Impact of Ferroptosis Inducers on Chronic Radiation-exposed Survivor Glioblastoma Cells


Citar

Texto integral

Resumo

Introduction:The median survival of patients diagnosed with glioblastoma is very poor, despite efforts to improve the therapeutic effects of surgery, followed by treatment with temozolomide (TMZ) and ionizing radiation (IR). The utilization of TMZ or IR survivor cell models has enhanced the understanding of glioblastoma biology and the development of novel therapeutic strategies. In this present study, naïve U373 and clinically relevant U373 IRsurvivor (Surv) cells were used, as the IR-Surv cell model mimics the chronic long-term exposure to standardized radiotherapy for patients with glioblastoma in the clinic. As the role of ferroptosis in the IR survivor cell model has not previously been reported, we aimed to clarify its involvement in the clinically relevant IR-Surv glioblastoma model

Methods: Transcriptomic alterations of ferroptosis-related genes were studied on naïve U373 and IR-Surv cell populations. To determine the effects of glutathione peroxidase inhibitors, ferroptosis-inducing agent 56 (FIN56) and Ras synthetic lethal 3 (RSL3), on the cells, several properties were assessed, including colony formation, cell viability and lipid peroxidation.

Results: Results from the transcriptomic analysis identified ferroptosis as a critical mechanism after radiation exposure in glioblastoma. Our findings also identified the role of ferroptosis inducers (FINs) in IR-survivor cells and suggested using FINs to treat glioblastoma.

Conclusion: FINs serve an important role in radioresistant cells; thus, the results of the present study may contribute to improving survival in patients with glioblastoma.

Sobre autores

İlknur Erdem

Brain Tumor Research Laboratory, Koç University School of Medicine

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030. doi: 10.1002/cncr.33587 PMID: 34086348
  2. Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro-oncol., 2022, 24(Suppl. 5), v1-v95. doi: 10.1093/neuonc/noac202 PMID: 36196752
  3. Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996. doi: 10.1056/NEJMoa043330 PMID: 15758009
  4. Gu, J.; Mu, N.; Jia, B.; Guo, Q.; Pan, L.; Zhu, M.; Zhang, W.; Zhang, K.; Li, W.; Li, M.; Wei, L.; Xue, X.; Zhang, Y.; Zhang, W. Targeting radiation-tolerant persister cells as a strategy for inhibiting radioresistance and recurrence in glioblastoma. Neuro-oncol., 2022, 24(7), 1056-1070. doi: 10.1093/neuonc/noab288 PMID: 34905060
  5. Xu, Y.Y.; Gao, P.; Sun, Y.; Duan, Y.R. Development of targeted therapies in treatment of glioblastoma. Cancer Biol. Med., 2015, 12(3), 223-237. PMID: 26487967
  6. Sulman, E.P.; Ismaila, N.; Armstrong, T.S.; Tsien, C.; Batchelor, T.T.; Cloughesy, T.; Galanis, E.; Gilbert, M.; Gondi, V.; Lovely, M.; Mehta, M.; Mumber, M.P.; Sloan, A.; Chang, S.M. Radiation therapy for glioblastoma: American society of clinical oncology clinical practice guideline endorsement of the american society for radiation oncology guideline. J. Clin. Oncol., 2017, 35(3), 361-369. doi: 10.1200/JCO.2016.70.7562 PMID: 27893327
  7. Prasanna, P.G.S.; Stone, H.B.; Wong, R.S.; Capala, J.; Bernhard, E.J.; Vikram, B.; Coleman, C.N. Normal tissue protection for improving radiotherapy: Where are the Gaps? Transl. Cancer Res., 2012, 1(1), 35-48. PMID: 22866245
  8. Lauber, K.; Ernst, A.; Orth, M.; Herrmann, M.; Belka, C. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front. Oncol., 2012, 2, 116. doi: 10.3389/fonc.2012.00116 PMID: 22973558
  9. Hellevik, T.; Martinez-Zubiaurre, I. Radiotherapy and the tumor stroma: The importance of dose and fractionation. Front. Oncol., 2014, 4, 1-12. doi: 10.3389/fonc.2014.00001 PMID: 24478982
  10. Adjemian, S.; Oltean, T.; Martens, S.; Wiernicki, B.; Goossens, V.; Vanden Berghe, T.; Cappe, B.; Ladik, M.; Riquet, F.B.; Heyndrickx, L.; Bridelance, J.; Vuylsteke, M.; Vandecasteele, K.; Vandenabeele, P. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis., 2020, 11(11), 1003. doi: 10.1038/s41419-020-03209-y PMID: 33230108
  11. Shadyro, O.I.; Yurkova, I.L.; Kisel, M.A. Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int. J. Radiat. Biol., 2002, 78(3), 211-217. doi: 10.1080/09553000110104065 PMID: 11869476
  12. Lang, X.; Green, M.D.; Wang, W.; Yu, J.; Choi, J.E.; Jiang, L.; Liao, P.; Zhou, J.; Zhang, Q.; Dow, A.; Saripalli, A.L.; Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Stone, E.M.; Georgiou, G.; Cieslik, M.; Wahl, D.R.; Morgan, M.A.; Chinnaiyan, A.M.; Lawrence, T.S.; Zou, W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov., 2019, 9(12), 1673-1685. doi: 10.1158/2159-8290.CD-19-0338 PMID: 31554642
  13. Ye, L.F.; Chaudhary, K.R.; Zandkarimi, F.; Harken, A.D.; Kinslow, C.J.; Upadhyayula, P.S.; Dovas, A.; Higgins, D.M.; Tan, H.; Zhang, Y.; Buonanno, M.; Wang, T.J.C.; Hei, T.K.; Bruce, J.N.; Canoll, P.D.; Cheng, S.K.; Stockwell, B.R. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol., 2020, 15(2), 469-484. doi: 10.1021/acschembio.9b00939 PMID: 31899616
  14. Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162. doi: 10.1038/s41422-019-0263-3 PMID: 31949285
  15. Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296. doi: 10.1016/S1535-6108(03)00050-3 PMID: 12676586
  16. Yagoda, N.; von Rechenberg, M.; Zaganjor, E.; Bauer, A.J.; Yang, W.S.; Fridman, D.J.; Wolpaw, A.J.; Smukste, I.; Peltier, J.M.; Boniface, J.J.; Smith, R.; Lessnick, S.L.; Sahasrabudhe, S.; Stockwell, B.R. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 2007, 447(7146), 865-869. doi: 10.1038/nature05859 PMID: 17568748
  17. Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
  18. Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E4966-E4975. doi: 10.1073/pnas.1603244113 PMID: 27506793
  19. Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90. doi: 10.1038/nchembio.2238 PMID: 27842066
  20. Shen, Z.; Song, J.; Yung, B.C.; Zhou, Z.; Wu, A.; Chen, X. Emerging strategies of cancer therapy based on ferroptosis. Adv. Mater., 2018, 30(12), 1704007. doi: 10.1002/adma.201704007 PMID: 29356212
  21. Gan, B. DUBbing ferroptosis in cancer cells. Cancer Res., 2019, 79(8), 1749-1750. doi: 10.1158/0008-5472.CAN-19-0487 PMID: 30987975
  22. Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater., 2019, 31(51), 1904197. doi: 10.1002/adma.201904197 PMID: 31595562
  23. Stockwell, B.R.; Jiang, X. A physiological function for ferroptosis in tumor suppression by the immune system. Cell Metab., 2019, 30(1), 14-15. doi: 10.1016/j.cmet.2019.06.012 PMID: 31269423
  24. Junttila, M.R.; Evan, G.I. p53 — a Jack of all trades but master of none. Nat. Rev. Cancer, 2009, 9(11), 821-829. doi: 10.1038/nrc2728 PMID: 19776747
  25. Liu, H.; Schreiber, S.L.; Stockwell, B.R. Targeting dependency on the GPX4 lipid peroxide repair pathway for cancer therapy. Biochem., 2018, 57(14), 2059-2060. doi: 10.1021/acs.biochem.8b00307 PMID: 29584411
  26. Chen, L.; Li, X.; Liu, L.; Yu, B.; Xue, Y.; Liu, Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol. Rep., 2015, 33(3), 1465-1474. doi: 10.3892/or.2015.3712 PMID: 25585997
  27. Sleire, L.; Skeie, B.S.; Netland, I.A.; Førde, H.E.; Dodoo, E.; Selheim, F.; Leiss, L.; Heggdal, J.I.; Pedersen, P-H.; Wang, J.; Enger, P.Ø. Drug repurposing: Sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc−, leading to glutathione depletion. Oncogene, 2015, 34(49), 5951-5959. doi: 10.1038/onc.2015.60 PMID: 25798841
  28. Mitre, A.O.; Florian, A.I.; Buruiana, A.; Boer, A.; Moldovan, I.; Soritau, O.; Florian, S.I.; Susman, S. Ferroptosis involvement in glioblastoma treatment. Med., 2022, 58(2), 319. doi: 10.3390/medicina58020319 PMID: 35208642
  29. Elgendy, S.M.; Alyammahi, S.K.; Alhamad, D.W.; Abdin, S.M.; Omar, H.A. Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Crit. Rev. Oncol. Hematol., 2020, 155, 103095. doi: 10.1016/j.critrevonc.2020.103095 PMID: 32927333
  30. Pinarbasi-Degirmenci, N.; Sur-Erdem, I.; Akcay, V.; Bolukbasi, Y.; Selek, U.; Solaroglu, I.; Bagci-Onder, T. Chronically radiation-exposed survivor glioblastoma cells display poor response to chk1 inhibition under hypoxia. Int. J. Mol. Sci., 2022, 23(13), 7051. doi: 10.3390/ijms23137051 PMID: 35806055
  31. Sur Erdem, İ. Investigation of the effect of TRAIL-linked gold nanoparticles on TRAIL resistance in glioblastoma. Appl. Sci. J., 2022, 38(2), 416-425.
  32. Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol., 2016, 26(3), 165-176. doi: 10.1016/j.tcb.2015.10.014 PMID: 26653790
  33. Gomez-Roman, N.; Stevenson, K.; Gilmour, L.; Hamilton, G.; Chalmers, A.J. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro-oncol., 2017, 19(2), 229-241. PMID: 27576873
  34. Liu, H.; Hu, H.; Li, G.; Zhang, Y.; Wu, F.; Liu, X.; Wang, K.; Zhang, C.; Jiang, T. Ferroptosis-related gene signature predicts glioma cell death and glioma patient progression. Front. Cell Dev. Biol., 2020, 8, 538. doi: 10.3389/fcell.2020.00538 PMID: 32733879
  35. Zhuo, S.; Chen, Z.; Yang, Y.; Zhang, J.; Tang, J.; Yang, K. Clinical and biological significances of a ferroptosis-related gene signature in glioma. Front. Oncol., 2020, 10, 590861. doi: 10.3389/fonc.2020.590861 PMID: 33330074
  36. Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307. doi: 10.1038/cddis.2016.208 PMID: 27441659
  37. Feng, L.; Zhao, K.; Sun, L.; Yin, X.; Zhang, J.; Liu, C.; Li, B. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J. Transl. Med., 2021, 19(1), 367. doi: 10.1186/s12967-021-03042-7 PMID: 34446045
  38. Zhuo, S.; He, G.; Chen, T.; Li, X.; Liang, Y.; Wu, W.; Weng, L.; Feng, J.; Gao, Z.; Yang, K. Emerging role of ferroptosis in glioblastoma: Therapeutic opportunities and challenges. Front. Mol. Biosci., 2022, 9, 974156. doi: 10.3389/fmolb.2022.974156 PMID: 36060242
  39. Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34. doi: 10.1186/s13045-019-0720-y PMID: 30925886
  40. Ferrada, L.; Barahona, M.J.; Salazar, K.; Godoy, A.S.; Vera, M.; Nualart, F. Pharmacological targets for the induction of ferroptosis: Focus on neuroblastoma and glioblastoma. Front. Oncol., 2022, 12, 858480. doi: 10.3389/fonc.2022.858480 PMID: 35898880
  41. de Souza, I.; Monteiro, L.K.S.; Guedes, C.B.; Silva, M.M.; Andrade-Tomaz, M.; Contieri, B.; Latancia, M.T.; Mendes, D.; Porchia, B.F.M.M.; Lazarini, M.; Gomes, L.R.; Rocha, C.R.R. High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation. Cell Death Dis., 2022, 13(7), 591. doi: 10.1038/s41419-022-05044-9 PMID: 35803910
  42. Li, S.; He, Y.; Chen, K.; Sun, J.; Zhang, L.; He, Y.; Yu, H.; Li, Q. RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid. Med. Cell. Longev., 2021, 2021, 1-10. doi: 10.1155/2021/2915019
  43. Wang, X.; Lu, S.; He, C.; Wang, C.; Wang, L.; Piao, M.; Chi, G.; Luo, Y.; Ge, P. RSL3 induced autophagic death in glioma cells via causing glycolysis dysfunction. Biochem. Biophys. Res. Commun., 2019, 518(3), 590-597. doi: 10.1016/j.bbrc.2019.08.096 PMID: 31445705
  44. Zhang, X.; Guo, Y.; Li, H.; Han, L. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma. J. Cancer, 2021, 12(22), 6610-6619. doi: 10.7150/jca.58500 PMID: 34659551
  45. Lei, G.; Mao, C.; Yan, Y.; Zhuang, L.; Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell, 2021, 12(11), 836-857. doi: 10.1007/s13238-021-00841-y PMID: 33891303

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023