10.014 PMID: 26653790
- Gomez-Roman, N.; Stevenson, K.; Gilmour, L.; Hamilton, G.; Chalmers, A.J. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro-oncol., 2017, 19(2), 229-241. PMID: 27576873
- Liu, H.; Hu, H.; Li, G.; Zhang, Y.; Wu, F.; Liu, X.; Wang, K.; Zhang, C.; Jiang, T. Ferroptosis-related gene signature predicts glioma cell death and glioma patient progression. Front. Cell Dev. Biol., 2020, 8, 538. doi: 10.3389/fcell.2020.00538 PMID: 32733879
- Zhuo, S.; Chen, Z.; Yang, Y.; Zhang, J.; Tang, J.; Yang, K. Clinical and biological significances of a ferroptosis-related gene signature in glioma. Front. Oncol., 2020, 10, 590861. doi: 10.3389/fonc.2020.590861 PMID: 33330074
- Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307. doi: 10.1038/cddis.2016.208 PMID: 27441659
- Feng, L.; Zhao, K.; Sun, L.; Yin, X.; Zhang, J.; Liu, C.; Li, B. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J. Transl. Med., 2021, 19(1), 367. doi: 10.1186/s12967-021-03042-7 PMID: 34446045
- Zhuo, S.; He, G.; Chen, T.; Li, X.; Liang, Y.; Wu, W.; Weng, L.; Feng, J.; Gao, Z.; Yang, K. Emerging role of ferroptosis in glioblastoma: Therapeutic opportunities and challenges. Front. Mol. Biosci., 2022, 9, 974156. doi: 10.3389/fmolb.2022.974156 PMID: 36060242
- Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34. doi: 10.1186/s13045-019-0720-y PMID: 30925886
- Ferrada, L.; Barahona, M.J.; Salazar, K.; Godoy, A.S.; Vera, M.; Nualart, F. Pharmacological targets for the induction of ferroptosis: Focus on neuroblastoma and glioblastoma. Front. Oncol., 2022, 12, 858480. doi: 10.3389/fonc.2022.858480 PMID: 35898880
- de Souza, I.; Monteiro, L.K.S.; Guedes, C.B.; Silva, M.M.; Andrade-Tomaz, M.; Contieri, B.; Latancia, M.T.; Mendes, D.; Porchia, B.F.M.M.; Lazarini, M.; Gomes, L.R.; Rocha, C.R.R. High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation. Cell Death Dis., 2022, 13(7), 591. doi: 10.1038/s41419-022-05044-9 PMID: 35803910
- Li, S.; He, Y.; Chen, K.; Sun, J.; Zhang, L.; He, Y.; Yu, H.; Li, Q. RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid. Med. Cell. Longev., 2021, 2021, 1-10. doi: 10.1155/2021/2915019
- Wang, X.; Lu, S.; He, C.; Wang, C.; Wang, L.; Piao, M.; Chi, G.; Luo, Y.; Ge, P. RSL3 induced autophagic death in glioma cells via causing glycolysis dysfunction. Biochem. Biophys. Res. Commun., 2019, 518(3), 590-597. doi: 10.1016/j.bbrc.2019.08.096 PMID: 31445705
- Zhang, X.; Guo, Y.; Li, H.; Han, L. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma. J. Cancer, 2021, 12(22), 6610-6619. doi: 10.7150/jca.58500 PMID: 34659551
- Lei, G.; Mao, C.; Yan, Y.; Zhuang, L.; Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell, 2021, 12(11), 836-857. doi: 10.1007/s13238-021-00841-y PMID: 33891303
Arquivos suplementares
