Multivariate Statistical 2D QSAR Analysis of Indenoisoquinoline-based Topoisomerase- I Inhibitors as Anti-lung Cancer Agents
- Authors: Singh S.1, Mangla B.1, Javed S.2, Kumar P.1, Ahsan W.3
-
Affiliations:
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University
- Department of Pharmaceutics, College of Pharmacy, Jazan University
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University
- Issue: Vol 23, No 20 (2023)
- Pages: 2237-2247
- Section: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694393
- DOI: https://doi.org/10.2174/0118715206262897230924011648
- ID: 694393
Cite item
Full Text
Abstract
Background: Indenoisoquinoline-based compounds have shown promise as topoisomerase-I inhibitors, presenting an attractive avenue for rational anticancer drug design. However, a detailed QSAR study on these derivatives has not been performed till date.
Objective: :To study aimed to identify crucial molecular features and structural requirements for potent topoisomerase- 1 inhibition.
Methods: A comprehensive two-dimensional (2D) QSAR analysis was performed on a series of 49 indenoisoquinoline derivatives using TSAR3.3 software. A robust QSAR model based on a training set of 33 compounds was developed achieving favorable statistical values: r2 = 0.790, r2CV = 0.722, f = 36.461, and s = 0.461. Validation was conducted using a test set of nine compounds, confirming the predictive capability of the model (r2 = 0.624). Additionally, artificial neural network (ANN) analysis was employed to further validate the significance of the derived descriptors.
Results: The optimized QSAR model revealed the importance of specific descriptors, including molecular volume, Verloop B2, and Weiner topological index, providing essential insights into effective topoisomerase-1 inhibition. We also obtained a robust partial least-square (PLS) analysis model with high predictive ability (r2 = 0.788, r2CV = 0.743). The ANN results further reinforced the significance of the derived descriptors, with strong r2 values for both the training set (r2 = 0.798) and the test set (r2 = 0.669).
Conclusion: :The present 2D QSAR analysis offered valuable molecular insights into indenoisoquinoline-based topoisomerase- I inhibitors, supporting their potential as anti-lung cancer agents. These findings contribute to the rational design of more effective derivatives, advancing the development of targeted therapies for lung cancer treatment.
About the authors
Supriya Singh
Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University
Email: info@benthamscience.net
Bharti Mangla
Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University
Author for correspondence.
Email: info@benthamscience.net
Shamama Javed
Department of Pharmaceutics, College of Pharmacy, Jazan University
Email: info@benthamscience.net
Pankaj Kumar
Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University
Email: info@benthamscience.net
Waquar Ahsan
Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University
Author for correspondence.
Email: info@benthamscience.net
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
- Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802. doi: 10.1038/nrc1977 PMID: 16990856
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-433. doi: 10.1016/j.chembiol.2010.04.012 PMID: 20534341
- Ling-hua, M.; Zhi-yong, L.; Pommier, Y. Non-camptothecin DNA topoisomerase I inhibitors in cancer therapy. Curr. Top. Med. Chem., 2003, 3(3), 305-320. doi: 10.2174/1568026033452546 PMID: 12570765
- Nagarajan, M.; Morrell, A.; Fort, B.C.; Meckley, M.R.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. Synthesis and anticancer activity of simplified indenoisoquinoline topoisomerase I inhibitors lacking substituents on the aromatic rings. J. Med. Chem., 2004, 47(23), 5651-5661. doi: 10.1021/jm040025z PMID: 15509164
- Nagarajan, M.; Morrell, A.; Ioanoviciu, A.; Antony, S.; Kohlhagen, G.; Agama, K.; Hollingshead, M.; Pommier, Y.; Cushman, M. Synthesis and evaluation of indenoisoquinoline topoisomerase I inhibitors substituted with nitrogen heterocycles. J. Med. Chem., 2006, 49(21), 6283-6289. doi: 10.1021/jm060564z PMID: 17034134
- Soren, B.C.; Babu Dasari, J.; Ottaviani, A.; Messina, B.; Andreotti, G.; Romeo, A.; Iacovelli, F.; Falconi, M.; Desideri, A.; Fiorani, P. In vitro and in silico characterization of an antimalarial compound with antitumor activity targeting human DNA topoisomerase IB. Int. J. Mol. Sci., 2021, 22(14), 7455. doi: 10.3390/ijms22147455 PMID: 34299074
- Afantitis, A.; Melagraki, G.; Sarimveis, H.; Koutentis, P.A.; Markopoulos, J.; Igglessi-Markopoulou, O. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis. Mol. Divers., 2006, 10(3), 405-414. doi: 10.1007/s11030-005-9012-2 PMID: 16896545
- Morrell, A.; Placzek, M.; Parmley, S.; Grella, B.; Antony, S.; Pommier, Y.; Cushman, M. Optimization of the indenone ring of indenoisoquinoline topoisomerase I inhibitors. J. Med. Chem., 2007, 50(18), 4388-4404. doi: 10.1021/jm070307+ PMID: 17676830
- Dalby, A.; Nourse, J.G.; Hounshell, W.D.; Gushurst, A.K.I.; Grier, D.L.; Leland, B.A.; Laufer, J. Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci., 1992, 32(3), 244-255. doi: 10.1021/ci00007a012
- Sadowski, J.; Gasteiger, J. From atoms and bonds to three-dimensional atomic coordinates: Automatic model builders. Chem. Rev., 1993, 93(7), 2567-2581. doi: 10.1021/cr00023a012
- Baskin, I.I.; Palyulin, V.A.; Zefirov, N.S. Neural networks in building QSAR models. Methods Mol. Biol., 2008, 458, 137-158. PMID: 19065809
- Goodenough, A.E.; Hart, A.G.; Stafford, R. Regression with empirical variable selection: Description of a new method and application to ecological datasets. PLoS One, 2012, 7(3), e34338. doi: 10.1371/journal.pone.0034338 PMID: 22479605
- Singh, S.; Das, S.; Pandey, A.; Paliwal, S.; Singh, R. Quantitative structure activity relationship studies of topoisomerase I inhibitors as potent antibreast cancer agents. J. Chem., 2013, 2013, 1-9. doi: 10.1155/2013/849793
- Kesar, S.; Paliwal, S.K.; Mishra, P.; Chauhan, M. Quantitative structure-activity relationship analysis of selective Rho kinase inhibitors as neuro-regenerator agents. Turk. J. Pharmac.Sci., 2019, 16(2), 141-154. doi: 10.4274/tjps.galenos.2018.70288 PMID: 32454707
- Shahlaei, M.; Fassihi, A.; Saghaie, L.; Zare, A. Prediction of partition coefficient of some 3-hydroxy pyridine-4-one derivatives using combined partial least square regression and genetic algorithm. Res. Pharm. Sci., 2014, 9(2), 143-153. PMID: 25657783
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst., 2001, 58(2), 109-130. doi: 10.1016/S0169-7439(01)00155-1
- Kubinyi, H. Evolutionary variable selection in regression and PLS analyses. J. Chemometr., 1996, 10(2), 119-133. doi: 10.1002/(SICI)1099-128X(199603)10:2<119:AID-CEM409>3.0.CO;2-4
- Livingstone, D.J.; Salt, D.W. Regression analysis for QSAR using neural networks. Bioorg. Med. Chem. Lett., 1992, 2(3), 213-218. doi: 10.1016/S0960-894X(01)81067-2
- Himmelblau, D.M. Accounts of experiences in the application of artificial neural networks in chemical engineering. Ind. Eng. Chem. Res., 2008, 47(16), 5782-5796. doi: 10.1021/ie800076s
- Paliwal, S.; Yadav, D.; Yadav, R.; Kaushik, V.; Paliwal, S. Common binding requirements of PPAR-α/δ/γ pan agonists: Quantitative structureactivity relationship analysis of indanylacetic acid derivatives carrying 4-thiazolyl-phenoxy tail group. Med. Chem. Res., 2012, 21(6), 891-907. doi: 10.1007/s00044-011-9599-z
- Taillandier, G.; Domard, M.; Boucherle, A. Application des paramètres de Verloop. Comparaison avec les autres paramétres steriques, problemes de leur choix. Farmaco, Sci., 1980, 35(2), 89-109. PMID: 7450026
- Brethomé, A.V.; Fletcher, S.P.; Paton, R.S. Conformational effects on physical-organic descriptors: The case of Sterimol steric parameters. ACS Catal., 2019, 9(3), 2313-2323. doi: 10.1021/acscatal.8b04043
- Ibrahim, H.; Sharafdini, R.; Réti, T.; Akwu, A. WienerHosoya matrix of connected graphs. Mathematics, 2021, 9(4), 359. doi: 10.3390/math9040359
Supplementary files
