Arsenic Trioxide inhibits Activation of Hedgehog Pathway in Human Neuroblastoma Cell Line SK-N-BE(2) Independent of Itraconazole

  • Autores: Liu X.1, Wang Z.2, Xiong X.3, Li C.4, Wu Y.3, Su M.3, Yang S.3, Zeng M.3, Weng W.3, Huang K.3, Zhou D.3, Fang J.3, Xu L.3, Li P.5, Zhu Y.6, Qiu K.3, Ma Y.7, Lei J.3, Li Y.3
  • Afiliações:
    1. Pediatric Hematology/Oncology, Children's Medical Center,, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
    2. Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
    3. Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
    4. Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University
    5. South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
    6. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital
    7. Pediatric Hematology/Oncology, Children's Medical Cente, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
  • Edição: Volume 23, Nº 20 (2023)
  • Páginas: 2217-2224
  • Seção: Oncology
  • URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694391
  • DOI: https://doi.org/10.2174/0118715206259952230919173611
  • ID: 694391

Citar

Texto integral

Resumo

Background: Neuroblastoma (NB) remains associated with a low overall survival rate over the long term. Abnormal activation of the Hedgehog (HH) signaling pathway can activate the transcription of various downstream target genes that promote NB. Both arsenic trioxide (ATO) and itraconazole (ITRA) can inhibit tumor growth.

Objective: To determine whether ATO combined with ITRA can be used to treat NB with HH pathway activation, we examined the effects of ATO and ITRA monotherapy or combined inhibition of the HH pathway in NB.

Methods: Analysis of CCK8 and flow cytometry showed cell inhibition and cell cycle, respectively. Real-time PCR analysis was conducted to assess the mRNA expression of HH pathway.

Results: We revealed that as concentrations of ATO and ITRA increased, the killing effects of both agents on SK-N-BE(2) cells became more apparent. During G2/M, the cell cycle was largely arrested by ATO alone and combined with ITRA, and in the G0/G1 phase by ITRA alone. In the HH pathway, ATO inhibited the transcription of the SHH, PTCH1, SMO and GLI2 genes, however, ITRA did not. Instead of showing synergistic effects in a combined mode, ITRA decreased ATO inhibitory effects.

Conclusion: We showed that ATO is an important inhibitor of HH pathway but ITRA can weaken the inhibitory effect of ATO. This study provides an experimental evidence for the clinical use of ATO and ITRA in the treatment of NB with HH pathway activation in cytology.

Sobre autores

Xiaoshan Liu

Pediatric Hematology/Oncology, Children's Medical Center,, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Zhixuan Wang

Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Xilin Xiong

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Chunmou Li

Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University

Email: info@benthamscience.net

Yu Wu

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Mingwei Su

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Shu Yang

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Meilin Zeng

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Wenjun Weng

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Ke Huang

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Dunhua Zhou

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Jianpei Fang

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Lvhong Xu

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Peng Li

South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences

Email: info@benthamscience.net

Yafeng Zhu

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital

Email: info@benthamscience.net

Kunyin Qiu

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Yuhan Ma

Pediatric Hematology/Oncology, Children's Medical Cente, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Jiaying Lei

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Email: info@benthamscience.net

Yang Li

Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Ponzoni, M.; Bachetti, T.; Corrias, M.V.; Brignole, C.; Pastorino, F.; Calarco, E.; Bensa, V.; Giusto, E.; Ceccherini, I.; Perri, P. Recent advances in the developmental origin of neuroblastoma: an overview. J. Exp. Clin. Cancer Res., 2022, 41(1), 92. doi: 10.1186/s13046-022-02281-w PMID: 35277192
  2. Morini, M.; Cangelosi, D.; Segalerba, D.; Marimpietri, D.; Raggi, F.; Castellano, A.; Fruci, D.; de Mora, J.F.; Cañete, A.; Yáñez, Y.; Viprey, V.; Corrias, M.V.; Carlini, B.; Pezzolo, A.; Schleiermacher, G.; Mazzocco, K.; Ladenstein, R.; Sementa, A.R.; Conte, M.; Garaventa, A.; Burchill, S.; Luksch, R.; Bosco, M.C.; Eva, A.; Varesio, L. Exosomal microRNAs from longitudinal liquid biopsies for the prediction of response to induction chemotherapy in high-risk neuroblastoma patients: A proof of concept SIOPEN study. Cancers (Basel), 2019, 11(10), 1476. doi: 10.3390/cancers11101476 PMID: 31575060
  3. Morgenstern, D.A.; London, W.B.; Stephens, D.; Volchenboum, S.L.; Simon, T.; Nakagawara, A.; Shimada, H.; Schleiermacher, G.; Matthay, K.K.; Cohn, S.L.; Pearson, A.D.J.; Irwin, M.S. Prognostic significance of pattern and burden of metastatic disease in patients with stage 4 neuroblastoma: A study from the International Neuroblastoma Risk Group database. Eur. J. Cancer, 2016, 65, 1-10. doi: 10.1016/j.ejca.2016.06.005 PMID: 27434878
  4. Strother, D.R.; London, W.B.; Schmidt, M.L.; Brodeur, G.M.; Shimada, H.; Thorner, P.; Collins, M.H.; Tagge, E.; Adkins, S.; Reynolds, C.P.; Murray, K.; Lavey, R.S.; Matthay, K.K.; Castleberry, R.; Maris, J.M.; Cohn, S.L. Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: Results of Children's Oncology Group study P9641. J. Clin. Oncol., 2012, 30(15), 1842-1848. doi: 10.1200/JCO.2011.37.9990 PMID: 22529259
  5. Baker, D.L.; Schmidt, M.L.; Cohn, S.L.; Maris, J.M.; London, W.B.; Buxton, A.; Stram, D.; Castleberry, R.P.; Shimada, H.; Sandler, A.; Shamberger, R.C.; Look, A.T.; Reynolds, C.P.; Seeger, R.C.; Matthay, K.K. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N. Engl. J. Med., 2010, 363(14), 1313-1323. doi: 10.1056/NEJMoa1001527 PMID: 20879880
  6. Wang, Z.; Cunningham, J.M.; Yang, X.H. CisPi: A transcriptomic score for disclosing cis-acting disease-associated lincRNAs. Bioinformatics, 2018, 34(17), i664-i670. doi: 10.1093/bioinformatics/bty574 PMID: 30423099
  7. Grimmer, M.R.; Weiss, W.A. Childhood tumors of the nervous system as disorders of normal development. Curr. Opin. Pediatr., 2006, 18(6), 634-638. doi: 10.1097/MOP.0b013e32801080fe PMID: 17099362
  8. Zanotti, S.; Decaesteker, B.; Vanhauwaert, S.; De Wilde, B.; De Vos, W.H.; Speleman, F. Cellular senescence in neuroblastoma. Br. J. Cancer, 2022, 126(11), 1529-1538. doi: 10.1038/s41416-022-01755-0 PMID: 35197583
  9. Nüsslein-Volhard, C.; Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature, 1980, 287(5785), 795-801. doi: 10.1038/287795a0 PMID: 6776413
  10. Varjosalo, M.; Taipale, J. Hedgehog: Functions and mechanisms. Genes Dev., 2008, 22(18), 2454-2472. doi: 10.1101/gad.1693608 PMID: 18794343
  11. Scales, S.J.; de Sauvage, F.J. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci., 2009, 30(6), 303-312. doi: 10.1016/j.tips.2009.03.007 PMID: 19443052
  12. Briscoe, J.; Thérond, P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol., 2013, 14(7), 416-429. doi: 10.1038/nrm3598 PMID: 23719536
  13. Raffel, C.; Jenkins, R.B.; Frederick, L.; Hebrink, D.; Alderete, B.; Fults, D.W.; James, C.D. Sporadic medulloblastomas contain PTCH mutations. Cancer Res., 1997, 57, 842-845. Available from: https://aacrjournals.org/cancerres/article/57/5/842/503889/SporadicMedulloblastomas-Contain-PTCH-Mutations1
  14. Mills, L.D.; Zhang, Y.; Marler, R.J.; Herreros-Villanueva, M.; Zhang, L.; Almada, L.L.; Couch, F.; Wetmore, C.; Pasca di Magliano, M.; Fernandez-Zapico, M.E. Loss of the transcription factor GLI1 identifies a signaling network in the tumor microenvironment mediating KRAS oncogene-induced transformation. J. Biol. Chem., 2013, 288(17), 11786-11794. doi: 10.1074/jbc.M112.438846 PMID: 23482563
  15. Schiapparelli, P.; Shahi, M.H.; Enguita-Germán, M.; Johnsen, J.I.; Kogner, P.; Lázcoz, P.; Castresana, J.S. Inhibition of the sonic hedgehog pathway by cyplopamine reduces the CD133+/CD15+ cell compartment and the in vitro tumorigenic capability of neuroblastoma cells. Cancer Lett., 2011, 310(2), 222-231. doi: 10.1016/j.canlet.2011.07.005 PMID: 21803487
  16. Zhou, Y.; Dai, R.; Mao, L.; Xia, Y.; Yao, Y.; Yang, X.; Hu, B. Activation of sonic hedgehog signaling pathway in S-type neuroblastoma cell lines. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2010, 30(3), 271-277. doi: 10.1007/s11596-010-0342-7 PMID: 20556567
  17. Oue, T.; Yoneda, A.; Uehara, S.; Yamanaka, H.; Fukuzawa, M. Increased expression of the hedgehog signaling pathway in pediatric solid malignancies. J. Pediatr. Surg., 2010, 45(2), 387-392. doi: 10.1016/j.jpedsurg.2009.10.081 PMID: 20152358
  18. Reifenberger, J.; Wolter, M.; Weber, R.G. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res., 1998, 58, 1798-1803. Available from: https://aacrjournals.org/cancerres/article/58/9/1798/505175/Missense-Mutations-in-SMOHinSporadic-Basal-Cell
  19. Qi, K.; Li, Y.; Huang, K.; Xiong, X.; Chuchu, F.; Zhang, C.; Weng, W. Pre-application of arsenic trioxide may potentiate cytotoxic effects of vinorelbine/docetaxel on neuroblastoma SK-N-SH cells. Biomed. Pharmacother., 2019, 113, 108665. doi: 10.1016/j.biopha.2019.108665 PMID: 30889490
  20. Xiong, X.; Li, Y.; Liu, L.; Qi, K.; Zhang, C.; Chen, Y.; Fang, J. Arsenic trioxide induces cell cycle arrest and affects Trk receptor expression in human neuroblastoma SK-N-SH cells. Biol. Res., 2018, 51(1), 18. doi: 10.1186/s40659-018-0167-6 PMID: 29898774
  21. Beauchamp, E.M.; Ringer, L.; Bulut, G.; Sajwan, K.P.; Hall, M.D.; Lee, Y.C.; Peaceman, D.; Özdemirli, M.; Rodriguez, O.; Macdonald, T.J.; Albanese, C.; Toretsky, J.A.; Üren, A. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J. Clin. Invest., 2011, 121(1), 148-160. doi: 10.1172/JCI42874 PMID: 21183792
  22. Wickström, M.; Dyberg, C.; Shimokawa, T.; Milosevic, J.; Baryawno, N.; Fuskevåg, O.M.; Larsson, R.; Kogner, P.; Zaphiropoulos, P.G.; Johnsen, J.I. Arsenic trioxide - An old drug rediscovered. Blood Rev., 2010, 24, 191-199. Available from: https://www.sciencedirect.com/science/article/pii/S0268960X10000226?via%3Dihub
  23. Kim, J.; Tang, J.Y.; Gong, R.; Kim, J.; Lee, J.J.; Clemons, K.V.; Chong, C.R.; Chang, K.S.; Fereshteh, M.; Gardner, D.; Reya, T.; Liu, J.O.; Epstein, E.H.; Stevens, D.A.; Beachy, P.A. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell, 2010, 17(4), 388-399. doi: 10.1016/j.ccr.2010.02.027 PMID: 20385363
  24. Liu, M.; Liang, G.; Zheng, H.; Zheng, N.; Ge, H.; Liu, W. Triazoles bind the C-terminal domain of SMO: Illustration by docking and molecular dynamics simulations the binding between SMO and triazoles. Life Sci., 2019, 217, 222-228. doi: 10.1016/j.lfs.2018.12.012 PMID: 30543826
  25. Mbaoji, F.N.; Behnisch-Cornwell, S.; Ezike, A.C.; Nworu, C.S.; Bednarski, P.J. Pharmacological evaluation of the anticancer activity of extracts and fractions of Lannea barteri Oliv. (Anacardiaceae) on adherent human cancer cell lines. Molecules, 2020, 25(4), 849. doi: 10.3390/molecules25040849 PMID: 32075139
  26. Keyel, M.E.; Reynolds, C.P. Spotlight on dinutuximab in the treatment of high-risk neuroblastoma: development and place in therapy. Biologics, 2018, 13, 1-12. doi: 10.2147/BTT.S114530 PMID: 30613134
  27. Saulnier Sholler, G.L.; Bond, J.P.; Bergendahl, G.; Dutta, A.; Dragon, J.; Neville, K.; Ferguson, W.; Roberts, W.; Eslin, D.; Kraveka, J.; Kaplan, J.; Mitchell, D.; Parikh, N.; Merchant, M.; Ashikaga, T.; Hanna, G.; Lescault, P.J.; Siniard, A.; Corneveaux, J.; Huentelman, M.; Trent, J. Feasibility of implementing molecular‐guided therapy for the treatment of patients with relapsed or refractory neuroblastoma. Cancer Med., 2015, 4(6), 871-886. doi: 10.1002/cam4.436 PMID: 25720842
  28. Johnsen, J.I.; Dyberg, C.; Fransson, S.; Wickström, M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol. Res., 2018, 131, 164-176. doi: 10.1016/j.phrs.2018.02.023 PMID: 29466695
  29. Pinto, N.; Naranjo, A.; Hibbitts, E.; Kreissman, S.G.; Granger, M.M.; Irwin, M.S.; Bagatell, R.; London, W.B.; Greengard, E.G.; Park, J.R.; DuBois, S.G. Predictors of differential response to induction therapy in high-risk neuroblastoma: A report from the Children's Oncology Group (COG). Eur. J. Cancer, 2019, 112, 66-79. doi: 10.1016/j.ejca.2019.02.003 PMID: 30947024
  30. Liu, L.; Li, Y.; Xiong, X.; Qi, K.; Zhang, C.; Fang, J.; Guo, H. Low dose of arsenic trioxide inhibits multidrug resistant-related P-glycoprotein expression in human neuroblastoma cell line. Int. J. Oncol., 2016, 49(6), 2319-2330. doi: 10.3892/ijo.2016.3756 PMID: 27840903
  31. Li, C.; Peng, X.; Feng, C.; Xiong, X.; Li, J.; Liao, N.; Yang, Z.; Liu, A.; Wu, P.; Liang, X.; He, Y.; Tian, X.; Lin, Y.; Wang, S.; Li, Y. Excellent early outcomes of combined chemotherapy with arsenic trioxide for stage 4/M neuroblastoma in children: A multicenter nonrandomized controlled trial. Oncol. Res., 2021, 28(7), 791-800. doi: 10.3727/096504021X16184815905096 PMID: 33858561
  32. Li, Y.; Feng, C.; Chen, Y.; Huang, K.; Li, C.; Xiong, X.; Li, P.; Zhou, D.; Peng, X.; Weng, W.; Deng, X.; Wu, Y.; Fang, J. Improved outcomes with induction chemotherapy combined with arsenic trioxide in stage 4 neuroblastoma: A case series. Technol. Cancer Res. Treat., 2021, 20, 15330338211041454. doi: 10.1177/15330338211041454 PMID: 34569870
  33. Huang, X.B.; Shi, Y.; Wang, C.S.; Wang, X.D.; Cheng, J.; Che, F.F. Synergistic inhibitory effect of arsenic trioxide combined with itraconazole on hedgehog pathway of multiple myeloma NCI-H929 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2016, 24(5), 1459-1465. doi: 10.7534/j.issn.1009-2137.2016.05.032 PMID: 27784375
  34. Wu, J.W.; Xiao, W.T.; Zeng, Y.J.; Fan, J.X.; Ye, Y.B.; Li, Y.M.; Zhen, R.; Guo, K.Y. Synergistic killing effects of arsenic trioxide combined with itraconazole on KG1a cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2017, 25(4), 1003-1010. doi: 10.7534/j.issn.1009-2137.2017.04.008 PMID: 28823259
  35. Boehme, K.A.; Zaborski, J.J.; Riester, R.; Schweiss, S.K.; Hopp, U.; Traub, F.; Kluba, T.; Handgretinger, R.; Schleicher, S.B. Targeting hedgehog signalling by arsenic trioxide reduces cell growth and induces apoptosis in rhabdomyosarcoma. Int. J. Oncol., 2016, 48(2), 801-812. doi: 10.3892/ijo.2015.3293 PMID: 26676886
  36. Kim, J.; Lee, J.J.; Kim, J.; Gardner, D.; Beachy, P.A. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc. Natl. Acad. Sci. USA, 2010, 107(30), 13432-13437. doi: 10.1073/pnas.1006822107 PMID: 20624968
  37. Lin, Z.; Li, W.H. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Mol. Biol. Evol., 2011, 28(1), 131-142. doi: 10.1093/molbev/msq184 PMID: 20660490
  38. Meng, Y.; Hu, J.; Chen, Y.; Yu, T.; Hu, L. Silencing MARCH1 suppresses proliferation, migration and invasion of ovarian cancer SKOV3 cells via downregulation of NF-κB and Wnt/β-catenin pathways. Oncol. Rep., 2016, 36(5), 2463-2470. doi: 10.3892/or.2016.5076 PMID: 27633480
  39. Chooi, W.H.; Chan, B.P. Compression loading-induced stress responses in intervertebral disc cells encapsulated in 3D collagen constructs. Sci. Rep., 2016, 6(1), 26449. doi: 10.1038/srep26449 PMID: 27197886

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023