A Review on the Use of Gold Nanoparticles in Cancer Treatment


Citar

Texto integral

Resumo

According to a 2020 WHO study, cancer is responsible for one in every six fatalities. One in four patients die due to side effects and intolerance to chemotherapy, making it a leading cause of patient death. Compared to traditional tumor therapy, emerging treatment methods, including immunotherapy, gene therapy, photothermal therapy, and photodynamic therapy, have proven to be more effective. The aim of this review is to highlight the role of gold nanoparticles in advanced cancer treatment. A systematic and extensive literature review was conducted using the Web of Science, PubMed, EMBASE, Google Scholar, NCBI, and various websites. Highly relevant literature from 141 references was chosen for inclusion in this review. Recently, the synergistic benefits of nano therapy and cancer immunotherapy have been shown, which could allow earlier diagnosis, more focused cancer treatment, and improved disease control. Compared to other nanoparticles, the physical and optical characteristics of gold nanoparticles appear to have significantly greater effects on the target. It has a crucial role in acting as a drug carrier, biomarker, anti-angiogenesis agent, diagnostic agent, radiosensitizer, cancer immunotherapy, photodynamic therapy, and photothermal therapy. Gold nanoparticle-based cancer treatments can greatly reduce current drug and chemotherapy dosages.

Sobre autores

Razia Sultana

Department of Zoology, SKM Govt College

Email: info@benthamscience.net

Dhananjay Yadav

Department of Life Sciences, Yeungnam University

Email: info@benthamscience.net

Nidhi Puranik

Department of Biochemistry & Genetics, Barkatullah University

Email: info@benthamscience.net

Vishal Chavda

Department of Pathology, Stanford School of Medicine, Stanford University Medical Center

Email: info@benthamscience.net

Jeongyeon Kim

, Korea Brain Research Institute (KBRI)

Autor responsável pela correspondência
Email: info@benthamscience.net

Minseok Song

Department of Life Sciences, Yeungnam University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32. doi: 10.2147/NSA.S3788 PMID: 24198458
  2. Cancer Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  4. Varghese, C. Cancer prevention and control in India. In: National cancer registry programme, fifty years of cancer control in India,; , 2001, pp. 48-59.
  5. Mayor, S. NHS should bring in measures to reduce its carbon footprint, BMA says. BMJ, 2008, 2008336.
  6. Ni Chleirigh, R.; Gray, S.; Mitchell, C.C. Management of oncological emergencies on the acute take. Br. J. Hosp. Med. , 2018, 79(7), 384-388. doi: 10.12968/hmed.2018.79.7.384 PMID: 29995539
  7. Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol., 2018, 15(2), 81-94. doi: 10.1038/nrclinonc.2017.166 PMID: 29115304
  8. Liu, Y.; Wu, W.; Wang, Y.; Han, S.; Yuan, Y.; Huang, J.; Shuai, X.; Zhao, P. Correction: Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater. Sci., 2021, 9(20), 6966-6969. doi: 10.1039/D1BM90082J
  9. Liu, Y.; Meng, X.; Bu, W. Upconversion-based photodynamic cancer therapy. Coord. Chem. Rev., 2019, 379, 82-98. doi: 10.1016/j.ccr.2017.09.006
  10. Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine , 2012, 8(2), 147-166. doi: 10.1016/j.nano.2011.05.016 PMID: 21703993
  11. Yadav, D.; Kwak, M.; Chauhan, P.S.; Puranik, N.; Lee, P.C.; Jin, J-O. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin. Cancer Biol., 2022, 86(Pt 2), 909-922.
  12. Fogli, S.; Montis, C.; Paccosi, S.; Silvano, A.; Michelucci, E.; Berti, D.; Bosi, A.; Parenti, A.; Romagnoli, P. Inorganic nanoparticles as potential regulators of immune response in dendritic cells. Nanomedicine , 2017, 12(14), 1647-1660. doi: 10.2217/nnm-2017-0061 PMID: 28635380
  13. Joga, S.; Koyyala, V. Nanotechnology in oncology. Indian J. Med. Paediatr. Oncol.,, 2021, 42, 093-095. doi: 10.1055/s-0041-1729727
  14. Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
  15. Jha, S.; Trivedi, V. Manikya Bhasma is a nanomedicine to affect cancer cell viability through induction of apoptosis. J. Ayurveda Integr. Med., 2021, 12(2), 302-311. doi: 10.1016/j.jaim.2020.11.001 PMID: 33358658
  16. Sharma, C.P.; Paul, W. Blood compatibility studies of Swarna bhasma (gold bhasma), an Ayurvedic drug. Int. J. Ayurveda Res., 2011, 2(1), 14-22. doi: 10.4103/0974-7788.83183 PMID: 21897638
  17. Singh, R.; Goel, S.; Bourgeade, P.; Aleya, L.; Tewari, D. Ayurveda Rasayana as antivirals and immunomodulators: Potential applications in COVID-19. Environ. Sci. Pollut. Res. Int., 2021, 28(40), 55925-55951. doi: 10.1007/s11356-021-16280-5 PMID: 34491498
  18. Carone, A.; Emilsson, S.; Mariani, P.; Désert, A.; Parola, S. Gold nanoparticle shape dependence of colloidal stability domains. Nanoscale Adv., 2023, 5(7), 2017-2026. doi: 10.1039/D2NA00809B PMID: 36998666
  19. Jin, J.O.; Yadav, D.; Madhwani, K.; Puranik, N.; Chavda, V.; Song, M. Seaweeds in the oncology arena: Anti-cancer potential of fucoidan as a drug—a review. Molecules, 2022, 27(18), 6032. doi: 10.3390/molecules27186032 PMID: 36144768
  20. Jain, S.; Hirst, D.G.; O'Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113. doi: 10.1259/bjr/59448833 PMID: 22010024
  21. Kesharwani, P.; Ma, R.; Sang, L.; Fatima, M.; Sheikh, A.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.S.; Zhou, Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer, 2023, 22(1), 98. doi: 10.1186/s12943-023-01798-8 PMID: 37344887
  22. Ediriwickrema, A.; Saltzman, W.M. Nanotherapy for Cancer: Targeting and multifunctionality in the future of cancer therapies. ACS Biomater. Sci. Eng., 2015, 1(2), 64-78. doi: 10.1021/ab500084g PMID: 25984571
  23. Vo-Dinh, T.; Liu, Y.; Crawford, B.M.; Wang, H.N.; Yuan, H.; Register, J.K.; Khoury, C.G. Shining gold nanostars: From cancer diagnostics to photothermal treatment and immunotherapy. J Immunol Sci., 2018, 2(1), 1-8.
  24. Deng, G.; Zha, H.; Luo, H.; Zhou, Y. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front. Bioeng. Biotechnol., 2023, 11, 1118546. doi: 10.3389/fbioe.2023.1118546 PMID: 36741760
  25. Yu, Z.; Gao, L.; Chen, K.; Zhang, W.; Zhang, Q.; Li, Q.; Hu, K. Nanoparticles: A new approach to upgrade cancer diagnosis and treatment. Nanoscale Res. Lett., 2021, 16(1), 88. doi: 10.1186/s11671-021-03489-z PMID: 34014432
  26. Samadian, H.; Hosseini-Nami, S.; Kamrava, S.K.; Ghaznavi, H.; Shakeri-Zadeh, A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J. Cancer Res. Clin. Oncol., 2016, 142(11), 2217-2229. doi: 10.1007/s00432-016-2179-3 PMID: 27209529
  27. Tepale, N.; Fernández-Escamilla, V.V.A.; Carreon-Alvarez, C.; González-Coronel, V.J.; Luna-Flores, A.; Aguilar, J. Nanoengineering of gold nanoparticles: Green synthesis, characterization, and applications. Crystals , 2019, 9(12), 612. doi: 10.3390/cryst9120612
  28. Mahmoud, M.A.; El-Sayed, M.A. Gold nanoframes: Very high surface plasmon fields and excellent near-infrared sensors. J. Am. Chem. Soc., 2010, 132(36), 12704-12710. doi: 10.1021/ja104532z PMID: 20722373
  29. Skrabalak, S.E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C.M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res., 2008, 41(12), 1587-1595. doi: 10.1021/ar800018v PMID: 18570442
  30. Hong, S.; Li, X. Optimal size of gold nanoparticles for surfaceenhanced Raman spectroscopy under different conditions J. Nanomater.,, 2013, 2013 doi: 10.1155/2013/790323
  31. Ouabbas, Y. (9c) surface modification of silica particles by drycoating. 2006 AIChE Spring Meeting & Global Congress on Process Safety, April 23-27, 2006 Orlando, FL 2006.
  32. Mao, W.; Son, Y.J.; Yoo, H.S. Gold nanospheres and nanorods for anti-cancer therapy: comparative studies of fabrication, surface-decoration, and anti-cancer treatments. Nanoscale, 2020, 12(28), 14996-15020. doi: 10.1039/D0NR01690J PMID: 32666990
  33. Lorenzana-Vázquez, G.; Pavel, I.; Meléndez, E. Gold nanoparticles functionalized with 2-thiouracil for antiproliferative and photothermal therapies in breast cancer cells. Molecules, 2023, 28(11), 4453. doi: 10.3390/molecules28114453 PMID: 37298929
  34. Freitas de Freitas, L.; Varca, G.; dos Santos Batista, J.; Benévolo Lugão, A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials , 2018, 8(11), 939. doi: 10.3390/nano8110939 PMID: 30445694
  35. Ghassan, A.A.; Mijan, N.A.; Taufiq-Yap, Y. H. Nanomaterials: An overview of nanorods synthesis and optimization. Nanorods and nanocomposites, 2019, 11, 8-33.
  36. De Matteis, V.; Cascione, M.; Toma, C.C.; Rinaldi, R. Engineered gold nanoshells killing tumor cells: New perspectives. Curr. Pharm. Des., 2019, 25(13), 1477-1489. doi: 10.2174/1381612825666190618155127 PMID: 31258061
  37. Huang, S.; Liu, Y.; Xu, X.; Ji, M.; Li, Y.; Song, C.; Duan, S.; Hu, Y. Triple therapy of hepatocellular carcinoma with microRNA-122 and doxorubicin co-loaded functionalized gold nanocages. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(15), 2217-2229. doi: 10.1039/C8TB00224J PMID: 32254562
  38. Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Ramakrishna, S.; Chiang, W.H.; Lai, C.W.; Gholami, A. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab. Rev., 2020, 52(2), 299-318. doi: 10.1080/03602532.2020.1734021 PMID: 32150480
  39. Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv., 2020, 2(9), 3764-3787. doi: 10.1039/D0NA00472C PMID: 36132791
  40. Zhang, R.; Kiessling, F.; Lammers, T.; Pallares, R.M. Clinical translation of gold nanoparticles. Drug Deliv. Transl. Res., 2023, 13(2), 378-385. doi: 10.1007/s13346-022-01232-4 PMID: 36045273
  41. Curry, T.; Kopelman, R.; Shilo, M.; Popovtzer, R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol. Imaging, 2014, 9(1), 53-61. doi: 10.1002/cmmi.1563 PMID: 24470294
  42. Banstola, A.; Emami, F.; Jeong, J.H.; Yook, S. Current applications of gold nanoparticles for medical imaging and as treatment agents for managing pancreatic cancer. Macromol. Res., 2018, 26(11), 955-964. doi: 10.1007/s13233-018-6139-4
  43. Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4(7), 3689-3696. doi: 10.1021/nn901877h PMID: 20550178
  44. Arvizo, R.; Bhattacharya, R.; Mukherjee, P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv., 2010, 7(6), 753-763. doi: 10.1517/17425241003777010 PMID: 20408736
  45. Ibrahim, K.; Al-Mutary, M.; Bakhiet, A.; Khan, H. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules, 2018, 23(8), 1848. doi: 10.3390/molecules23081848 PMID: 30044410
  46. Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine , 2008, 3(5), 703-717. doi: 10.2217/17435889.3.5.703 PMID: 18817471
  47. Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine , 2018, 14(1), 1-12. doi: 10.1016/j.nano.2017.08.011 PMID: 28882675
  48. Li, X.; Wang, B.; Zhou, S.; Chen, W.; Chen, H.; Liang, S.; Zheng, L.; Yu, H.; Chu, R.; Wang, M.; Chai, Z.; Feng, W. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. J. Nanobiotechnol., 2020, 18(1), 45. doi: 10.1186/s12951-020-00599-1 PMID: 32169073
  49. Mironava, T.; Hadjiargyrou, M.; Simon, M.; Jurukovski, V.; Rafailovich, M.H. Gold nanoparticles cellular toxicity and recovery: Effect of size, concentration and exposure time. Nanotoxicology, 2010, 4(1), 120-137. doi: 10.3109/17435390903471463 PMID: 20795906
  50. Anik, M.I.; Mahmud, N.; Al Masud, A.; Hasan, M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select, 2022, 3(4), 792-828. doi: 10.1002/nano.202100255
  51. Yahyaei, B.; Nouri, M.; Bakherad, S.; Hassani, M.; Pourali, P. Effects of biologically produced gold nanoparticles: Toxicity assessment in different rat organs after intraperitoneal injection. AMB Express, 2019, 9(1), 38. doi: 10.1186/s13568-019-0762-0 PMID: 30888557
  52. Izci, M.; Maksoudian, C.; Gonçalves, F.; Aversa, L.; Salembier, R.; Sargsian, A.; Pérez, G.I.; Chu, T.; Rios, L.C.; Bolea-Fernandez, E.; Nittner, D.; Vanhaecke, F.; Manshian, B.B.; Soenen, S.J. Gold nanoparticle delivery to solid tumors: A multiparametric study on particle size and the tumor microenvironment. J. Nanobiotechnol., 2022, 20(1), 518. doi: 10.1186/s12951-022-01727-9 PMID: 36494816
  53. Hsieh, D.S.; Wang, H.; Tan, S.W.; Huang, Y.H.; Tsai, C.Y.; Yeh, M.K.; Wu, C.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 2011, 32(30), 7633-7640. doi: 10.1016/j.biomaterials.2011.06.073 PMID: 21782236
  54. Mahalunkar, S.; Yadav, A.S.; Gorain, M.; Pawar, V.; Braathen, R.; Weiss, S.; Bogen, B.; Gosavi, S.W.; Kundu, G.C. Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer. Int. J. Nanomed., 2019, 14, 8285-8302. doi: 10.2147/IJN.S215142 PMID: 31802866
  55. Li, T.; Zhang, M.; Wang, J.; Wang, T.; Yao, Y.; Zhang, X.; Zhang, C.; Zhang, N. Thermosensitive hydrogel co-loaded with gold nanoparticles and doxorubicin for effective chemoradiotherapy. AAPS J., 2016, 18(1), 146-155. doi: 10.1208/s12248-015-9828-3 PMID: 26381779
  56. Xu, H.; Niu, M.; Yuan, X.; Wu, K.; Liu, A. CD44 as a tumor biomarker and therapeutic target. Exp. Hematol. Oncol., 2020, 9(1), 36. doi: 10.1186/s40164-020-00192-0 PMID: 33303029
  57. Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 137, 115-170. doi: 10.1016/bs.acr.2017.11.003 PMID: 29405974
  58. Kim, S.J.; Kim, H.S.; Seo, Y.R. Understanding of ROS-inducing strategy in anticancer therapy. Oxid. Med. Cell. Longev., 2019, 2019, 538169. doi: 10.1155/2019/5381692
  59. Lo, C.Y.; Tsai, S.W.; Niu, H.; Chen, F.H.; Hwang, H.C.; Chao, T.C.; Hsiao, I.T.; Liaw, J.W. Gold-Nanoparticles-enhanced production of reactive oxygen species in cells at spread-out bragg peak under proton beam radiation. ACS Omega, 2023, 8(20), 17922-17931. doi: 10.1021/acsomega.3c01025 PMID: 37251180
  60. Yafout, M.; Ousaid, A.; Khayati, Y.; El Otmani, I.S. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci. Am., 2021, 11, e00685.
  61. Girigoswami, A.; Girigoswami, K. Potential applications of nanoparticles in improving the outcome of lung cancer treatment. Genes , 2023, 14(7), 1370. doi: 10.3390/genes14071370 PMID: 37510275
  62. Alhussan, A.; Bromma, K.; Perez, M.M.; Beckham, W.; Alexander, A.S.; Howard, P.L.; Chithrani, D.B. Docetaxel-mediated uptake and retention of gold nanoparticles in tumor cells and in cancer-associated fibroblasts. Cancers , 2021, 13(13), 3157. doi: 10.3390/cancers13133157 PMID: 34202574
  63. Li, B.; Hao, G.; Sun, B.; Gu, Z.; Xu, Z.P. Engineering a therapy‐induced "immunogenic cancer cell death" amplifier to boost systemic tumor elimination. Adv. Funct. Mater., 2020, 30(22), 1909745. doi: 10.1002/adfm.201909745
  64. Salimi, M.; Mosca, S.; Gardner, B.; Palombo, F.; Matousek, P.; Stone, N. Nanoparticle-mediated photothermal therapy limitation in clinical applications regarding pain management. Nanomaterials , 2022, 12(6), 922. doi: 10.3390/nano12060922 PMID: 35335735
  65. Lee, J.H.; Cho, H.Y.; Choi, H.; Lee, J.Y.; Choi, J.W. Application of gold nanoparticle to plasmonic biosensors. Int. J. Mol. Sci., 2018, 19(7), 2021. doi: 10.3390/ijms19072021 PMID: 29997363
  66. Liu, Y.; Ashton, J.R.; Moding, E.J.; Yuan, H.; Register, J.K.; Fales, A.M.; Choi, J.; Whitley, M.J.; Zhao, X.; Qi, Y.; Ma, Y.; Vaidyanathan, G.; Zalutsky, M.R.; Kirsch, D.G.; Badea, C.T.; Vo-Dinh, T. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics, 2015, 5(9), 946-960. doi: 10.7150/thno.11974 PMID: 26155311
  67. Han, H.S.; Choi, K.Y. Advances in nanomaterial-mediated photothermal cancer therapies: Toward clinical applications. Biomedicines, 2021, 9(3), 305. doi: 10.3390/biomedicines9030305 PMID: 33809691
  68. Mukherjee, P.; Tripathy, S.; Matsabisa, M.G.; Sahu, S.K. Development of upconversion-NMOFs nanocomposite conjugated with gold nanoparticles for NIR light-triggered combinational chemo-photothermal therapy. J. Photochem. Photobiol. Chem., 2023, 437, 114426. doi: 10.1016/j.jphotochem.2022.114426
  69. Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281. doi: 10.3322/caac.20114 PMID: 21617154
  70. Broekgaarden, M.; Weijer, R.; van Gulik, T.M.; Hamblin, M.R.; Heger, M. Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev., 2015, 34(4), 643-690. doi: 10.1007/s10555-015-9588-7 PMID: 26516076
  71. Baskaran, R.; Lee, J.; Yang, S.G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res., 2018, 22(1), 25. doi: 10.1186/s40824-018-0140-z PMID: 30275968
  72. Hong, E.J.; Choi, D.G.; Shim, M.S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B, 2016, 6(4), 297-307. doi: 10.1016/j.apsb.2016.01.007 PMID: 27471670
  73. Zhou, Z.; Zhang, L.; Zhang, Z.; Liu, Z. Advances in photosensitizer-related design for photodynamic therapy. Asian J. Pharm. Sci., 2021, 16(6), 668-686. doi: 10.1016/j.ajps.2020.12.003 PMID: 35027948
  74. Chadwick, S.J.; Salah, D.; Livesey, P.M.; Brust, M.; Volk, M. Singlet oxygen generation by laser irradiation of gold nanoparticles. J. Phys. Chem. C, 2016, 120(19), 10647-10657. doi: 10.1021/acs.jpcc.6b02005 PMID: 27239247
  75. Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364. doi: 10.1042/BJ20150942 PMID: 26862179
  76. García, C.P.; Bruce, G.; Pérez-García, L.; Russell, D.A. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci., 2018, 17(11), 1534-1552. doi: 10.1039/c8pp00271a PMID: 30118115
  77. Bromma, K.; Chithrani, D.B. Advances in gold nanoparticle-based combined cancer therapy. Nanomaterials , 2020, 10(9), 1671. doi: 10.3390/nano10091671 PMID: 32858957
  78. Wei, X.; Chen, H.; Tham, H.P.; Zhang, N.; Xing, P.; Zhang, G.; Zhao, Y. Combined photodynamic and photothermal therapy using cross-linked polyphosphazene nanospheres decorated with gold nanoparticles. ACS Appl. Nano Mater., 2018, 1(7), 3663-3672. doi: 10.1021/acsanm.8b00776
  79. Gupta, N.; Sharma, R.K.; Maitra, A.; Shrivastava, A. In-vitro and in-vivo efficacy of hollow gold nanoparticles encapsulating horseradish peroxidase: Oxidative stress-mediated tumor cell killing. J. Drug Deliv. Sci. Technol., 2023, 79, 103979. doi: 10.1016/j.jddst.2022.103979
  80. Wu, X.; Gu, Z.; Chen, Y.; Chen, B.; Chen, W.; Weng, L.; Liu, X. Application of PD-1 blockade in cancer immunotherapy. Comput. Struct. Biotechnol. J., 2019, 17, 661-674. doi: 10.1016/j.csbj.2019.03.006 PMID: 31205619
  81. Sanmamed, M.F.; Chen, L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J., 2014, 20(4), 256-261. doi: 10.1097/PPO.0000000000000061 PMID: 25098285
  82. Han, J.; Duan, J.; Bai, H.; Wang, Y.; Wan, R.; Wang, X.; Chen, S.; Tian, Y.; Wang, D.; Fei, K.; Yao, Z.; Wang, S.; Lu, Z.; Wang, Z.; Wang, J. TCR repertoire diversity of peripheral PD-1+CD8+ T cells predicts clinical outcomes after immunotherapy in patients with non–small cell lung cancer. Cancer Immunol. Res., 2020, 8(1), 146-154. doi: 10.1158/2326-6066.CIR-19-0398 PMID: 31719056
  83. Liu, Y.; Maccarini, P.; Palmer, G.M.; Etienne, W.; Zhao, Y.; Lee, C.T.; Ma, X.; Inman, B.A.; Vo-Dinh, T. Synergistic immuno photothermal nanotherapy (symphony) for the treatment of unresectable and metastatic cancers. Sci. Rep., 2017, 7(1), 8606. doi: 10.1038/s41598-017-09116-1 PMID: 28819209
  84. Ashrafizadeh, M.; Farhood, B.; Eleojo, M.A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663. doi: 10.1016/j.intimp.2020.106663 PMID: 32521494
  85. Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomed., 2021, 16, 1083-1102. doi: 10.2147/IJN.S290438 PMID: 33603370
  86. Candelaria, M.; Garcia-Arias, A.; Cetina, L.; Dueñas-Gonzalez, A. Radiosensitizers in cervical cancer. Cisplatin and beyond. Radiat. Oncol., 2006, 1(1), 15. doi: 10.1186/1748-717X-1-15 PMID: 16722549
  87. Varzandeh, M.; Sabouri, L.; Mansouri, V.; Gharibshahian, M.; Beheshtizadeh, N.; Hamblin, M.R.; Rezaei, N. Application of nano radiosensitizers in combination cancer therapy. Bioeng. Transl. Med., 2023, 8(3), e10498. doi: 10.1002/btm2.10498 PMID: 37206240
  88. Shen, H.; Huang, H.; Jiang, Z. Nanoparticle-based radiosensitization strategies for improving radiation therapy. Front. Pharmacol., 2023, 14, 1145551. doi: 10.3389/fphar.2023.1145551 PMID: 36873996
  89. Bhat, V.; Pellizzari, S.; Allan, A.L.; Wong, E.; Lock, M.; Brackstone, M.; Lohmann, A.E.; Cescon, D.W.; Parsyan, A. Radiotherapy and radiosensitization in breast cancer: Molecular targets and clinical applications. Crit. Rev. Oncol. Hematol., 2022, 169, 103566. doi: 10.1016/j.critrevonc.2021.103566 PMID: 34890802
  90. Scher, N.; Bonvalot, S.; Le Tourneau, C.; Chajon, E.; Verry, C.; Thariat, J.; Calugaru, V. Review of clinical applications of radiation-enhancing nanoparticles. Biotechnol. Rep. , 2020, 28, e00548. doi: 10.1016/j.btre.2020.e00548 PMID: 33204660
  91. Dobešová, L.; Gier, T.; Kopečná, O.; Pagáčová, E.; Vičar, T.; Bestvater, F.; Toufar, J.; Bačíková, A.; Kopel, P.; Fedr, R.; Hildenbrand, G.; Falková, I.; Falk, M.; Hausmann, M. Incorporation of low concentrations of gold nanoparticles: Complex effects on radiation response and fate of cancer cells. Pharmaceutics, 2022, 14(1), 166. doi: 10.3390/pharmaceutics14010166 PMID: 35057061
  92. Chen, Y.; Yang, J.; Fu, S.; Wu, J. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int. J. Nanomed., 2020, 15, 9407-9430. doi: 10.2147/IJN.S272902 PMID: 33262595
  93. Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z. Gold nanoparticle mediated phototherapy for cancer. J. Nanomater., 2016, 2016, 1-29. doi: 10.1155/2016/5497136
  94. Cunningham, C.; de Kock, M.; Engelbrecht, M.; Miles, X.; Slabbert, J.; Vandevoorde, C. Radiosensitization effect of gold nanoparticles in proton therapy. Front. Public Health, 2021, 9, 699822. doi: 10.3389/fpubh.2021.699822 PMID: 34395371
  95. Kempson, I. Mechanisms of nanoparticle radiosensitization. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(1), e1656. doi: 10.1002/wnan.1656 PMID: 32686321
  96. Rosa, S.; Connolly, C.; Schettino, G.; Butterworth, K.T.; Prise, K.M. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol., 2017, 8(1), 2. doi: 10.1186/s12645-017-0026-0 PMID: 28217176
  97. Egorova, E.A.; van Rijt, M.M.J.; Sommerdijk, N.; Gooris, G.S.; Bouwstra, J.A.; Boyle, A.L.; Kros, A. One peptide for them all: Gold nanoparticles of different sizes are stabilized by a common peptide amphiphile. ACS Nano, 2020, 14(5), 5874-5886. doi: 10.1021/acsnano.0c01021 PMID: 32348119
  98. Mukherjee, P.; Bhattacharya, R.; Wang, P.; Wang, L.; Basu, S.; Nagy, J.A.; Atala, A.; Mukhopadhyay, D.; Soker, S. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res., 2005, 11(9), 3530-3534. doi: 10.1158/1078-0432.CCR-04-2482 PMID: 15867256
  99. Liang, P.; Mao, L.; Dong, Y.; Zhao, Z.; Sun, Q.; Mazhar, M.; Ma, Y.; Yang, S.; Ren, W. Design and application of near-infrared nanomaterial-liposome hybrid nanocarriers for cancer photothermal therapy. Pharmaceutics, 2021, 13(12), 2070. doi: 10.3390/pharmaceutics13122070 PMID: 34959351
  100. Mahan, M.M.; Doiron, A.L. Gold nanoparticles as x-ray, CT, and multimodal imaging contrast agents: Formulation, targeting, and methodology. J. Nanomater., 2018, 2018, 1-15. doi: 10.1155/2018/5837276
  101. Farooq, M.U.; Novosad, V.; Rozhkova, E.A.; Wali, H.; Ali, A.; Fateh, A.A.; Neogi, P.B.; Neogi, A.; Wang, Z. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci. Rep., 2018, 8(1), 2907. doi: 10.1038/s41598-018-21331-y PMID: 29440698
  102. Kim, H.M.; Park, J.H.; Choi, Y.J.; Oh, J.M.; Park, J. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC Advances, 2023, 13(8), 5529-5537. doi: 10.1039/D2RA07276A PMID: 36798609
  103. Bi, Y.; Hao, F.; Yan, G.; Teng, L.; Lee, R.J.; Xie, J. Actively targeted nanoparticles for drug delivery to tumor. Curr. Drug Metab., 2016, 17(8), 763-782. doi: 10.2174/1389200217666160619191853 PMID: 27335116
  104. Liu, Y.; He, M.; Niu, M.; Zhao, Y.; Zhu, Y.; Li, Z.; Feng, N. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: A light-responsive nanocarrier with enhanced antitumor efficiency. Int. J. Nanomed., 2015, 10, 3081-3095. PMID: 25960649
  105. Tomuleasa, C.; Soritau, O.; Orza, A.; Dudea, M.; Petrushev, B.; Mosteanu, O.; Susman, S.; Florea, A.; Pall, E.; Aldea, M.; Kacso, G.; Cristea, V.; Berindan-Neagoe, I.; Irimie, A. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J. Gastrointestin. Liver Dis., 2012, 21(2), 187-196. PMID: 22720309
  106. Ali, M.M.; Rajab, N.A.; Abdulrasool, A.A. Etoposide-loaded gold nanoparticles: Preparation, characterization, optimization and cytotoxicity assay. Systematic Rev. Pharm., 2020, 11, 372-381.
  107. Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219. doi: 10.2147/vhrm.2006.2.3.213 PMID: 17326328
  108. Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev., 2012, 41(7), 2943-2970. doi: 10.1039/c2cs15355f PMID: 22388295
  109. Shen, N.; Zhang, R.; Zhang, H-R.; Luo, H-Y.; Shen, W.; Gao, X.; Guo, D-Z.; Shen, J. Inhibition of retinal angiogenesis by gold nanoparticles via inducing autophagy. Int. J. Ophthalmol., 2018, 11(8), 1269-1276. PMID: 30140628
  110. Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697. doi: 10.1111/cpr.12296 PMID: 27641938
  111. Abdal Dayem, A.; Hossain, M.; Lee, S.; Kim, K.; Saha, S.; Yang, G.M.; Choi, H.; Cho, S.G. The Role of Reactive Oxygen Species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1), 120. doi: 10.3390/ijms18010120 PMID: 28075405
  112. Vimalraj, S.; Ashokkumar, T.; Saravanan, S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed. Pharmacother., 2018, 105, 440-448. doi: 10.1016/j.biopha.2018.05.151 PMID: 29879628
  113. Shrestha, B.; Wang, L.; Brey, E.M.; Uribe, G.R.; Tang, L. Smart nanoparticles for chemo-based combinational therapy. Pharmaceutics, 2021, 13(6), 853. doi: 10.3390/pharmaceutics13060853 PMID: 34201333
  114. Yang, Y.; Zheng, X.; Chen, L.; Gong, X.; Yang, H.; Duan, X.; Zhu, Y. Multifunctional gold nanoparticles in cancer diagnosis and treatment. Int. J. Nanomed., 2022, 17, 2041-2067. doi: 10.2147/IJN.S355142 PMID: 35571258
  115. Jelveh, S.; Chithrani, D.B. Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers (Basel), 2011, 3(1), 1081-1110. doi: 10.3390/cancers3011081 PMID: 24212654
  116. Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in chemo-, immuno-, and combined therapy. Biomed. Opt. Express, 2019, 10(7), 3152-3182. doi: 10.1364/BOE.10.003152 PMID: 31467774
  117. Cetin Ersen, B.; Goncu, B.; Dag, A.; Birlik Demirel, G. GLUT-targeting phototherapeutic nanoparticles for synergistic triple combination cancer therapy. ACS Appl. Mater. Interfaces, 2023, 15(7), 9080-9098. doi: 10.1021/acsami.2c21180 PMID: 36780418
  118. Li, R.T.; Chen, M.; Yang, Z.C.; Chen, Y.J.; Huang, N.H.; Chen, W.H.; Chen, J.; Chen, J.X. AIE-based gold nanostar-berberine dimer nanocomposites for PDT and PTT combination therapy toward breast cancer. Nanoscale, 2022, 14(27), 9818-9831. doi: 10.1039/D2NR03408E PMID: 35771232
  119. Zhang, W.; Zang, Y.; Lu, Y.; Han, J.; Xiong, Q.; Xiong, J. Photodynamic therapy of up-conversion nanomaterial doped with gold nanoparticles. Int. J. Mol. Sci., 2022, 23(8), 4279. doi: 10.3390/ijms23084279 PMID: 35457097
  120. Xie, J.; Liang, R.; Li, Q.; Wang, K.; Hussain, M.; Dong, L.; Shen, C.; Li, H.; Shen, G.; Zhu, J.; Tao, J. Photosensitizer-loaded gold nanocages for immunogenic phototherapy of aggressive melanoma. Acta Biomater., 2022, 142, 264-273. doi: 10.1016/j.actbio.2022.01.051 PMID: 35101580
  121. Saw, W.S.; Anasamy, T.; Do, T.T.A.; Lee, H.B.; Chee, C.F.; Isci, U.; Misran, M.; Dumoulin, F.; Chong, W.Y.; Kiew, L.V.; Imae, T.; Chung, L.Y. Nanoscaled PAMAM dendrimer spacer improved the photothermal‒photodynamic treatment efficiency of photosensitizer‐decorated confeito‐like gold nanoparticles for cancer therapy. Macromol. Biosci., 2022, 22(8), 2200130. doi: 10.1002/mabi.202200130 PMID: 35579182
  122. Gong, B.; Shen, Y.; Li, H.; Li, X.; Huan, X.; Zhou, J.; Chen, Y.; Wu, J.; Li, W. Thermo-responsive polymer encapsulated gold nanorods for single continuous wave laser-induced photodynamic/photothermal tumour therapy. J. Nanobiotechnol., 2021, 19(1), 41. doi: 10.1186/s12951-020-00754-8 PMID: 33557807
  123. Liu, Z.; Xie, F.; Xie, J.; Chen, J.; Li, Y.; Lin, Q.; Luo, F.; Yan, J. New-generation photosensitizer-anchored gold nanorods for a single near-infrared light-triggered targeted photodynamic–photothermal therapy. Drug Deliv., 2021, 28(1), 1769-1784. doi: 10.1080/10717544.2021.1960923 PMID: 34470548
  124. Nam, J.; Son, S.; Ochyl, L.J.; Kuai, R.; Schwendeman, A.; Moon, J.J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun., 2018, 9(1), 1074. doi: 10.1038/s41467-018-03473-9 PMID: 29540781
  125. Li, Z.; Huang, H.; Tang, S.; Li, Y.; Yu, X.F.; Wang, H.; Li, P.; Sun, Z.; Zhang, H.; Liu, C.; Chu, P.K. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 2016, 74, 144-154. doi: 10.1016/j.biomaterials.2015.09.038 PMID: 26454052
  126. Wang, B.; Wang, J.H.; Liu, Q.; Huang, H.; Chen, M.; Li, K.; Li, C.; Yu, X.F.; Chu, P.K. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials, 2014, 35(6), 1954-1966. doi: 10.1016/j.biomaterials.2013.11.066 PMID: 24331707
  127. Popp, M.K.; Oubou, I.; Shepherd, C.; Nager, Z.; Anderson, C.; Pagliaro, L. Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume. J. Nanomater., 2014, 2014, 1-8. doi: 10.1155/2014/450670
  128. Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N.; Khlebtsov, B. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res., 2014, 7(3), 325-337. doi: 10.1007/s12274-013-0398-3
  129. Black, K.C.L.; Yi, J.; Rivera, J.G.; Zelasko-Leon, D.C.; Messersmith, P.B. Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine , 2013, 8(1), 17-28. doi: 10.2217/nnm.12.82 PMID: 22891865
  130. Wang, J.; Zhu, G.; You, M.; Song, E.; Shukoor, M.I.; Zhang, K.; Altman, M.B.; Chen, Y.; Zhu, Z.; Huang, C.Z.; Tan, W. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano, 2012, 6(6), 5070-5077. doi: 10.1021/nn300694v PMID: 22631052
  131. Kuo, W.S.; Chang, Y.T.; Cho, K.C.; Chiu, K.C.; Lien, C.H.; Yeh, C.S.; Chen, S.J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials, 2012, 33(11), 3270-3278. doi: 10.1016/j.biomaterials.2012.01.035 PMID: 22289264
  132. Arellano-Galindo, L.; Villar-Alvarez, E.; Varela, A.; Figueroa, V.; Fernandez-Vega, J.; Cambón, A.; Prieto, G.; Barbosa, S.; Taboada, P. Hybrid gold nanorod-based nanoplatform with chemo and photothermal activities for bimodal cancer therapy. Int. J. Mol. Sci., 2022, 23(21), 13109. doi: 10.3390/ijms232113109 PMID: 36361892
  133. Zhan, H.; Song, W.; Gu, M.; Zhao, H.; Liu, Y.; Liu, B.; Wang, J. A new gold nanoparticles and paclitaxel co-delivery system for enhanced anti-cancer effect through chemo-photothermal combination. J. Biomed. Nanotechnol., 2022, 18(4), 957-975. doi: 10.1166/jbn.2022.3309 PMID: 35854456
  134. Faid, A.H.; Shouman, S.A.; Badr, Y.A.; Sharaky, M.; Mostafa, E.M.; Sliem, M.A. Gold nanoparticles loaded chitosan encapsulate 6-mercaptopurine as a novel nanocomposite for chemo-photothermal therapy on breast cancer. BMC Chem., 2022, 16(1), 94. doi: 10.1186/s13065-022-00892-0 PMID: 36371236
  135. Bhattacharya, K.; Das, S.; Kundu, M.; Singh, S.; Kalita, U.; Mandal, M.; Singha, N.K. Gold nanoparticle embedded stimuli‐responsive functional glycopolymer: A potential material for synergistic chemo‐photodynamic therapy of cancer cells. Macromol. Biosci., 2022, 22(9), 2200069. doi: 10.1002/mabi.202200069 PMID: 35797485
  136. He, J.; Yu, S.; Ma, Z.; Sun, H.; Yang, Q.; Liu, Z.; Wang, X.; Zhang, X.; Wang, L. Polymyxin E biomineralized and doxorubicin-loaded gold nanoflowers nanodrug for chemo-photothermal therapy. Int. J. Pharm., 2022, 625, 122082. doi: 10.1016/j.ijpharm.2022.122082 PMID: 35934168
  137. Wang, J.; Zhao, H.; Song, W.; Gu, M.; Liu, Y.; Liu, B.; Zhan, H. Gold nanoparticle-decorated drug nanocrystals for enhancing anticancer efficacy and reversing drug resistance through chemo-/photothermal therapy. Mol. Pharm., 2022, 19(7), 2518-2534. doi: 10.1021/acs.molpharmaceut.2c00150 PMID: 35549267
  138. Liu, J.; Song, Y.; Wang, Y.; Han, M.; Wang, C.; Yan, F. Cyclodextrin-functionalized gold nanorods loaded with meclofenamic acid for improving n6 -methyladenosine-mediated second near-infrared photothermal immunotherapy. ACS Appl. Mater. Interfaces, 2022, 14(36), 40612-40623. doi: 10.1021/acsami.2c09978 PMID: 36053499
  139. He, J.; Liu, S.; Zhang, Y.; Chu, X.; Lin, Z.; Zhao, Z.; Qiu, S.; Guo, Y.; Ding, H.; Pan, Y.; Pan, J. The application of and strategy for gold nanoparticles in cancer immunotherapy. Front. Pharmacol., 2021, 12, 687399. doi: 10.3389/fphar.2021.687399 PMID: 34163367
  140. Di Pietro, P.; Strano, G.; Zuccarello, L.; Satriano, C. Gold and silver nanoparticles for applications in theranostics. Curr. Top. Med. Chem., 2016, 16(27), 3069-3102. doi: 10.2174/1568026616666160715163346 PMID: 27426869
  141. Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. 'Green' synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol., 2018, 16(1), 84. doi: 10.1186/s12951-018-0408-4 PMID: 30373622

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023