Eco-friendly Synthesis and Characterization of Silver Nanoparticles using Juglans regia Extract and their Anti-Trichomonas vaginalis, Anticancer, and Antimicrobial Effects
- Autores: Şimşek A.1, Küçük B.2, Aydın A.3, Aydın D.4, Karadağ A.5
-
Afiliações:
- Genome and Stem Cell Center (GENKOK), Erciyes University
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University
- Department of Basic Medical Science, Faculty of Medicine,, Yozgat Bozok University
- Department of Orthopedics and Traumatology, Faculty of Medicine,, Yozgat Bozok University
- Department of Chemistry, Science and Art Faculty,, Yozgat Bozok University
- Edição: Volume 23, Nº 20 (2023)
- Páginas: 2189-2199
- Seção: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694388
- DOI: https://doi.org/10.2174/1871520623666230309121801
- ID: 694388
Citar
Texto integral
Resumo
Background: Green synthesis is an efficient and eco-friendly method that has been used frequently in silver nanoparticle production in recent years. This method facilitates the production of nanoparticles using various organisms, such as plants, and is also cheaper and easier to apply than the other techniques.
Aims:This study aims to find possible mechanisms and pharmacological effects of cubic silver nanoparticles (AgNPs).
Objectives: This study characterizes cubic AgNPs and describes in detail their anticancer, antimicrobial, and anti- Trichomonas vaginalis abilities.
Methods: Silver nanoparticles were produced by green synthesis using Juglans regia (walnut) leaf aqueous extract. We validated the formation of AgNPs by UV-vis spectroscopy, FTIR analysis, and SEM micrographs. To determine the pharmacological effects of the AgNPs, we conducted anti-cancer, anti-bacterial, and anti-parasitic activity experiments.
Results: Cytotoxicity data revealed that AgNPs have cellular inhibitory properties on cancerous MCF7 (breast), HeLa (cervix), C6 (glioma), and HT29 (colorectal) cell lines. Similar results are also obtained with anti-bacterial and anti- Trichomonas vaginalis activity experiments. At certain concentrations, AgNPs displayed stronger anti-bacterial activities than the sulbactam/cefoperazone antibiotic combination in five bacteria species. Furthermore, the 12-h AgNPs treatment exhibited satisfactory anti-Trichomonas vaginalis activity similar to the FDA-approved metronidazole.
Conclusion: Consequently, AgNPs produced by the green synthesis method by Juglans regia leaves showed remarkable anti-carcinogenic, anti-bacterial, and anti-trichomonas vaginalis activities. We propose the potential usefulness of green synthesized AgNPs as therapeutics.
Sobre autores
Ahmet Şimşek
Genome and Stem Cell Center (GENKOK), Erciyes University
Email: info@benthamscience.net
Burak Küçük
Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University
Email: info@benthamscience.net
Ali Aydın
Department of Basic Medical Science, Faculty of Medicine,, Yozgat Bozok University
Autor responsável pela correspondência
Email: info@benthamscience.net
Davut Aydın
Department of Orthopedics and Traumatology, Faculty of Medicine,, Yozgat Bozok University
Email: info@benthamscience.net
Ahmet Karadağ
Department of Chemistry, Science and Art Faculty,, Yozgat Bozok University
Email: info@benthamscience.net
Bibliografia
- Salata, O.V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol., 2004, 2(1), 3. doi: 10.1186/1477-3155-2-3 PMID: 15119954
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. 'Green' synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol., 2018, 16(1), 84. doi: 10.1186/s12951-018-0408-4 PMID: 30373622
- Duran, B.; Perçin, E.; Aydın, A.; Destegül, A.; Aydin, D.; Özpınar, N.; Karadağ, A. Biogenic nanocopper: Eco-friendly synthesis, characterization, and their anti-Trichomonas vaginalis, anticancer, and antimicrobial effects. J. Med. Food, 2022, 25(7), 787-792. doi: 10.1089/jmf.2021.0151 PMID: 35834634
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; Ali, S. Green nanotechnology: A review on green synthesis of silver nanoparticles an ecofriendly approach. Int. J. Nanomed., 2019, 14, 5087-5107. doi: 10.2147/IJN.S200254 PMID: 31371949
- Liu, Y.; Kim, S.; Kim, Y.J.; Perumalsamy, H.; Lee, S.; Hwang, E.; Yi, T.H. Green synthesis of gold nanoparticles using Euphrasia officinalis leaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. Int. J. Nanomed., 2019, 14, 2945-2959. doi: 10.2147/IJN.S199781 PMID: 31114201
- Ali, Z.A.; Yahya, R.; Sekaran, S.D.; Puteh, R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv. Mater. Sci. Eng., 2016, 2016, 4102196. doi: 10.1155/2016/4102196
- Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 341-352. doi: 10.1080/21691401.2018.1557671 PMID: 30691311
- Thakur, S.; Sharma, S.; Thakur, S.; Rai, R. Green synthesis of copper nano-particles using Asparagus adscendens Roxb. Root and leaf extract and their antimicrobial activities. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7(4), 683-694. doi: 10.20546/ijcmas.2018.704.077
- Karpagavinayagam, P.; Vedhi, C. Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 2019, 160, 286-292. doi: 10.1016/j.vacuum.2018.11.043
- Drake, P.L.; Hazelwood, K.J. Exposure-related health effects of silver and silver compounds: A review. Ann. Occup. Hyg., 2005, 49(7), 575-585. doi: 10.1093/annhyg/mei019 PMID: 15964881
- Grande, R.; Sisto, F.; Puca, V.; Carradori, S.; Ronci, M.; Aceto, A.; Muraro, R.; Mincione, G.; Scotti, L. Antimicrobial and antibiofilm activities of new synthesized silver ultra-nanoclusters (SUNCs) against Helicobacter pylori. Front. Microbiol., 2020, 11(11), 1705. doi: 10.3389/fmicb.2020.01705 PMID: 32849359
- Durmus, I.M.; Deveci, I.; Karakurt, S. Synthesis of silica based nanoparticles against the proliferation of human prostate cancer. Anticancer. Agents Med. Chem., 2021, 21(18), 2553-2562. doi: 10.2174/1871520621666210208105521 PMID: 33557739
- Ak, G.; Karakayalı, T.; Cin, A.N.; Özel, B.; Şanlıer, Ş.H. One pot green synthesis of doxorubicin and curcumin loaded magnetic nanoparticles and cytotoxicity studies. Anticancer. Agents Med. Chem., 2021, 21(18), 2563-2571. doi: 10.2174/1871520621666210112123528 PMID: 33438561
- Marimuthu, J.; Thangaiah, S.; Santhanam, A.; George, V. Evaluation of cytotoxic effect of silver nanoparticles (AgNP) Synthesized from Phlebodium aureum (L.) J. smith extracts. Anticancer. Agents Med. Chem., 2021, 21(18), 2603-2609. doi: 10.2174/1871520621999201230233408 PMID: 33390141
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406. PMID: 26339255
- Ökten, S.; Aydin, A.; Tutar, A. Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. Sakarya Univer. J. Sci., 2019, 23, 824-830. doi: 10.16984/saufenbilder.469273
- Zakavi, F.; Golpasand H, L.; Daraeighadikolaei, A.; Farajzadeh Sheikh, A.; Daraeighadikolaei, A.; Leilavi S, Z. Antibacterial effect of Juglans regia bark against oral pathologic bacteria. Int. J. Dent., 2013, 2013, 854765. doi: 10.1155/2013/854765 PMID: 23878540
- Eswayah, A.; Labyad, N.; Aleanizy, F.; Belaid, A.; Alqahtani, F.; Alfassam, H. Antimicrobial and anti-inflammatory properties of Juglans regia leaves. Orient. J. Chem., 2019, 35(6), 1756-1759. doi: 10.13005/ojc/350618
- Vieira, V.; Pereira, C.; Pires, T.C.S.P.; Calhelha, R.C.; Alves, M.J.; Ferreira, O.; Barros, L.; Ferreira, I.C.F.R. Phenolic profile, antioxidant and antibacterial properties of Juglans regia L. (walnut) leaves from the Northeast of Portugal. Ind. Crops Prod., 2019, 134, 347-355. doi: 10.1016/j.indcrop.2019.04.020
- Sytykiewicz, H.; Chrzanowski, G.; Czerniewicz, P. Leszczyński, B.; Sprawka, I.; Krzyżanowski, R.; Matok, H. Antifungal activity of Juglans regia (L.) leaf extracts against Candida albicans isolates. Pol. J. Environ. Stud., 2015, 24(3), 1339-1348. doi: 10.15244/pjoes/34671
- Wianowska, D.; Garbaczewska, S.; Cieniecka-Roslonkiewicz, A.; Dawidowicz, A.L.; Jankowska, A. Comparison of antifungal activity of extracts from different Juglans regia cultivars and juglone. Microb. Pathog., 2016, 100, 263-267. doi: 10.1016/j.micpath.2016.10.009 PMID: 27744101
- Jahanbani, R.; Ghaffari, S.M.; Salami, M.; Vahdati, K.; Sepehri, H.; Sarvestani, N.N.; Sheibani, N.; Moosavi-Movahedi, A.A. Antioxidant and anticancer activities of walnut (Juglans regia L.) protein hydrolysates using different proteases. Plant Foods Hum. Nutr., 2016, 71(4), 402-409. doi: 10.1007/s11130-016-0576-z PMID: 27679440
- Salimi, M.; Majd, A.; Sepahdar, Z.; Azadmanesh, K.; Irian, S.; Ardestaniyan, M.H.; Hedayati, M.H.; Rastkari, N. Cytotoxicity effects of various Juglans regia (walnut) leaf extracts in human cancer cell lines. Pharm. Biol., 2012, 50(11), 1416-1422. doi: 10.3109/13880209.2012.682118 PMID: 22906313
- Li, W.; Li, D-Y.; Wang, H-D.; Zheng, Z-J.; Hu, J.; Li, Z-Z. Juglans regia hexane extract exerts antitumor effect, apoptosis induction and cell circle arrest in prostate cancer cells in vitro. Trop. J. Pharm. Res., 2015, 14(3), 399. doi: 10.4314/tjpr.v14i3.7
- Negi, A.S.; Luqman, S.; Srivastava, S.; Krishna, V.; Gupta, N.; Darokar, M.P. Antiproliferative and antioxidant activities of Juglans regia fruit extracts. Pharm. Biol., 2011, 49(6), 669-673. doi: 10.3109/13880209.2010.537666 PMID: 21554010
- Hosseinzadeh, H.; Zarei, H.; Taghiabadi, E. Antinociceptive, anti-inflammatory and acute toxicity effects of Juglans regia L. Leaves in mice. Iran. Red Crescent Med. J., 2011, 13(1), 27-33. PMID: 22946016
- Raveendran, P.; Fu, J.; Wallen, S.L. Completely "green" synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc., 2003, 125(46), 13940-13941. doi: 10.1021/ja029267j PMID: 14611213
- Hübner, D.P.G.; de Brum Vieira, P.; Frasson, A.P.; Menezes, C.B.; Senger, F.R.; Santos da Silva, G.N.; Baggio Gnoatto, S.C.; Tasca, T. Anti-Trichomonas vaginalis activity of betulinic acid derivatives. Biomed. Pharmacother., 2016, 84, 476-484. doi: 10.1016/j.biopha.2016.09.064 PMID: 27685791
- de Brum Vieira, P.; Giordani, R.B.; Macedo, A.J.; Tasca, T. Natural and synthetic compound anti-Trichomonas vaginalis: An update review. Parasitol. Res., 2015, 114(4), 1249-1261. doi: 10.1007/s00436-015-4340-3 PMID: 25786392
- Nesrin, K.; Yusuf, C.; Ahmet, K. Biogenic silver nanoparticles synthesized from Rhododendron ponticum and their antibacterial, antibiofilm and cytotoxic activities. J. Pharm. Biomed. Anal., 2020, 5(179), 112993. doi: 10.1016/j.jpba.2019.112993
- Vargas R, G.; Petro-Silveira, B.; Devereux, M.; McCann, M.; Souza dos Santos, A.L.; Tasca, T. Anti-Trichomonas vaginalis activity of 1,10-phenanthroline-5,6-dione-based metallodrugs and synergistic effect with metronidazole. Parasitology, 2019, 146(9), 1179-1183. doi: 10.1017/S003118201800152X PMID: 30207253
Arquivos suplementares
