A Review on the Use of Gold Nanoparticles in Cancer Treatment
- Autores: Sultana R.1, Yadav D.2, Puranik N.3, Chavda V.4, Kim J.5, Song M.2
-
Afiliações:
- Department of Zoology, SKM Govt College
- Department of Life Sciences, Yeungnam University
- Department of Biochemistry & Genetics, Barkatullah University
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center
- , Korea Brain Research Institute (KBRI)
- Edição: Volume 23, Nº 20 (2023)
- Páginas: 2171-2182
- Seção: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694386
- DOI: https://doi.org/10.2174/0118715206268664231004040210
- ID: 694386
Citar
Texto integral
Resumo
According to a 2020 WHO study, cancer is responsible for one in every six fatalities. One in four patients die due to side effects and intolerance to chemotherapy, making it a leading cause of patient death. Compared to traditional tumor therapy, emerging treatment methods, including immunotherapy, gene therapy, photothermal therapy, and photodynamic therapy, have proven to be more effective. The aim of this review is to highlight the role of gold nanoparticles in advanced cancer treatment. A systematic and extensive literature review was conducted using the Web of Science, PubMed, EMBASE, Google Scholar, NCBI, and various websites. Highly relevant literature from 141 references was chosen for inclusion in this review. Recently, the synergistic benefits of nano therapy and cancer immunotherapy have been shown, which could allow earlier diagnosis, more focused cancer treatment, and improved disease control. Compared to other nanoparticles, the physical and optical characteristics of gold nanoparticles appear to have significantly greater effects on the target. It has a crucial role in acting as a drug carrier, biomarker, anti-angiogenesis agent, diagnostic agent, radiosensitizer, cancer immunotherapy, photodynamic therapy, and photothermal therapy. Gold nanoparticle-based cancer treatments can greatly reduce current drug and chemotherapy dosages.
Palavras-chave
Sobre autores
Razia Sultana
Department of Zoology, SKM Govt College
Email: info@benthamscience.net
Dhananjay Yadav
Department of Life Sciences, Yeungnam University
Email: info@benthamscience.net
Nidhi Puranik
Department of Biochemistry & Genetics, Barkatullah University
Email: info@benthamscience.net
Vishal Chavda
Department of Pathology, Stanford School of Medicine, Stanford University Medical Center
Email: info@benthamscience.net
Jeongyeon Kim
, Korea Brain Research Institute (KBRI)
Autor responsável pela correspondência
Email: info@benthamscience.net
Minseok Song
Department of Life Sciences, Yeungnam University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32. doi: 10.2147/NSA.S3788 PMID: 24198458
- Cancer Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Varghese, C. Cancer prevention and control in India. In: National cancer registry programme, fifty years of cancer control in India,; , 2001, pp. 48-59.
- Mayor, S. NHS should bring in measures to reduce its carbon footprint, BMA says. BMJ, 2008, 2008336.
- Ni Chleirigh, R.; Gray, S.; Mitchell, C.C. Management of oncological emergencies on the acute take. Br. J. Hosp. Med. , 2018, 79(7), 384-388. doi: 10.12968/hmed.2018.79.7.384 PMID: 29995539
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol., 2018, 15(2), 81-94. doi: 10.1038/nrclinonc.2017.166 PMID: 29115304
- Liu, Y.; Wu, W.; Wang, Y.; Han, S.; Yuan, Y.; Huang, J.; Shuai, X.; Zhao, P. Correction: Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater. Sci., 2021, 9(20), 6966-6969. doi: 10.1039/D1BM90082J
- Liu, Y.; Meng, X.; Bu, W. Upconversion-based photodynamic cancer therapy. Coord. Chem. Rev., 2019, 379, 82-98. doi: 10.1016/j.ccr.2017.09.006
- Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine , 2012, 8(2), 147-166. doi: 10.1016/j.nano.2011.05.016 PMID: 21703993
- Yadav, D.; Kwak, M.; Chauhan, P.S.; Puranik, N.; Lee, P.C.; Jin, J-O. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin. Cancer Biol., 2022, 86(Pt 2), 909-922.
- Fogli, S.; Montis, C.; Paccosi, S.; Silvano, A.; Michelucci, E.; Berti, D.; Bosi, A.; Parenti, A.; Romagnoli, P. Inorganic nanoparticles as potential regulators of immune response in dendritic cells. Nanomedicine , 2017, 12(14), 1647-1660. doi: 10.2217/nnm-2017-0061 PMID: 28635380
- Joga, S.; Koyyala, V. Nanotechnology in oncology. Indian J. Med. Paediatr. Oncol.,, 2021, 42, 093-095. doi: 10.1055/s-0041-1729727
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
- Jha, S.; Trivedi, V. Manikya Bhasma is a nanomedicine to affect cancer cell viability through induction of apoptosis. J. Ayurveda Integr. Med., 2021, 12(2), 302-311. doi: 10.1016/j.jaim.2020.11.001 PMID: 33358658
- Sharma, C.P.; Paul, W. Blood compatibility studies of Swarna bhasma (gold bhasma), an Ayurvedic drug. Int. J. Ayurveda Res., 2011, 2(1), 14-22. doi: 10.4103/0974-7788.83183 PMID: 21897638
- Singh, R.; Goel, S.; Bourgeade, P.; Aleya, L.; Tewari, D. Ayurveda Rasayana as antivirals and immunomodulators: Potential applications in COVID-19. Environ. Sci. Pollut. Res. Int., 2021, 28(40), 55925-55951. doi: 10.1007/s11356-021-16280-5 PMID: 34491498
- Carone, A.; Emilsson, S.; Mariani, P.; Désert, A.; Parola, S. Gold nanoparticle shape dependence of colloidal stability domains. Nanoscale Adv., 2023, 5(7), 2017-2026. doi: 10.1039/D2NA00809B PMID: 36998666
- Jin, J.O.; Yadav, D.; Madhwani, K.; Puranik, N.; Chavda, V.; Song, M. Seaweeds in the oncology arena: Anti-cancer potential of fucoidan as a druga review. Molecules, 2022, 27(18), 6032. doi: 10.3390/molecules27186032 PMID: 36144768
- Jain, S.; Hirst, D.G.; O'Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113. doi: 10.1259/bjr/59448833 PMID: 22010024
- Kesharwani, P.; Ma, R.; Sang, L.; Fatima, M.; Sheikh, A.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.S.; Zhou, Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer, 2023, 22(1), 98. doi: 10.1186/s12943-023-01798-8 PMID: 37344887
- Ediriwickrema, A.; Saltzman, W.M. Nanotherapy for Cancer: Targeting and multifunctionality in the future of cancer therapies. ACS Biomater. Sci. Eng., 2015, 1(2), 64-78. doi: 10.1021/ab500084g PMID: 25984571
- Vo-Dinh, T.; Liu, Y.; Crawford, B.M.; Wang, H.N.; Yuan, H.; Register, J.K.; Khoury, C.G. Shining gold nanostars: From cancer diagnostics to photothermal treatment and immunotherapy. J Immunol Sci., 2018, 2(1), 1-8.
- Deng, G.; Zha, H.; Luo, H.; Zhou, Y. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front. Bioeng. Biotechnol., 2023, 11, 1118546. doi: 10.3389/fbioe.2023.1118546 PMID: 36741760
- Yu, Z.; Gao, L.; Chen, K.; Zhang, W.; Zhang, Q.; Li, Q.; Hu, K. Nanoparticles: A new approach to upgrade cancer diagnosis and treatment. Nanoscale Res. Lett., 2021, 16(1), 88. doi: 10.1186/s11671-021-03489-z PMID: 34014432
- Samadian, H.; Hosseini-Nami, S.; Kamrava, S.K.; Ghaznavi, H.; Shakeri-Zadeh, A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J. Cancer Res. Clin. Oncol., 2016, 142(11), 2217-2229. doi: 10.1007/s00432-016-2179-3 PMID: 27209529
- Tepale, N.; Fernández-Escamilla, V.V.A.; Carreon-Alvarez, C.; González-Coronel, V.J.; Luna-Flores, A.; Aguilar, J. Nanoengineering of gold nanoparticles: Green synthesis, characterization, and applications. Crystals , 2019, 9(12), 612. doi: 10.3390/cryst9120612
- Mahmoud, M.A.; El-Sayed, M.A. Gold nanoframes: Very high surface plasmon fields and excellent near-infrared sensors. J. Am. Chem. Soc., 2010, 132(36), 12704-12710. doi: 10.1021/ja104532z PMID: 20722373
- Skrabalak, S.E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C.M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res., 2008, 41(12), 1587-1595. doi: 10.1021/ar800018v PMID: 18570442
- Hong, S.; Li, X. Optimal size of gold nanoparticles for surfaceenhanced Raman spectroscopy under different conditions J. Nanomater.,, 2013, 2013 doi: 10.1155/2013/790323
- Ouabbas, Y. (9c) surface modification of silica particles by drycoating. 2006 AIChE Spring Meeting & Global Congress on Process Safety, April 23-27, 2006 Orlando, FL 2006.
- Mao, W.; Son, Y.J.; Yoo, H.S. Gold nanospheres and nanorods for anti-cancer therapy: comparative studies of fabrication, surface-decoration, and anti-cancer treatments. Nanoscale, 2020, 12(28), 14996-15020. doi: 10.1039/D0NR01690J PMID: 32666990
- Lorenzana-Vázquez, G.; Pavel, I.; Meléndez, E. Gold nanoparticles functionalized with 2-thiouracil for antiproliferative and photothermal therapies in breast cancer cells. Molecules, 2023, 28(11), 4453. doi: 10.3390/molecules28114453 PMID: 37298929
- Freitas de Freitas, L.; Varca, G.; dos Santos Batista, J.; Benévolo Lugão, A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials , 2018, 8(11), 939. doi: 10.3390/nano8110939 PMID: 30445694
- Ghassan, A.A.; Mijan, N.A.; Taufiq-Yap, Y. H. Nanomaterials: An overview of nanorods synthesis and optimization. Nanorods and nanocomposites, 2019, 11, 8-33.
- De Matteis, V.; Cascione, M.; Toma, C.C.; Rinaldi, R. Engineered gold nanoshells killing tumor cells: New perspectives. Curr. Pharm. Des., 2019, 25(13), 1477-1489. doi: 10.2174/1381612825666190618155127 PMID: 31258061
- Huang, S.; Liu, Y.; Xu, X.; Ji, M.; Li, Y.; Song, C.; Duan, S.; Hu, Y. Triple therapy of hepatocellular carcinoma with microRNA-122 and doxorubicin co-loaded functionalized gold nanocages. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(15), 2217-2229. doi: 10.1039/C8TB00224J PMID: 32254562
- Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Ramakrishna, S.; Chiang, W.H.; Lai, C.W.; Gholami, A. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab. Rev., 2020, 52(2), 299-318. doi: 10.1080/03602532.2020.1734021 PMID: 32150480
- Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv., 2020, 2(9), 3764-3787. doi: 10.1039/D0NA00472C PMID: 36132791
- Zhang, R.; Kiessling, F.; Lammers, T.; Pallares, R.M. Clinical translation of gold nanoparticles. Drug Deliv. Transl. Res., 2023, 13(2), 378-385. doi: 10.1007/s13346-022-01232-4 PMID: 36045273
- Curry, T.; Kopelman, R.; Shilo, M.; Popovtzer, R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol. Imaging, 2014, 9(1), 53-61. doi: 10.1002/cmmi.1563 PMID: 24470294
- Banstola, A.; Emami, F.; Jeong, J.H.; Yook, S. Current applications of gold nanoparticles for medical imaging and as treatment agents for managing pancreatic cancer. Macromol. Res., 2018, 26(11), 955-964. doi: 10.1007/s13233-018-6139-4
- Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4(7), 3689-3696. doi: 10.1021/nn901877h PMID: 20550178
- Arvizo, R.; Bhattacharya, R.; Mukherjee, P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv., 2010, 7(6), 753-763. doi: 10.1517/17425241003777010 PMID: 20408736
- Ibrahim, K.; Al-Mutary, M.; Bakhiet, A.; Khan, H. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules, 2018, 23(8), 1848. doi: 10.3390/molecules23081848 PMID: 30044410
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine , 2008, 3(5), 703-717. doi: 10.2217/17435889.3.5.703 PMID: 18817471
- Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine , 2018, 14(1), 1-12. doi: 10.1016/j.nano.2017.08.011 PMID: 28882675
- Li, X.; Wang, B.; Zhou, S.; Chen, W.; Chen, H.; Liang, S.; Zheng, L.; Yu, H.; Chu, R.; Wang, M.; Chai, Z.; Feng, W. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. J. Nanobiotechnol., 2020, 18(1), 45. doi: 10.1186/s12951-020-00599-1 PMID: 32169073
- Mironava, T.; Hadjiargyrou, M.; Simon, M.; Jurukovski, V.; Rafailovich, M.H. Gold nanoparticles cellular toxicity and recovery: Effect of size, concentration and exposure time. Nanotoxicology, 2010, 4(1), 120-137. doi: 10.3109/17435390903471463 PMID: 20795906
- Anik, M.I.; Mahmud, N.; Al Masud, A.; Hasan, M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select, 2022, 3(4), 792-828. doi: 10.1002/nano.202100255
- Yahyaei, B.; Nouri, M.; Bakherad, S.; Hassani, M.; Pourali, P. Effects of biologically produced gold nanoparticles: Toxicity assessment in different rat organs after intraperitoneal injection. AMB Express, 2019, 9(1), 38. doi: 10.1186/s13568-019-0762-0 PMID: 30888557
- Izci, M.; Maksoudian, C.; Gonçalves, F.; Aversa, L.; Salembier, R.; Sargsian, A.; Pérez, G.I.; Chu, T.; Rios, L.C.; Bolea-Fernandez, E.; Nittner, D.; Vanhaecke, F.; Manshian, B.B.; Soenen, S.J. Gold nanoparticle delivery to solid tumors: A multiparametric study on particle size and the tumor microenvironment. J. Nanobiotechnol., 2022, 20(1), 518. doi: 10.1186/s12951-022-01727-9 PMID: 36494816
- Hsieh, D.S.; Wang, H.; Tan, S.W.; Huang, Y.H.; Tsai, C.Y.; Yeh, M.K.; Wu, C.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 2011, 32(30), 7633-7640. doi: 10.1016/j.biomaterials.2011.06.073 PMID: 21782236
- Mahalunkar, S.; Yadav, A.S.; Gorain, M.; Pawar, V.; Braathen, R.; Weiss, S.; Bogen, B.; Gosavi, S.W.; Kundu, G.C. Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer. Int. J. Nanomed., 2019, 14, 8285-8302. doi: 10.2147/IJN.S215142 PMID: 31802866
- Li, T.; Zhang, M.; Wang, J.; Wang, T.; Yao, Y.; Zhang, X.; Zhang, C.; Zhang, N. Thermosensitive hydrogel co-loaded with gold nanoparticles and doxorubicin for effective chemoradiotherapy. AAPS J., 2016, 18(1), 146-155. doi: 10.1208/s12248-015-9828-3 PMID: 26381779
- Xu, H.; Niu, M.; Yuan, X.; Wu, K.; Liu, A. CD44 as a tumor biomarker and therapeutic target. Exp. Hematol. Oncol., 2020, 9(1), 36. doi: 10.1186/s40164-020-00192-0 PMID: 33303029
- Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 137, 115-170. doi: 10.1016/bs.acr.2017.11.003 PMID: 29405974
- Kim, S.J.; Kim, H.S.; Seo, Y.R. Understanding of ROS-inducing strategy in anticancer therapy. Oxid. Med. Cell. Longev., 2019, 2019, 538169. doi: 10.1155/2019/5381692
- Lo, C.Y.; Tsai, S.W.; Niu, H.; Chen, F.H.; Hwang, H.C.; Chao, T.C.; Hsiao, I.T.; Liaw, J.W. Gold-Nanoparticles-enhanced production of reactive oxygen species in cells at spread-out bragg peak under proton beam radiation. ACS Omega, 2023, 8(20), 17922-17931. doi: 10.1021/acsomega.3c01025 PMID: 37251180
- Yafout, M.; Ousaid, A.; Khayati, Y.; El Otmani, I.S. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci. Am., 2021, 11, e00685.
- Girigoswami, A.; Girigoswami, K. Potential applications of nanoparticles in improving the outcome of lung cancer treatment. Genes , 2023, 14(7), 1370. doi: 10.3390/genes14071370 PMID: 37510275
- Alhussan, A.; Bromma, K.; Perez, M.M.; Beckham, W.; Alexander, A.S.; Howard, P.L.; Chithrani, D.B. Docetaxel-mediated uptake and retention of gold nanoparticles in tumor cells and in cancer-associated fibroblasts. Cancers , 2021, 13(13), 3157. doi: 10.3390/cancers13133157 PMID: 34202574
- Li, B.; Hao, G.; Sun, B.; Gu, Z.; Xu, Z.P. Engineering a therapy‐induced "immunogenic cancer cell death" amplifier to boost systemic tumor elimination. Adv. Funct. Mater., 2020, 30(22), 1909745. doi: 10.1002/adfm.201909745
- Salimi, M.; Mosca, S.; Gardner, B.; Palombo, F.; Matousek, P.; Stone, N. Nanoparticle-mediated photothermal therapy limitation in clinical applications regarding pain management. Nanomaterials , 2022, 12(6), 922. doi: 10.3390/nano12060922 PMID: 35335735
- Lee, J.H.; Cho, H.Y.; Choi, H.; Lee, J.Y.; Choi, J.W. Application of gold nanoparticle to plasmonic biosensors. Int. J. Mol. Sci., 2018, 19(7), 2021. doi: 10.3390/ijms19072021 PMID: 29997363
- Liu, Y.; Ashton, J.R.; Moding, E.J.; Yuan, H.; Register, J.K.; Fales, A.M.; Choi, J.; Whitley, M.J.; Zhao, X.; Qi, Y.; Ma, Y.; Vaidyanathan, G.; Zalutsky, M.R.; Kirsch, D.G.; Badea, C.T.; Vo-Dinh, T. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics, 2015, 5(9), 946-960. doi: 10.7150/thno.11974 PMID: 26155311
- Han, H.S.; Choi, K.Y. Advances in nanomaterial-mediated photothermal cancer therapies: Toward clinical applications. Biomedicines, 2021, 9(3), 305. doi: 10.3390/biomedicines9030305 PMID: 33809691
- Mukherjee, P.; Tripathy, S.; Matsabisa, M.G.; Sahu, S.K. Development of upconversion-NMOFs nanocomposite conjugated with gold nanoparticles for NIR light-triggered combinational chemo-photothermal therapy. J. Photochem. Photobiol. Chem., 2023, 437, 114426. doi: 10.1016/j.jphotochem.2022.114426
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281. doi: 10.3322/caac.20114 PMID: 21617154
- Broekgaarden, M.; Weijer, R.; van Gulik, T.M.; Hamblin, M.R.; Heger, M. Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev., 2015, 34(4), 643-690. doi: 10.1007/s10555-015-9588-7 PMID: 26516076
- Baskaran, R.; Lee, J.; Yang, S.G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res., 2018, 22(1), 25. doi: 10.1186/s40824-018-0140-z PMID: 30275968
- Hong, E.J.; Choi, D.G.; Shim, M.S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B, 2016, 6(4), 297-307. doi: 10.1016/j.apsb.2016.01.007 PMID: 27471670
- Zhou, Z.; Zhang, L.; Zhang, Z.; Liu, Z. Advances in photosensitizer-related design for photodynamic therapy. Asian J. Pharm. Sci., 2021, 16(6), 668-686. doi: 10.1016/j.ajps.2020.12.003 PMID: 35027948
- Chadwick, S.J.; Salah, D.; Livesey, P.M.; Brust, M.; Volk, M. Singlet oxygen generation by laser irradiation of gold nanoparticles. J. Phys. Chem. C, 2016, 120(19), 10647-10657. doi: 10.1021/acs.jpcc.6b02005 PMID: 27239247
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364. doi: 10.1042/BJ20150942 PMID: 26862179
- García, C.P.; Bruce, G.; Pérez-García, L.; Russell, D.A. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci., 2018, 17(11), 1534-1552. doi: 10.1039/c8pp00271a PMID: 30118115
- Bromma, K.; Chithrani, D.B. Advances in gold nanoparticle-based combined cancer therapy. Nanomaterials , 2020, 10(9), 1671. doi: 10.3390/nano10091671 PMID: 32858957
- Wei, X.; Chen, H.; Tham, H.P.; Zhang, N.; Xing, P.; Zhang, G.; Zhao, Y. Combined photodynamic and photothermal therapy using cross-linked polyphosphazene nanospheres decorated with gold nanoparticles. ACS Appl. Nano Mater., 2018, 1(7), 3663-3672. doi: 10.1021/acsanm.8b00776
- Gupta, N.; Sharma, R.K.; Maitra, A.; Shrivastava, A. In-vitro and in-vivo efficacy of hollow gold nanoparticles encapsulating horseradish peroxidase: Oxidative stress-mediated tumor cell killing. J. Drug Deliv. Sci. Technol., 2023, 79, 103979. doi: 10.1016/j.jddst.2022.103979
- Wu, X.; Gu, Z.; Chen, Y.; Chen, B.; Chen, W.; Weng, L.; Liu, X. Application of PD-1 blockade in cancer immunotherapy. Comput. Struct. Biotechnol. J., 2019, 17, 661-674. doi: 10.1016/j.csbj.2019.03.006 PMID: 31205619
- Sanmamed, M.F.; Chen, L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J., 2014, 20(4), 256-261. doi: 10.1097/PPO.0000000000000061 PMID: 25098285
- Han, J.; Duan, J.; Bai, H.; Wang, Y.; Wan, R.; Wang, X.; Chen, S.; Tian, Y.; Wang, D.; Fei, K.; Yao, Z.; Wang, S.; Lu, Z.; Wang, Z.; Wang, J. TCR repertoire diversity of peripheral PD-1+CD8+ T cells predicts clinical outcomes after immunotherapy in patients with nonsmall cell lung cancer. Cancer Immunol. Res., 2020, 8(1), 146-154. doi: 10.1158/2326-6066.CIR-19-0398 PMID: 31719056
- Liu, Y.; Maccarini, P.; Palmer, G.M.; Etienne, W.; Zhao, Y.; Lee, C.T.; Ma, X.; Inman, B.A.; Vo-Dinh, T. Synergistic immuno photothermal nanotherapy (symphony) for the treatment of unresectable and metastatic cancers. Sci. Rep., 2017, 7(1), 8606. doi: 10.1038/s41598-017-09116-1 PMID: 28819209
- Ashrafizadeh, M.; Farhood, B.; Eleojo, M.A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663. doi: 10.1016/j.intimp.2020.106663 PMID: 32521494
- Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomed., 2021, 16, 1083-1102. doi: 10.2147/IJN.S290438 PMID: 33603370
- Candelaria, M.; Garcia-Arias, A.; Cetina, L.; Dueñas-Gonzalez, A. Radiosensitizers in cervical cancer. Cisplatin and beyond. Radiat. Oncol., 2006, 1(1), 15. doi: 10.1186/1748-717X-1-15 PMID: 16722549
- Varzandeh, M.; Sabouri, L.; Mansouri, V.; Gharibshahian, M.; Beheshtizadeh, N.; Hamblin, M.R.; Rezaei, N. Application of nano radiosensitizers in combination cancer therapy. Bioeng. Transl. Med., 2023, 8(3), e10498. doi: 10.1002/btm2.10498 PMID: 37206240
- Shen, H.; Huang, H.; Jiang, Z. Nanoparticle-based radiosensitization strategies for improving radiation therapy. Front. Pharmacol., 2023, 14, 1145551. doi: 10.3389/fphar.2023.1145551 PMID: 36873996
- Bhat, V.; Pellizzari, S.; Allan, A.L.; Wong, E.; Lock, M.; Brackstone, M.; Lohmann, A.E.; Cescon, D.W.; Parsyan, A. Radiotherapy and radiosensitization in breast cancer: Molecular targets and clinical applications. Crit. Rev. Oncol. Hematol., 2022, 169, 103566. doi: 10.1016/j.critrevonc.2021.103566 PMID: 34890802
- Scher, N.; Bonvalot, S.; Le Tourneau, C.; Chajon, E.; Verry, C.; Thariat, J.; Calugaru, V. Review of clinical applications of radiation-enhancing nanoparticles. Biotechnol. Rep. , 2020, 28, e00548. doi: 10.1016/j.btre.2020.e00548 PMID: 33204660
- Dobeová, L.; Gier, T.; Kopečná, O.; Pagáčová, E.; Vičar, T.; Bestvater, F.; Toufar, J.; Bačíková, A.; Kopel, P.; Fedr, R.; Hildenbrand, G.; Falková, I.; Falk, M.; Hausmann, M. Incorporation of low concentrations of gold nanoparticles: Complex effects on radiation response and fate of cancer cells. Pharmaceutics, 2022, 14(1), 166. doi: 10.3390/pharmaceutics14010166 PMID: 35057061
- Chen, Y.; Yang, J.; Fu, S.; Wu, J. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int. J. Nanomed., 2020, 15, 9407-9430. doi: 10.2147/IJN.S272902 PMID: 33262595
- Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z. Gold nanoparticle mediated phototherapy for cancer. J. Nanomater., 2016, 2016, 1-29. doi: 10.1155/2016/5497136
- Cunningham, C.; de Kock, M.; Engelbrecht, M.; Miles, X.; Slabbert, J.; Vandevoorde, C. Radiosensitization effect of gold nanoparticles in proton therapy. Front. Public Health, 2021, 9, 699822. doi: 10.3389/fpubh.2021.699822 PMID: 34395371
- Kempson, I. Mechanisms of nanoparticle radiosensitization. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(1), e1656. doi: 10.1002/wnan.1656 PMID: 32686321
- Rosa, S.; Connolly, C.; Schettino, G.; Butterworth, K.T.; Prise, K.M. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol., 2017, 8(1), 2. doi: 10.1186/s12645-017-0026-0 PMID: 28217176
- Egorova, E.A.; van Rijt, M.M.J.; Sommerdijk, N.; Gooris, G.S.; Bouwstra, J.A.; Boyle, A.L.; Kros, A. One peptide for them all: Gold nanoparticles of different sizes are stabilized by a common peptide amphiphile. ACS Nano, 2020, 14(5), 5874-5886. doi: 10.1021/acsnano.0c01021 PMID: 32348119
- Mukherjee, P.; Bhattacharya, R.; Wang, P.; Wang, L.; Basu, S.; Nagy, J.A.; Atala, A.; Mukhopadhyay, D.; Soker, S. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res., 2005, 11(9), 3530-3534. doi: 10.1158/1078-0432.CCR-04-2482 PMID: 15867256
- Liang, P.; Mao, L.; Dong, Y.; Zhao, Z.; Sun, Q.; Mazhar, M.; Ma, Y.; Yang, S.; Ren, W. Design and application of near-infrared nanomaterial-liposome hybrid nanocarriers for cancer photothermal therapy. Pharmaceutics, 2021, 13(12), 2070. doi: 10.3390/pharmaceutics13122070 PMID: 34959351
- Mahan, M.M.; Doiron, A.L. Gold nanoparticles as x-ray, CT, and multimodal imaging contrast agents: Formulation, targeting, and methodology. J. Nanomater., 2018, 2018, 1-15. doi: 10.1155/2018/5837276
- Farooq, M.U.; Novosad, V.; Rozhkova, E.A.; Wali, H.; Ali, A.; Fateh, A.A.; Neogi, P.B.; Neogi, A.; Wang, Z. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci. Rep., 2018, 8(1), 2907. doi: 10.1038/s41598-018-21331-y PMID: 29440698
- Kim, H.M.; Park, J.H.; Choi, Y.J.; Oh, J.M.; Park, J. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC Advances, 2023, 13(8), 5529-5537. doi: 10.1039/D2RA07276A PMID: 36798609
- Bi, Y.; Hao, F.; Yan, G.; Teng, L.; Lee, R.J.; Xie, J. Actively targeted nanoparticles for drug delivery to tumor. Curr. Drug Metab., 2016, 17(8), 763-782. doi: 10.2174/1389200217666160619191853 PMID: 27335116
- Liu, Y.; He, M.; Niu, M.; Zhao, Y.; Zhu, Y.; Li, Z.; Feng, N. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: A light-responsive nanocarrier with enhanced antitumor efficiency. Int. J. Nanomed., 2015, 10, 3081-3095. PMID: 25960649
- Tomuleasa, C.; Soritau, O.; Orza, A.; Dudea, M.; Petrushev, B.; Mosteanu, O.; Susman, S.; Florea, A.; Pall, E.; Aldea, M.; Kacso, G.; Cristea, V.; Berindan-Neagoe, I.; Irimie, A. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J. Gastrointestin. Liver Dis., 2012, 21(2), 187-196. PMID: 22720309
- Ali, M.M.; Rajab, N.A.; Abdulrasool, A.A. Etoposide-loaded gold nanoparticles: Preparation, characterization, optimization and cytotoxicity assay. Systematic Rev. Pharm., 2020, 11, 372-381.
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219. doi: 10.2147/vhrm.2006.2.3.213 PMID: 17326328
- Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev., 2012, 41(7), 2943-2970. doi: 10.1039/c2cs15355f PMID: 22388295
- Shen, N.; Zhang, R.; Zhang, H-R.; Luo, H-Y.; Shen, W.; Gao, X.; Guo, D-Z.; Shen, J. Inhibition of retinal angiogenesis by gold nanoparticles via inducing autophagy. Int. J. Ophthalmol., 2018, 11(8), 1269-1276. PMID: 30140628
- Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697. doi: 10.1111/cpr.12296 PMID: 27641938
- Abdal Dayem, A.; Hossain, M.; Lee, S.; Kim, K.; Saha, S.; Yang, G.M.; Choi, H.; Cho, S.G. The Role of Reactive Oxygen Species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1), 120. doi: 10.3390/ijms18010120 PMID: 28075405
- Vimalraj, S.; Ashokkumar, T.; Saravanan, S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed. Pharmacother., 2018, 105, 440-448. doi: 10.1016/j.biopha.2018.05.151 PMID: 29879628
- Shrestha, B.; Wang, L.; Brey, E.M.; Uribe, G.R.; Tang, L. Smart nanoparticles for chemo-based combinational therapy. Pharmaceutics, 2021, 13(6), 853. doi: 10.3390/pharmaceutics13060853 PMID: 34201333
- Yang, Y.; Zheng, X.; Chen, L.; Gong, X.; Yang, H.; Duan, X.; Zhu, Y. Multifunctional gold nanoparticles in cancer diagnosis and treatment. Int. J. Nanomed., 2022, 17, 2041-2067. doi: 10.2147/IJN.S355142 PMID: 35571258
- Jelveh, S.; Chithrani, D.B. Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers (Basel), 2011, 3(1), 1081-1110. doi: 10.3390/cancers3011081 PMID: 24212654
- Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in chemo-, immuno-, and combined therapy. Biomed. Opt. Express, 2019, 10(7), 3152-3182. doi: 10.1364/BOE.10.003152 PMID: 31467774
- Cetin Ersen, B.; Goncu, B.; Dag, A.; Birlik Demirel, G. GLUT-targeting phototherapeutic nanoparticles for synergistic triple combination cancer therapy. ACS Appl. Mater. Interfaces, 2023, 15(7), 9080-9098. doi: 10.1021/acsami.2c21180 PMID: 36780418
- Li, R.T.; Chen, M.; Yang, Z.C.; Chen, Y.J.; Huang, N.H.; Chen, W.H.; Chen, J.; Chen, J.X. AIE-based gold nanostar-berberine dimer nanocomposites for PDT and PTT combination therapy toward breast cancer. Nanoscale, 2022, 14(27), 9818-9831. doi: 10.1039/D2NR03408E PMID: 35771232
- Zhang, W.; Zang, Y.; Lu, Y.; Han, J.; Xiong, Q.; Xiong, J. Photodynamic therapy of up-conversion nanomaterial doped with gold nanoparticles. Int. J. Mol. Sci., 2022, 23(8), 4279. doi: 10.3390/ijms23084279 PMID: 35457097
- Xie, J.; Liang, R.; Li, Q.; Wang, K.; Hussain, M.; Dong, L.; Shen, C.; Li, H.; Shen, G.; Zhu, J.; Tao, J. Photosensitizer-loaded gold nanocages for immunogenic phototherapy of aggressive melanoma. Acta Biomater., 2022, 142, 264-273. doi: 10.1016/j.actbio.2022.01.051 PMID: 35101580
- Saw, W.S.; Anasamy, T.; Do, T.T.A.; Lee, H.B.; Chee, C.F.; Isci, U.; Misran, M.; Dumoulin, F.; Chong, W.Y.; Kiew, L.V.; Imae, T.; Chung, L.Y. Nanoscaled PAMAM dendrimer spacer improved the photothermal‒photodynamic treatment efficiency of photosensitizer‐decorated confeito‐like gold nanoparticles for cancer therapy. Macromol. Biosci., 2022, 22(8), 2200130. doi: 10.1002/mabi.202200130 PMID: 35579182
- Gong, B.; Shen, Y.; Li, H.; Li, X.; Huan, X.; Zhou, J.; Chen, Y.; Wu, J.; Li, W. Thermo-responsive polymer encapsulated gold nanorods for single continuous wave laser-induced photodynamic/photothermal tumour therapy. J. Nanobiotechnol., 2021, 19(1), 41. doi: 10.1186/s12951-020-00754-8 PMID: 33557807
- Liu, Z.; Xie, F.; Xie, J.; Chen, J.; Li, Y.; Lin, Q.; Luo, F.; Yan, J. New-generation photosensitizer-anchored gold nanorods for a single near-infrared light-triggered targeted photodynamicphotothermal therapy. Drug Deliv., 2021, 28(1), 1769-1784. doi: 10.1080/10717544.2021.1960923 PMID: 34470548
- Nam, J.; Son, S.; Ochyl, L.J.; Kuai, R.; Schwendeman, A.; Moon, J.J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun., 2018, 9(1), 1074. doi: 10.1038/s41467-018-03473-9 PMID: 29540781
- Li, Z.; Huang, H.; Tang, S.; Li, Y.; Yu, X.F.; Wang, H.; Li, P.; Sun, Z.; Zhang, H.; Liu, C.; Chu, P.K. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 2016, 74, 144-154. doi: 10.1016/j.biomaterials.2015.09.038 PMID: 26454052
- Wang, B.; Wang, J.H.; Liu, Q.; Huang, H.; Chen, M.; Li, K.; Li, C.; Yu, X.F.; Chu, P.K. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials, 2014, 35(6), 1954-1966. doi: 10.1016/j.biomaterials.2013.11.066 PMID: 24331707
- Popp, M.K.; Oubou, I.; Shepherd, C.; Nager, Z.; Anderson, C.; Pagliaro, L. Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume. J. Nanomater., 2014, 2014, 1-8. doi: 10.1155/2014/450670
- Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N.; Khlebtsov, B. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res., 2014, 7(3), 325-337. doi: 10.1007/s12274-013-0398-3
- Black, K.C.L.; Yi, J.; Rivera, J.G.; Zelasko-Leon, D.C.; Messersmith, P.B. Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine , 2013, 8(1), 17-28. doi: 10.2217/nnm.12.82 PMID: 22891865
- Wang, J.; Zhu, G.; You, M.; Song, E.; Shukoor, M.I.; Zhang, K.; Altman, M.B.; Chen, Y.; Zhu, Z.; Huang, C.Z.; Tan, W. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano, 2012, 6(6), 5070-5077. doi: 10.1021/nn300694v PMID: 22631052
- Kuo, W.S.; Chang, Y.T.; Cho, K.C.; Chiu, K.C.; Lien, C.H.; Yeh, C.S.; Chen, S.J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials, 2012, 33(11), 3270-3278. doi: 10.1016/j.biomaterials.2012.01.035 PMID: 22289264
- Arellano-Galindo, L.; Villar-Alvarez, E.; Varela, A.; Figueroa, V.; Fernandez-Vega, J.; Cambón, A.; Prieto, G.; Barbosa, S.; Taboada, P. Hybrid gold nanorod-based nanoplatform with chemo and photothermal activities for bimodal cancer therapy. Int. J. Mol. Sci., 2022, 23(21), 13109. doi: 10.3390/ijms232113109 PMID: 36361892
- Zhan, H.; Song, W.; Gu, M.; Zhao, H.; Liu, Y.; Liu, B.; Wang, J. A new gold nanoparticles and paclitaxel co-delivery system for enhanced anti-cancer effect through chemo-photothermal combination. J. Biomed. Nanotechnol., 2022, 18(4), 957-975. doi: 10.1166/jbn.2022.3309 PMID: 35854456
- Faid, A.H.; Shouman, S.A.; Badr, Y.A.; Sharaky, M.; Mostafa, E.M.; Sliem, M.A. Gold nanoparticles loaded chitosan encapsulate 6-mercaptopurine as a novel nanocomposite for chemo-photothermal therapy on breast cancer. BMC Chem., 2022, 16(1), 94. doi: 10.1186/s13065-022-00892-0 PMID: 36371236
- Bhattacharya, K.; Das, S.; Kundu, M.; Singh, S.; Kalita, U.; Mandal, M.; Singha, N.K. Gold nanoparticle embedded stimuli‐responsive functional glycopolymer: A potential material for synergistic chemo‐photodynamic therapy of cancer cells. Macromol. Biosci., 2022, 22(9), 2200069. doi: 10.1002/mabi.202200069 PMID: 35797485
- He, J.; Yu, S.; Ma, Z.; Sun, H.; Yang, Q.; Liu, Z.; Wang, X.; Zhang, X.; Wang, L. Polymyxin E biomineralized and doxorubicin-loaded gold nanoflowers nanodrug for chemo-photothermal therapy. Int. J. Pharm., 2022, 625, 122082. doi: 10.1016/j.ijpharm.2022.122082 PMID: 35934168
- Wang, J.; Zhao, H.; Song, W.; Gu, M.; Liu, Y.; Liu, B.; Zhan, H. Gold nanoparticle-decorated drug nanocrystals for enhancing anticancer efficacy and reversing drug resistance through chemo-/photothermal therapy. Mol. Pharm., 2022, 19(7), 2518-2534. doi: 10.1021/acs.molpharmaceut.2c00150 PMID: 35549267
- Liu, J.; Song, Y.; Wang, Y.; Han, M.; Wang, C.; Yan, F. Cyclodextrin-functionalized gold nanorods loaded with meclofenamic acid for improving n6 -methyladenosine-mediated second near-infrared photothermal immunotherapy. ACS Appl. Mater. Interfaces, 2022, 14(36), 40612-40623. doi: 10.1021/acsami.2c09978 PMID: 36053499
- He, J.; Liu, S.; Zhang, Y.; Chu, X.; Lin, Z.; Zhao, Z.; Qiu, S.; Guo, Y.; Ding, H.; Pan, Y.; Pan, J. The application of and strategy for gold nanoparticles in cancer immunotherapy. Front. Pharmacol., 2021, 12, 687399. doi: 10.3389/fphar.2021.687399 PMID: 34163367
- Di Pietro, P.; Strano, G.; Zuccarello, L.; Satriano, C. Gold and silver nanoparticles for applications in theranostics. Curr. Top. Med. Chem., 2016, 16(27), 3069-3102. doi: 10.2174/1568026616666160715163346 PMID: 27426869
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. 'Green' synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol., 2018, 16(1), 84. doi: 10.1186/s12951-018-0408-4 PMID: 30373622
Arquivos suplementares
