An Antidepressant Drug Increased TRAIL Receptor-2 Expression and Sensitized Lung Cancer Cells to TRAIL-induced Apoptosis


Citar

Texto integral

Resumo

Background: :TRAIL has emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells while sparing normal cells. Autophagy, a highly regulated cellular recycling mechanism, is known to play a cell survival role by providing a required environment for the cell. Recent studies suggest that autophagy plays a significant role in increasing TRAIL resistance in certain cancer cells. Thus, regulating autophagy in TRAIL-mediated cancer therapy is crucial for its role in cancer treatment.

Objective: :Our study explored whether the antidepressant drug desipramine could enhance the ability of TRAIL to kill cancer cells by inhibiting autophagy.

Methods: :The effect of desipramine on TRAIL sensitivity was examined in various lung cancer cell lines. Cell viability was measured by morphological analysis, trypan blue exclusion, and crystal violet staining. Flow cytometry analysis was carried out to measure apoptosis with annexin V-PI stained cells. Western blotting, rtPCR, and immunocytochemistry were carried out to measure autophagy and death receptor expression. TEM was carried out to detect autophagy inhibition.

Results: :Desipramine treatment increased the TRAIL sensitivity in all lung cancer cell lines. Mechanistically, desipramine treatment induced death receptor expression to increase TRAIL sensitivity. This effect was confirmed when the genetic blockade of DR5 reduced the effect of desipramine in enhanced TRAIL-mediated cell death. Further investigation revealed that desipramine treatment increased the LC3 and p62 levels, indicating the inhibition of lysosomal degradation of autophagy. Notably, TRAIL, in combination with either desipramine or the autophagy inhibitor chloroquine, exhibited enhanced cytotoxicity compared to TRAIL treatment alone.

Conclusion: :Our findings revealed the potential of desipramine to induce TRAIL-mediated cell death by autophagy impairment. This discovery suggests its therapeutic potential for inducing TRAIL-mediated cell death by increasing the expression of death receptors, which is caused by impairing autophagy.

Sobre autores

Kazi Zinnah

Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University

Email: info@benthamscience.net

Ali Newaz Munna

Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University

Email: info@benthamscience.net

Jae-Won Seol

Biosafety Research Institute, College of Veterinary Medicine,, Jeonbuk National University

Email: info@benthamscience.net

Byung-Yong Park

Biosafety Research Institute, College of Veterinary Medicine,, Jeonbuk National University

Email: info@benthamscience.net

Sang-Youel Park

Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med., 2011, 32(4), 605-644. doi: 10.1016/j.ccm.2011.09.001 PMID: 22054876
  2. Chaitanya, T.K.; Barsouk, A.; Saginala, K.; Sukumar, A.J.; Barsouk, A. Epidemiology of lung cancer. Contemp. Oncol., 2021, 25(1), 45-52. doi: 10.5114/wo.2021.103829 PMID: 33911981
  3. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  4. Lin, C.; Lin, X.; Lin, K.; Tan, J.; Wei, C.; Liu, T. LKB1 expression and the prognosis of lung cancer. Medicine , 2021, 100(46), e27841. doi: 10.1097/MD.0000000000027841 PMID: 34797317
  5. Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311. doi: 10.1016/S0140-6736(16)30958-8 PMID: 27574741
  6. Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine, 2017, 7(4), 23-23. doi: 10.1051/bmdcn/2017070423 PMID: 29130448
  7. Silva, A.P.S.; Coelho, P.V.; Anazetti, M.; Simioni, P.U. Targeted therapies for the treatment of non-small-cell lung cancer: Monoclonal antibodies and biological inhibitors. Hum. Vaccin. Immunother., 2017, 13(4), 843-853. doi: 10.1080/21645515.2016.1249551 PMID: 27831000
  8. Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043. doi: 10.18632/oncotarget.16723 PMID: 28410237
  9. Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9, 20503121211034366. doi: 10.1177/20503121211034366 PMID: 34408877
  10. Valley, C.C.; Lewis, A.K.; Mudaliar, D.J.; Perlmutter, J.D.; Braun, A.R.; Karim, C.B.; Thomas, D.D.; Brody, J.R.; Sachs, J.N. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor 5 networks that are highly organized. J. Biol. Chem., 2012, 287(25), 21265-21278. doi: 10.1074/jbc.M111.306480 PMID: 22496450
  11. Griffith, T.; Stokes, B.; Kucaba, T.; Earel, J., Jr; VanOosten, R.; Brincks, E.; Norian, L. TRAIL gene therapy: From preclinical development to clinical application. Curr. Gene Ther., 2009, 9(1), 9-19. doi: 10.2174/156652309787354612 PMID: 19275567
  12. Kadowaki, Y.; Chari, N.S.; Teo, A.E.K.; Hashi, A.; Spurgers, K.B.; McDonnell, T.J. PI3 Kinase inhibition on TRAIL-induced apoptosis correlates with androgen-sensitivity and p21 expression in prostate cancer cells. Apoptosis, 2011, 16(6), 627-635. doi: 10.1007/s10495-011-0591-3 PMID: 21437722
  13. Fossati, S.; Ghiso, J.; Rostagno, A. TRAIL death receptors DR4 and DR5 mediate cerebral microvascular endothelial cell apoptosis induced by oligomeric Alzheimer's Aβ. Cell Death Dis., 2012, 3(6), e321-e321. doi: 10.1038/cddis.2012.55 PMID: 22695614
  14. Reis, C.R.; Chen, P.H.; Bendris, N.; Schmid, S.L. TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation. Proc. Natl. Acad. Sci. , 2017, 114(3), 504-509. doi: 10.1073/pnas.1615072114 PMID: 28049841
  15. Wang, S.; El-Deiry, W.S. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene, 2003, 22(53), 8628-8633. doi: 10.1038/sj.onc.1207232 PMID: 14634624
  16. Dai, X.; Zhang, J.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Kumar, A.P.; Ahn, K.S.; Sethi, G. Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp. Biol. Med. , 2015, 240(6), 760-773. doi: 10.1177/1535370215579167 PMID: 25854879
  17. Zhang, L.; Fang, B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther., 2005, 12(3), 228-237. doi: 10.1038/sj.cgt.7700792 PMID: 15550937
  18. Huang, Y.; Yang, X.; Xu, T.; Kong, Q.; Zhang, Y.; Shen, Y.; Wei, Y.; Wang, G.; Chang, K.J. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int. J. Oncol., 2016, 49(1), 153-163. doi: 10.3892/ijo.2016.3525 PMID: 27210546
  19. Guo, Z.L.; Li, J.Z.; Ma, Y.Y.; Qian, D.; Zhong, J.Y.; Jin, M.M.; Huang, P.; Che, L.Y.; Pan, B.; Wang, Y.; Sun, Z.X.; Liu, C.Z. Shikonin sensitizes A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and AKT pathways. BMC Cell Biol., 2018, 19(1), 29-29. doi: 10.1186/s12860-018-0179-7 PMID: 30594131
  20. Li, X.; You, M.; Liu, Y.; Ma, L.; Jin, P.; Zhou, R.; Zhang, Z.X.; Hua, B.; Ji, X.; Cheng, X.; Yin, F.; Chen, Y.; Yin, W. Reversal of the apoptotic resistance of non-small-cell lung carcinoma towards TRAIL by natural product toosendanin. Sci. Rep., 2017, 7(1), 42748-42748. doi: 10.1038/srep42748 PMID: 28209994
  21. Trivedi, R.; Mishra, D.P. Trailing TRAIL resistance: Novel targets for TRAIL sensitization in cancer cells. Front. Oncol., 2015, 5, 69-69. doi: 10.3389/fonc.2015.00069 PMID: 25883904
  22. Yonekawa, T.; Thorburn, A. Autophagy and cell death. Essays Biochem., 2013, 55, 105-117. doi: 10.1042/bse0550105 PMID: 24070475
  23. Han, H.; Zhou, H.; Li, J.; Feng, X.; Zou, D.; Zhou, W. TRAIL DR5-CTSB crosstalk participates in breast cancer autophagy initiated by SAHA. Cell Death Discov., 2017, 3(1), 17052. doi: 10.1038/cddiscovery.2017.52 PMID: 29018571
  24. Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293. doi: 10.1016/j.molcel.2010.09.023 PMID: 20965422
  25. Russell, R.C.; Guan, K.L. The multifaceted role of autophagy in cancer. EMBO J., 2022, 41(13), e110031. doi: 10.15252/embj.2021110031 PMID: 35535466
  26. Zhao, Y.G.; Zhang, H. Autophagosome maturation: An epic journey from the ER to lysosomes. J. Cell Biol., 2019, 218(3), 757-770. doi: 10.1083/jcb.201810099 PMID: 30578282
  27. Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14(2), 207-215. doi: 10.1080/15548627.2017.1378838 PMID: 28933638
  28. Giménez-Xavier, P.; Francisco, R.; Platini, F.; Pérez, R.; Ambrosio, S. LC3-I conversion to LC3-II does not necessarily result in complete autophagy. Int. J. Mol. Med., 2008, 22(6), 781-785. PMID: 19020776
  29. Tanida, I.; Ueno, T.; Kominami, E. LC3 and autophagy. Methods Mol. Biol., 2008, 445, 77-88. doi: 10.1007/978-1-59745-157-4_4 PMID: 18425443
  30. Huang, Z.; Gan, S.; Zhuang, X.; Chen, Y.; Lu, L.; Wang, Y.; Qi, X.; Feng, Q.; Huang, Q.; Du, B.; Zhang, R.; Liu, Z. Artesunate inhibits the cell growth in colorectal cancer by promoting ROS-dependent cell senescence and autophagy. Cells, 2022, 11(16), 2472. doi: 10.3390/cells11162472 PMID: 36010550
  31. Ma, S.; Attarwala, I.Y.; Xie, X.Q. SQSTM1/p62: A potential target for neurodegenerative disease. ACS Chem. Neurosci., 2019, 10(5), 2094-2114. doi: 10.1021/acschemneuro.8b00516 PMID: 30657305
  32. Zhang, Z.; Singh, R.; Aschner, M. Methods for the detection of autophagy in mammalian cells. Curr. Protoc. Toxicol., 2016, 69, 20.12.1-20.12.26.. doi: 10.1002/cptx.11
  33. Kung, C.P.; Budina, A.; Balaburski, G.; Bergenstock, M.K.; Murphy, M. Autophagy in tumor suppression and cancer therapy. Crit. Rev. Eukaryot. Gene Expr., 2011, 21(1), 71-100. doi: 10.1615/CritRevEukarGeneExpr.v21.i1.50 PMID: 21967333
  34. Russo, M.; Russo, G.L. Autophagy inducers in cancer. Biochem. Pharmacol., 2018, 153, 51-61. doi: 10.1016/j.bcp.2018.02.007 PMID: 29438677
  35. Bhat, P.; Kriel, J.; Shubha Priya, B. Basappa.; Shivananju, N.S.; Loos, B. Modulating autophagy in cancer therapy: Advancements and challenges for cancer cell death sensitization. Biochem. Pharmacol., 2018, 147, 170-182. doi: 10.1016/j.bcp.2017.11.021 PMID: 29203368
  36. Zhang, X.; Schönrogge, M.; Eichberg, J.; Wendt, E.H.U.; Kumstel, S.; Stenzel, J.; Lindner, T.; Jaster, R.; Krause, B.J.; Vollmar, B.; Zechner, D. Blocking autophagy in cancer-associated fibroblasts supports chemotherapy of pancreatic cancer cells. Front. Oncol., 2018, 8(590), 590. doi: 10.3389/fonc.2018.00590 PMID: 30568920
  37. Zinnah, K.M.A.; Park, S.Y. Duloxetine enhances TRAIL-mediated apoptosis via AMPK-mediated inhibition of autophagy flux in lung cancer cells. Anticancer Res., 2019, 39(12), 6621-6633. doi: 10.21873/anticanres.13877 PMID: 31810927
  38. Qiao, X.; Wang, X.; Shang, Y.; Li, Y.; Chen, S. Azithromycin enhances anticancer activity of TRAIL by inhibiting autophagy and up-regulating the protein levels of DR4/5 in colon cancer cells in vitro and in vivo. Cancer Commun., 2018, 38(1), 1-13. doi: 10.1186/s40880-018-0309-9 PMID: 29970185
  39. Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 2018, 14(8), 1435-1455. doi: 10.1080/15548627.2018.1474314 PMID: 29940786
  40. Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542. doi: 10.1038/nrc.2017.53 PMID: 28751651
  41. Onorati, A.V.; Dyczynski, M.; Ojha, R.; Amaravadi, R.K. Targeting autophagy in cancer. Cancer, 2018, 124(16), 3307-3318. doi: 10.1002/cncr.31335 PMID: 29671878
  42. Ostuzzi, G.; Matcham, F.; Dauchy, S.; Barbui, C.; Hotopf, M. Antidepressants for the treatment of depression in people with cancer. Cochrane Libr., 2018, 2018(4), CD011006-CD011006. doi: 10.1002/14651858.CD011006.pub3 PMID: 29683474
  43. Deng, L.; Lee, W.H.; Xu, Z.; Makriyannis, A.; Hohmann, A.G. Prophylactic treatment with the tricyclic antidepressant desipramine prevents development of paclitaxel-induced neuropathic pain through activation of endogenous analgesic systems. Pharmacol. Res., 2016, 114, 75-89. doi: 10.1016/j.phrs.2016.10.007 PMID: 27773824
  44. Lu, T.; Huang, C.C.; Lu, Y.C.; Lin, K.L.; Liu, S.I.; Wang, B.W.; Chang, P.M.; Chen, I.S.; Chen, S.S.; Tsai, J.Y.; Chou, C.T.; Jan, C.R. Desipramine-induced Ca2+ -independent apoptosis in MG63 human osteosarcoma cells: Dependence on P38 mitogen-activated protein kinase-regulated activation of caspase 3. Clin. Exp. Pharmacol. Physiol., 2009, 36(3), 297-303. doi: 10.1111/j.1440-1681.2008.05065.x PMID: 18986328
  45. Arimochi, H.; Morita, K. Desipramine induces apoptotic cell death through nonmitochondrial and mitochondrial pathways in different types of human colon carcinoma cells. Pharmacology, 2008, 81(2), 164-172. doi: 10.1159/000111144 PMID: 18025841
  46. Chang, H.C.; Huang, C.C.; Huang, C.J.; Cheng, J.S.; Liu, S.I.; Tsai, J.Y.; Chang, H.T.; Huang, J.K.; Chou, C.T.; Jan, C.R. Desipramine-induced apoptosis in human PC3 prostate cancer cells: Activation of JNK kinase and caspase-3 pathways and a protective role of Ca2+i elevation. Toxicology, 2008, 250(1), 9-14. doi: 10.1016/j.tox.2008.05.010 PMID: 18606486
  47. Ma, J.; Qiu, Y.; Yang, L.; Peng, L.; Xia, Z.; Hou, L.N.; Fang, C.; Qi, H.; Chen, H.Z. Desipramine induces apoptosis in rat glioma cells via endoplasmic reticulum stress-dependent CHOP pathway. J. Neurooncol., 2011, 101(1), 41-48. doi: 10.1007/s11060-010-0237-2 PMID: 20549303
  48. Kinjo, T.; Kowalczyk, P.; Kowalczyk, M.; Walaszek, Z.; Slaga, T.J.; Hanausek, M. Effects of desipramine on the cell cycle and apoptosis in Ca3/7 mouse skin squamous carcinoma cells. Int. J. Mol. Med., 2010, 25(6), 861-867. PMID: 20428789
  49. Rasheduzzaman, M.; Park, S.Y. Antihypertensive drug-candesartan attenuates TRAIL resistance in human lung cancer via AMPK-mediated inhibition of autophagy flux. Exp. Cell Res., 2018, 368(1), 126-135. doi: 10.1016/j.yexcr.2018.04.022 PMID: 29694835
  50. Nazim, U.M.; Park, S.Y. Genistein enhances TRAIL-induced cancer cell death via inactivation of autophagic flux. Oncol. Rep., 2015, 34(5), 2692-2698. doi: 10.3892/or.2015.4247 PMID: 26352862
  51. Zinnah, K.; Park, S.Y. Sensitizing TRAIL resistant A549 lung cancer cells and enhancing TRAIL induced apoptosis with the antidepressant amitriptyline. Oncol. Rep., 2021, 46(1), 144. doi: 10.3892/or.2021.8095 PMID: 34080659
  52. Zinnah, K.; Seol, J.W.; Park, S.Y. Inhibition of autophagy flux by sertraline attenuates TRAIL resistance in lung cancer via death receptor 5 upregulation. Int. J. Mol. Med., 2020, 46(2), 795-805. doi: 10.3892/ijmm.2020.4635 PMID: 32626921
  53. Moon, J.H.; Park, S.Y. Prion peptide-mediated calcium level alteration governs neuronal cell damage through AMPK-autophagy flux. Cell Commun. Signal., 2020, 18(1), 109. doi: 10.1186/s12964-020-00590-1 PMID: 32650778
  54. Nazim, U.M.D.; Moon, J.H.; Lee, Y.J.; Seol, J.W.; Park, S.Y. PPARγ activation by troglitazone enhances human lung cancer cells to TRAIL-induced apoptosis via autophagy flux. Oncotarget, 2017, 8(16), 26819-26831. doi: 10.18632/oncotarget.15819 PMID: 28460464
  55. Nazim, U.; Yin, H.; Park, S.Y. Neferine treatment enhances the TRAIL induced apoptosis of human prostate cancer cells via autophagic flux and the JNK pathway. Int. J. Oncol., 2020, 56(5), 1152-1161. doi: 10.3892/ijo.2020.5012 PMID: 32319589
  56. Pimentel, J.M.; Zhou, J.Y.; Wu, G.S. The role of TRAIL in apoptosis and immunosurveillance in cancer. Cancers, 2023, 15(10), 2752. doi: 10.3390/cancers15102752 PMID: 37345089
  57. Artykov, A.A.; Belov, D.A.; Shipunova, V.O.; Trushina, D.B.; Deyev, S.M.; Dolgikh, D.A.; Kirpichnikov, M.P.; Gasparian, M.E. Chemotherapeutic agents sensitize resistant cancer cells to the DR5-specific variant DR5-B more efficiently than to TRAIL by modulating the surface expression of death and decoy receptors. Cancers, 2020, 12(5), 1129. doi: 10.3390/cancers12051129 PMID: 32365976
  58. Park, E.J.; Min, K.; Choi, K.S.; Kubatka, P.; Kruzliak, P.; Kim, D.E.; Kwon, T.K. Chloroquine enhances TRAIL-mediated apoptosis through up-regulation of DR5 by stabilization of mRNA and protein in cancer cells. Sci. Rep., 2016, 6(1), 22921. doi: 10.1038/srep22921 PMID: 26964637
  59. Smith, H.R. Depression in cancer patients: Pathogenesis, implications and treatment. (Review). Oncol. Lett., 2015, 9(4), 1509-1514. doi: 10.3892/ol.2015.2944 PMID: 25788991
  60. Gross, A.F.; Smith, F.A.; Stern, T.A. Is depression an appropriate response to having cancer? A discussion of diagnostic criteria and treatment decisions. Prim. Care Companion J. Clin. Psychiatry, 2007, 9(5), 382-387. doi: 10.4088/PCC.v09n0508 PMID: 17998958
  61. Hartung, T.J.; Brähler, E.; Faller, H.; Härter, M.; Hinz, A.; Johansen, C.; Keller, M.; Koch, U.; Schulz, H.; Weis, J.; Mehnert, A. The risk of being depressed is significantly higher in cancer patients than in the general population: Prevalence and severity of depressive symptoms across major cancer types. Eur. J. Cancer, 2017, 72, 46-53. doi: 10.1016/j.ejca.2016.11.017 PMID: 28024266
  62. Alizadeh, Z. H.; Szegezdi, E. TRAIL in the treatment of cancer: From soluble cytokine to nanosystems. Cancers, 2022, 14(20), 5125. doi: 10.3390/cancers14205125 PMID: 36291908
  63. Mérino, D.; Lalaoui, N.; Morizot, A.; Solary, E.; Micheau, O. TRAIL in cancer therapy: Present and future challenges. Expert Opin. Ther. Targets, 2007, 11(10), 1299-1314. doi: 10.1517/14728222.11.10.1299 PMID: 17907960
  64. de Miguel, D.; Lemke, J.; Anel, A.; Walczak, H.; Martinez-Lostao, L. Onto better TRAILs for cancer treatment. Cell Death Differ., 2016, 23(5), 733-747. doi: 10.1038/cdd.2015.174 PMID: 26943322
  65. Lemke, J.; von Karstedt, S.; Zinngrebe, J.; Walczak, H. Getting TRAIL back on track for cancer therapy. Cell Death Differ., 2014, 21(9), 1350-1364. doi: 10.1038/cdd.2014.81 PMID: 24948009
  66. Ganley, I.G.; Wong, P.M.; Gammoh, N.; Jiang, X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell, 2011, 42(6), 731-743. doi: 10.1016/j.molcel.2011.04.024 PMID: 21700220
  67. Pugsley, H.R. Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J. Vis. Exp., 2017, (125), 55637. PMID: 28784946
  68. Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: Therapeutic implications. Mol. Cancer Ther., 2011, 10(9), 1533-1541. doi: 10.1158/1535-7163.MCT-11-0047 PMID: 21878654
  69. Xu, Y.; Wang, Q.; Zhang, L.; Zheng, M. 2-Deoxy-d-glucose enhances TRAIL-induced apoptosis in human gastric cancer cells through downregulating JNK-mediated cytoprotective autophagy. Cancer Chemother. Pharmacol., 2018, 81(3), 555-564. doi: 10.1007/s00280-018-3526-7 PMID: 29383484
  70. Marinković, M.; Šprung, M.; Buljubašić, M.; Novak, I. Autophagy modulation in cancer: Current knowledge on action and therapy. Oxid. Med. Cell. Longev., 2018, 2018, 1-18. doi: 10.1155/2018/8023821 PMID: 29643976
  71. Mohsen, S.; Sobash, P.T.; Algwaiz, G.F.; Nasef, N.; Al-Zeidaneen, S.A.; Karim, N.A. Autophagy agents in clinical trials for cancer therapy: A brief review. Curr. Oncol., 2022, 29(3), 1695-1708. doi: 10.3390/curroncol29030141 PMID: 35323341
  72. Fitzwalter, B.E.; Towers, C.G.; Sullivan, K.D.; Andrysik, Z.; Hoh, M.; Ludwig, M.; O'Prey, J.; Ryan, K.M.; Espinosa, J.M.; Morgan, M.J.; Thorburn, A. Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev. Cell, 2018, 44(5), 555-565.e3. doi: 10.1016/j.devcel.2018.02.014 PMID: 29533771
  73. Pan, H.; Wang, Y.; Na, K.; Wang, Y.; Wang, L.; Li, Z.; Guo, C.; Guo, D.; Wang, X. Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation. Cell Death Dis., 2019, 10(6), 456. doi: 10.1038/s41419-019-1653-7 PMID: 31186406
  74. Nazim, U.M.D.; Rasheduzzaman, M.; Lee, Y.J.; Seol, D.W.; Park, S.Y. Enhancement of TRAIL-induced apoptosis by 5-fluorouracil requires activating Bax and p53 pathways in TRAIL-resistant lung cancers. Oncotarget, 2017, 8(11), 18095-18105. doi: 10.18632/oncotarget.14994 PMID: 28178647
  75. Yoshii, S.R.; Mizushima, N. Monitoring and measuring autophagy. Int. J. Mol. Sci., 2017, 18(9), 1865. doi: 10.3390/ijms18091865 PMID: 28846632

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023