Mechanisms of Cancer-killing by Quercetin; A Review on Cell Death Mechanisms
- Autores: Wang H.1, Dong Z.1, Liu J.1, Zhu Z.1, Najafi M.2
-
Afiliações:
- , Xinyang Vocational and Technical College
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences
- Edição: Volume 23, Nº 9 (2023)
- Páginas: 999-1012
- Seção: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694398
- DOI: https://doi.org/10.2174/1871520623666230120094158
- ID: 694398
Citar
Texto integral
Resumo
Cancer drug resistance has always been a serious issue regarding cancer research and therapy. Different cancers undergo different mutations, which may cause suppression of tumor suppressor genes, inhibition of apoptosis, stimulation of drug resistance mediators, and exhaustion of the immune system. The modulation of pro-death and survival-related mediators is an intriguing strategy for cancer therapy. Several nature-derived molecules, e.g., quercetin, have shown interesting properties against cancer through the modulation of apoptosis and autophagy mediators. Such molecules, e.g., quercetin, have been shown to stimulate apoptosis and other types of cell death pathways in cancers via the modulation of ROS metabolism. Quercetin may affect immune system function and trigger the expression and activity of tumor suppressor genes. Furthermore, it may suppress certain multidrug resistance mechanisms in cancer cells. This paper aims to review the effects of quercetin on various cell death mechanisms such as apoptosis, autophagic cell death, senescence, ferroptosis, and others.
Palavras-chave
Sobre autores
Hehua Wang
, Xinyang Vocational and Technical College
Autor responsável pela correspondência
Email: info@benthamscience.net
Ziyu Dong
, Xinyang Vocational and Technical College
Email: info@benthamscience.net
Jinhai Liu
, Xinyang Vocational and Technical College
Email: info@benthamscience.net
Zhaoyu Zhu
, Xinyang Vocational and Technical College
Autor responsável pela correspondência
Email: info@benthamscience.net
Masoud Najafi
Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108. doi: 10.3322/caac.21262 PMID: 25651787
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953. doi: 10.1002/ijc.31937 PMID: 30350310
- Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated projection of US cancer incidence and death to 2040. JAMA Netw. Open, 2021, 4(4), e214708-e214708. doi: 10.1001/jamanetworkopen.2021.4708 PMID: 33825840
- Castanon, A.; Landy, R.; Pesola, F.; Windridge, P.; Sasieni, P. Prediction of cervical cancer incidence in England, UK, up to 2040, under four scenarios: A modelling study. Lancet Public Health, 2018, 3(1), e34-e43. doi: 10.1016/S2468-2667(17)30222-0 PMID: 29307386
- Moding, E.J.; Kastan, M.B.; Kirsch, D.G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov., 2013, 12(7), 526-542. doi: 10.1038/nrd4003 PMID: 23812271
- Sadeghinezhad, S.; Khodamoradi, E.; Diojan, L.; Taeb, S.; Najafi, M. Radioprotective mechanisms of arbutin: A systematic review. Curr. Drug Res. Rev., 2022, 14(2), 132-138. doi: 10.2174/2589977514666220321114415 PMID: 35319405
- Lin, S.R.; Chang, C.H.; Hsu, C.F.; Tsai, M.J.; Cheng, H.; Leong, M.K.; Sung, P.J.; Chen, J.C.; Weng, C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol., 2020, 177(6), 1409-1423. doi: 10.1111/bph.14816 PMID: 31368509
- Bracci, L.; Fabbri, A.; Del Cornò, M.; Conti, L. Dietary polyphenols: Promising adjuvants for colorectal cancer therapies. Cancers, 2021, 13(18), 4499. doi: 10.3390/cancers13184499 PMID: 34572726
- Moslehi, M.; Moazamiyanfar, R.; Dakkali, M.S.; Rezaei, S.; Rastegar-Pouyani, N.; Jafarzadeh, E.; Mouludi, K.; Khodamoradi, E.; Taeb, S.; Najafi, M. Modulation of the immune system by melatonin; implications for cancer therapy. Int. Immunopharmacol., 2022, 108, 108890. doi: 10.1016/j.intimp.2022.108890 PMID: 35623297
- Taeb, S.; Ashrafizadeh, M.; Zarrabi, A.; Rezapoor, S.; Musa, A.E.; Farhood, B.; Najafi, M. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr. Cancer Drug Targets, 2022, 22(1), 18-30. doi: 10.2174/1568009622666211224154952 PMID: 34951575
- Turchan, W.T.; Pitroda, S.P.; Weichselbaum, R.R. Treatment of cancer with radio-immunotherapy: What we currently know and what the future may hold. Int. J. Mol. Sci., 2021, 22(17), 9573. doi: 10.3390/ijms22179573 PMID: 34502479
- Amini, P.; Moazamiyanfar, R.; Dakkali, M.S.; Khani, A.; Jafarzadeh, E.; Mouludi, K.; Khodamoradi, E.; Johari, R.; Taeb, S.; Najafi, M. Resveratrol in cancer therapy; from stimulation of genomic stability to adjuvant cancer therapy; a comprehensive review. Curr. Top. Med. Chem., 2022. PMID: 36239730
- Moslehi, M.; Rezaei, S.; Talebzadeh, P.; Ansari, M.J.; Jawad, M.A.; Jalil, A.T.; Rastegar-Pouyani, N.; Jafarzadeh, E.; Taeb, S.; Najafi, M. Apigenin in cancer therapy: Prevention of genomic instability and anticancer mechanisms. Clin. Exp. Pharmacol. Physiol., 2022, 1440-1681.13725. doi: 10.1111/1440-1681.13725 PMID: 36111951
- Rose, B.S.; Aydogan, B.; Liang, Y.; Yeginer, M.; Hasselle, M.D.; Dandekar, V.; Bafana, R.; Yashar, C.M.; Mundt, A.J.; Roeske, J.C. Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2011, 79(3), 800-807.
- Lai, X.; Najafi, M. Redox interactions in chemo/radiation therapy-induced lung toxicity; mechanisms and therapy perspectives. Curr. Drug Targets, 2022, 23(13), 1261-1276. doi: 10.2174/1389450123666220705123315 PMID: 35792117
- Xu, C.; Najafi, M.; Shang, Z. Lung pneumonitis and fibrosis in cancer therapy; a review on cellular and molecular mechanisms. Curr. Drug Targets, 2022, 23(16), 1505-1525. doi: 10.2174/1389450123666220907144131 PMID: 36082868
- Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53. doi: 10.2174/1574884713666181025141559 PMID: 30360725
- Huang, J.; Chen, X.; Chang, Z.; Xiao, C.; Najafi, M. Boosting anti-tumour immunity using adjuvant apigenin. Anticancer. Agents Med. Chem., 2022, 22. doi: 10.2174/1871520622666220523151409 PMID: 35616683
- Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr. Cancer Drug Targets, 2020, 20(2), 130-145. doi: 10.2174/1568009619666191019143539 PMID: 31738153
- Abotaleb, M.; Samuel, S.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers, 2018, 11(1), 28. doi: 10.3390/cancers11010028 PMID: 30597838
- Park, E.-J.; Pezzuto, MJ. Flavonoids in cancer prevention. Anticancer. Agents. Med. Chem., 2012, 12(8), 836-851.
- Baghel, S.S.; Shrivastava, N.; Baghel, R.S.; Agrawal, P.; Rajput, S. A review of quercetin: Antioxidant and anticancer properties. World J. Pharm. Pharm. Sci., 2012, 1(1), 146-160.
- Brito, A.; Ribeiro, M.; Abrantes, A.; Pires, A.; Teixo, R.; Tralhão, J.; Botelho, M. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr. Med. Chem., 2015, 22(26), 3025-3039. doi: 10.2174/0929867322666150812145435 PMID: 26264923
- Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res., 2004, 24(10), 851-874. doi: 10.1016/j.nutres.2004.07.005
- Nishimuro, H.; Ohnishi, H.; Sato, M.; Ohnishi-Kameyama, M.; Matsunaga, I.; Naito, S.; Ippoushi, K.; Oike, H.; Nagata, T.; Akasaka, H.; Saitoh, S.; Shimamoto, K.; Kobori, M. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients, 2015, 7(4), 2345-2358. doi: 10.3390/nu7042345 PMID: 25849945
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi. Pharm. J., 2017, 25(2), 149-164.
- Parasuraman, S.; Anand David, A.V.; Arulmoli, R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89. doi: 10.4103/0973-7847.194044 PMID: 28082789
- Kaşıkcı, M.B.; Bağdatlıoğlu, N. Bioavailability of quercetin. Current research in nutrition and food science journal,2016, 4. Special Issue Nutrition in Conference, 2016, (October), 146-151.
- Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules, 2019, 9(5), 174. doi: 10.3390/biom9050174 PMID: 31064104
- Xiao, L.; Luo, G.; Tang, Y.; Yao, P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem. Toxicol., 2018, 114, 190-203. doi: 10.1016/j.fct.2018.02.022 PMID: 29432835
- Sanders, R.A.; Rauscher, F.M.; Watkins, J.B., III. Effects of quercetin on antioxidant defense in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol., 2001, 15(3), 143-149. doi: 10.1002/jbt.11 PMID: 11424224
- Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123. doi: 10.3390/molecules24061123 PMID: 30901869
- Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Schalkwijk, C.; Kromhout, D.; Hollman, P.C. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre) hypertensive adults: a randomized double-blind, placebo-controlled, crossover trial. J. Nutr., 2015, 145(7), 1459-1463. doi: 10.3945/jn.115.211888 PMID: 25972527
- Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J.P.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cooper, E.L.; Cossarizza, A. Quercetin and cancer chemoprevention. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-15. doi: 10.1093/ecam/neq053 PMID: 21792362
- Wu, L.; Zhang, Q.; Mo, W.; Feng, J.; Li, S.; Li, J.; Liu, T.; Xu, S.; Wang, W.; Lu, X.; Yu, Q.; Chen, K.; Xia, Y.; Lu, J.; Xu, L.; Zhou, Y.; Fan, X.; Guo, C. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci. Rep., 2017, 7(1), 9289. doi: 10.1038/s41598-017-09673-5 PMID: 28839277
- Bhadoriya, S.S.; Mangal, A.; Madoriya, N.; Dixit, P. Bioavailability and bioactivity enhancement of herbal drugs by "Nanotechnology": A review. J Curr Pharm Res, 2011, 8, 1-7.
- Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr., 2022, 62(28), 7730-7742. PMID: 34078189
- Ren, K.W.; Li, Y.H.; Wu, G.; Ren, J.Z.; Lu, H.B.; Li, Z.M.; Han, X.W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int. J. Oncol., 2017, 50(4), 1299-1311. doi: 10.3892/ijo.2017.3886 PMID: 28259895
- Nan, W.; Ding, L.; Chen, H.; Khan, F.U.; Yu, L.; Sui, X.; Shi, X. Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet b radiation. Front. Pharmacol., 2018, 9, 826. doi: 10.3389/fphar.2018.00826 PMID: 30140227
- Amanzadeh, E.; Esmaeili, A.; Abadi, R.E.N.; Kazemipour, N.; Pahlevanneshan, Z.; Beheshti, S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci. Rep., 2019, 9(1), 6876. doi: 10.1038/s41598-019-43345-w PMID: 31053743
- Guan, X.; Gao, M.; Xu, H.; Zhang, C.; Liu, H.; Lv, L.; Deng, S.; Gao, D.; Tian, Y. Quercetin-loaded poly (lactic-co-glycolic acid)- D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer. Drug Deliv., 2016, 23(9), 3307-3318. doi: 10.1080/10717544.2016.1176087 PMID: 27067032
- Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis, 2022, 27(9-10), 647-667. doi: 10.1007/s10495-022-01750-z PMID: 35849264
- Tan, B.J.; Liu, Y.; Chang, K.L.; Lim, B.K.; Chiu, G.N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomedicine, 2012, 7, 651-661. PMID: 22334787
- Jangde, R.; Singh, D. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 635-641. doi: 10.3109/21691401.2014.975238 PMID: 25375215
- Weiss-Angeli, V.; Poletto, F.S.; Marco, S.L.; Salvador, M.; Silveira, N.P.; Guterres, S.S.; Pohlmann, A.R. Sustained antioxidant activity of quercetin-loaded lipid-core nanocapsules. J. Nanosci. Nanotechnol., 2012, 12(3), 2874-2880. doi: 10.1166/jnn.2012.5770 PMID: 22755137
- Dian, L.; Yu, E.; Chen, X.; Wen, X.; Zhang, Z.; Qin, L.; Wang, Q.; Li, G.; Wu, C. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res. Lett., 2014, 9(1), 684. doi: 10.1186/1556-276X-9-684 PMID: 26088982
- Schwendener, R.A.; Schott, H. Liposome formulations of hydrophobic drugs. Methods Mol. Biol., 2010, 605, 129-138. doi: 10.1007/978-1-60327-360-2_8 PMID: 20072877
- Eloy, J.O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J.P.A.; Lee, R.J.; Marchetti, J.M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf. B Biointerfaces, 2014, 123, 345-363. doi: 10.1016/j.colsurfb.2014.09.029 PMID: 25280609
- Men, K.; Duan, X.; Wei, Wei. Nanoparticle-delivered quercetin for cancer therapy. Anticancer. Agents. Med. Chem., 2014, 14(6), 826-832.
- Jan, A.T.; Kamli, M.R.; Murtaza, I.; Singh, J.B.; Ali, A.; Haq, Q.M.R. Dietary flavonoid quercetin and associated health benefits-An overview. Food Rev. Int., 2010, 26(3), 302-317. doi: 10.1080/87559129.2010.484285
- Miles, S.L.; McFarland, M.; Niles, R.M. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. Nutr. Rev., 2014, 72(11), 720-734. doi: 10.1111/nure.12152 PMID: 25323953
- Zhou, Y.; Suo, W.; Zhang, X.; Lv, J.; Liu, Z.; Liu, R. Roles and mechanisms of quercetin on cardiac arrhythmia: A review. Biomed. Pharmacother., 2022, 153, 113447. doi: 10.1016/j.biopha.2022.113447 PMID: 36076562
- Panpan, T.; Yuchen, D.; Xianyong, S.; Meng, L.; Ruijuan, H.; Ranran, D.; Pengyan, Z.; Mingxi, L.; Rongrong, X. Cardiac remodelling following cancer therapy: A review. Cardiovasc. Toxicol., 2022, 22(9), 771-786. doi: 10.1007/s12012-022-09762-6 PMID: 35877038
- Ashrafizadeh, M.; Samarghandian, S.; Hushmandi, K.; Zabolian, A.; Shahinozzaman, M.; Saleki, H.; Esmaeili, H.; Raei, M.; Entezari, M.; Zarrabi, A.; Najafi, M. Quercetin in attenuation of ischemic/reperfusion injury: A review. Curr. Mol. Pharmacol., 2021, 14(4), 537-558. doi: 10.2174/1874467213666201217122544 PMID: 33334302
- Verma, S.; Dutta, A.; Dahiya, A.; Kalra, N. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling. Phytomedicine, 2022, 99, 154004. doi: 10.1016/j.phymed.2022.154004 PMID: 35219007
- Qin, M.; Chen, W.; Cui, J.; Li, W.; Liu, D.; Zhang, W. Protective efficacy of inhaled quercetin for radiation pneumonitis. Exp. Ther. Med., 2017, 14(6), 5773-5778. doi: 10.3892/etm.2017.5290 PMID: 29285120
- Lotfi, M.; Kazemi, S.; Ebrahimpour, A.; Shirafkan, F.; Pirzadeh, M.; Hosseini, M.; Moghadamnia, A.A. Protective effect of quercetin nanoemulsion on 5-fluorouracil-induced oral mucositis in mice. J. Oncol., 2021. Available from: https://www.hindawi.com/journals/jo/2021/5598230/
- Baran, M.; Yay, A.; Onder, G.O.; canturk Tan, F.; Yalcin, B.; Balcioglu, E.; Yıldız, O.G. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats. Int. J. Radiat. Biol., 2022, 98(9), 1473-1483.
- Najafi, M.; Tavakol, S.; Zarrabi, A.; Ashrafizadeh, M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: A review. Arch. Physiol. Biochem., 2022, 128(6), 1438-1452. doi: 10.1080/13813455.2020.1773864 PMID: 32521182
- Zhivotovsky, B.; Orrenius, S. Cell death mechanisms: Cross-talk and role in disease. Exp. Cell Res., 2010, 316(8), 1374-1383. doi: 10.1016/j.yexcr.2010.02.037 PMID: 20211164
- Shah, B.P.; Pasquale, N.; De, G.; Tan, T.; Ma, J.; Lee, K.B. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS Nano, 2014, 8(9), 9379-9387. doi: 10.1021/nn503431x PMID: 25133971
- Huang, J.; Chang, Z.; Lu, Q.; Chen, X.; Najafi, M. Nobiletin as an inducer of programmed cell death in cancer: A review. Apoptosis, 2022, 27(5-6), 297-310. doi: 10.1007/s10495-022-01721-4 PMID: 35312885
- Sinha, D.; Duijf, P.H.G.; Khanna, K.K. Mitotic slippage: An old tale with a new twist. Cell Cycle, 2019, 18(1), 7-15. doi: 10.1080/15384101.2018.1559557 PMID: 30601084
- Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663. doi: 10.1016/j.intimp.2020.106663 PMID: 32521494
- Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. Damage-associated molecular patterns in tumor radiotherapy. Int. Immunopharmacol., 2020, 86, 106761. doi: 10.1016/j.intimp.2020.106761 PMID: 32629409
- Mortezaee, K.; Parwaie, W.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Musa, A.E.; Shabeeb, D.; Esmaely, F.; Najafi, M.; Farhood, B. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol., 2019, 76, 105847. doi: 10.1016/j.intimp.2019.105847 PMID: 31466051
- De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 2017, 17(8), 457-474. doi: 10.1038/nrc.2017.51 PMID: 28706266
- Nishikawa, M. Reactive oxygen species in tumor metastasis. Cancer Lett., 2008, 266(1), 53-59. doi: 10.1016/j.canlet.2008.02.031 PMID: 18362051
- Moloney, J.N.; Cotter, T.G. Semin Cell Dev Biol; Elsevier: Amsterdam, 2018, Vol. 80, pp. 50-64.
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457. doi: 10.3390/nu12020457 PMID: 32059369
- Wu, Q.; Needs, P.W.; Lu, Y.; Kroon, P.A.; Ren, D.; Yang, X. Different antitumor effects of quercetin, quercetin-3′-sulfate and quercetin-3-glucuronide in human breast cancer MCF-7 cells. Food Funct., 2018, 9(3), 1736-1746. doi: 10.1039/C7FO01964E PMID: 29497723
- Zhang, H.; Zhang, M.; Yu, L.; Zhao, Y.; He, N.; Yang, X. Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem. Toxicol., 2012, 50(5), 1589-1599. doi: 10.1016/j.fct.2012.01.025 PMID: 22310237
- Cheki, M.; Yahyapour, R.; Farhood, B.; Rezaeyan, A.; Shabeeb, D.; Amini, P.; Rezapoor, S.; Najafi, M. COX-2 in radiotherapy: A potential target for radioprotection and radiosensitization. Curr. Mol. Pharmacol., 2018, 11(3), 173-183. doi: 10.2174/1874467211666180219102520 PMID: 29468988
- Raja, S.B.; Rajendiran, V.; Kasinathan, N.K.; P, A.; Venkatabalasubramanian, S.; Murali, M.R.; Devaraj, H.; Devaraj, S.N. Differential cytotoxic activity of quercetin on colonic cancer cells depends on ROS generation through COX-2 expression. Food Chem. Toxicol., 2017, 106(Pt A), 92-106. doi: 10.1016/j.fct.2017.05.006 PMID: 28479391
- Fu, X.; Li, M.; Tang, C.; Huang, Z.; Najafi, M. Targeting of cancer cell death mechanisms by resveratrol: A review. Apoptosis, 2021, 26(11-12), 561-573. doi: 10.1007/s10495-021-01689-7 PMID: 34561763
- Zhang, X.; Huang, J.; Yu, C.; Xiang, L.; Li, L.; Shi, D.; Lin, F. Quercetin enhanced paclitaxel therapeutic effects towards PC-3 Prostate cancer through er stress induction and ROS production. OncoTargets Ther., 2020, 13, 513-523. doi: 10.2147/OTT.S228453 PMID: 32021294
- Bishayee, K.; Ghosh, S.; Mukherjee, A.; Sadhukhan, R.; Mondal, J.; Khuda-Bukhsh, A.R. Quercetin induces cytochrome‐c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: Signal cascade and drug‐DNA interaction. Cell Prolif., 2013, 46(2), 153-163. doi: 10.1111/cpr.12017 PMID: 23510470
- Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a natural flavonoid interacts with dna, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep., 2016, 6(1), 24049. doi: 10.1038/srep24049 PMID: 27068577
- Niazvand, F.; Orazizadeh, M.; Khorsandi, L.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina, 2019, 55(4), 114. doi: 10.3390/medicina55040114 PMID: 31013662
- Jeon, J.S.; Kwon, S.; Ban, K.; Kwon Hong, Y.; Ahn, C.; Sung, J.S.; Choi, I. Regulation of the intracellular ROS level is critical for the antiproliferative effect of quercetin in the hepatocellular carcinoma cell line HepG2. Nutr. Cancer, 2019, 71(5), 861-869. doi: 10.1080/01635581.2018.1559929 PMID: 30661409
- Li, N.; Sun, C.; Zhou, B.; Xing, H.; Ma, D.; Chen, G.; Weng, D. Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS One, 2014, 9(7), e100314. doi: 10.1371/journal.pone.0100314 PMID: 24999622
- Chang, Y.F.; Chi, C.W.; Wang, J.J. Reactive oxygen species production is involved in quercetin-induced apoptosis in human hepatoma cells. Nutr. Cancer, 2006, 55(2), 201-209. doi: 10.1207/s15327914nc5502_12 PMID: 17044776
- Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol., 2003, 23(23), 8576-8585. doi: 10.1128/MCB.23.23.8576-8585.2003 PMID: 14612402
- Sun, J.; Feng, Y.; Wang, Y.; Ji, Q.; Cai, G.; Shi, L.; Wang, Y.; Huang, Y.; Zhang, J.; Li, Q. α-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation. Int. J. Oncol., 2019, 54(5), 1601-1612. doi: 10.3892/ijo.2019.4757 PMID: 30896843
- Law, B.Y.K.; Gordillo-Martínez, F.; Qu, Y.Q.; Zhang, N.; Xu, S.W.; Coghi, P.S.; Fai Mok, S.W.; Guo, J.; Zhang, W.; Leung, E.L.H.; Fan, X.X.; Wu, A.G.; Chan, W.K.; Yao, X.J.; Wang, J.R.; Liu, L.; Wong, V.K.W. Thalidezine, a novel AMPK activator, eliminates apoptosis-resistant cancer cells through energy-mediated autophagic cell death. Oncotarget, 2017, 8(18), 30077-30091. doi: 10.18632/oncotarget.15616 PMID: 28404910
- Kim, G.T.; Lee, S.H.; Kim, Y.M. Quercetin regulates sestrin 2-ampk-mtor signaling pathway and induces apoptosis via increased intracellular ros in hct116 colon cancer cells. J. Cancer Prev., 2013, 18(3), 264-270. doi: 10.15430/JCP.2013.18.3.264 PMID: 25337554
- Kim, G.T.; Lee, S.H.; Kim, J.; Kim, Y.M. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int. J. Mol. Med., 2014, 33(4), 863-869. doi: 10.3892/ijmm.2014.1658 PMID: 24535669
- Yi, L.; Zongyuan, Y.; Cheng, G.; Lingyun, Z.; GuiLian, Y.; Wei, G. Quercetin enhances apoptotic effect of tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer‐binding protein homologous protein (CHOP)‐death receptor 5 pathway. Cancer Sci., 2014, 105(5), 520-527. doi: 10.1111/cas.12395 PMID: 24612139
- Wang, L.H.; Wu, C.F.; Rajasekaran, N.; Shin, Y.K. Loss of tumor suppressor gene function in human cancer: An overview. Cell. Physiol. Biochem., 2018, 51(6), 2647-2693. doi: 10.1159/000495956 PMID: 30562755
- Yogosawa, S.; Yoshida, K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage‐induced apoptosis. Cancer Sci., 2018, 109(11), 3376-3382. doi: 10.1111/cas.13792 PMID: 30191640
- Philippe, G.J.B.; Mittermeier, A.; Lawrence, N.; Huang, Y.H.; Condon, N.D.; Loewer, A.; Craik, D.J.; Henriques, S.T. Angler peptides: macrocyclic conjugates inhibit p53: MDM2/X interactions and activate apoptosis in cancer cells. ACS Chem. Biol., 2021, 16(2), 414-428. doi: 10.1021/acschembio.0c00988 PMID: 33533253
- Cordani, M.; Butera, G.; Pacchiana, R.; Masetto, F.; Mullappilly, N.; Riganti, C.; Donadelli, M. Mutant p53-associated molecular mechanisms of ROS regulation in cancer cells. Biomolecules, 2020, 10(3), 361. doi: 10.3390/biom10030361 PMID: 32111081
- Papa, A.; Pandolfi, P.P. The PTEN-PI3K axis in cancer. Biomolecules, 2019, 9(4), 153. doi: 10.3390/biom9040153 PMID: 30999672
- Tanigawa, S.; Fujii, M.; Hou, D.X. Stabilization of p53 is involved in quercetin-induced cell cycle arrest and apoptosis in HepG2 cells. Biosci. Biotechnol. Biochem., 2008, 72(3), 797-804. doi: 10.1271/bbb.70680 PMID: 18323654
- Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur. J. Pharmacol., 2010, 649(1-3), 84-91. doi: 10.1016/j.ejphar.2010.09.020 PMID: 20858478
- Kuo, P.C.; Liu, H.F.; Chao, J.I. Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J. Biol. Chem., 2004, 279(53), 55875-55885. doi: 10.1074/jbc.M407985200 PMID: 15456784
- Lim, J.H.; Park, J.W.; Min, D.S.; Chang, J.S.; Lee, Y.H.; Park, Y.B.; Choi, K.S.; Kwon, T.K. NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells. Apoptosis, 2007, 12(2), 411-421. doi: 10.1007/s10495-006-0576-9 PMID: 17191121
- Xavier, C.P.R.; Lima, C.F.; Rohde, M.; Pereira-Wilson, C. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother. Pharmacol., 2011, 68(6), 1449-1457. doi: 10.1007/s00280-011-1641-9 PMID: 21479885
- Wang, G.; Zhang, J.; Liu, L.; Sharma, S.; Dong, Q. Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. PLoS One, 2012, 7(12), e51764. doi: 10.1371/journal.pone.0051764 PMID: 23240061
- Gong, C.; Yang, Z.; Zhang, L.; Wang, Y.; Gong, W.; Liu, Y. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. OncoTargets Ther., 2017, 11, 17-27. doi: 10.2147/OTT.S147316 PMID: 29317830
- Liu, B.; Chen, Y.; St Clair, D.K. ROS and p53: A versatile partnership. Free Radic. Biol. Med., 2008, 44(8), 1529-1535. doi: 10.1016/j.freeradbiomed.2008.01.011 PMID: 18275858
- Ward, A.B.; Mir, H.; Kapur, N.; Gales, D.N.; Carriere, P.P.; Singh, S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J. Surg. Oncol., 2018, 16(1), 108. doi: 10.1186/s12957-018-1400-z PMID: 29898731
- Bishayee, K.; Khuda-Bukhsh, A.R.; Huh, S.O. PLGA-Loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells, 2015, 38(6), 518-527. doi: 10.14348/molcells.2015.2339 PMID: 25947292
- Gulati, N.; Laudet, B.; Zohrabian, V.M.; Murali, R.; Jhanwar-Uniyal, M. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res., 2006, 26(2A), 1177-1181. PMID: 16619521
- Miao, Z.; Miao, Z.; Wang, S.; Shi, X.; Xu, S. Quercetin antagonizes imidacloprid-induced mitochondrial apoptosis through PTEN/PI3K/AKT in grass carp hepatocytes. Environ. Pollut., 2021, 290, 118036. doi: 10.1016/j.envpol.2021.118036 PMID: 34488159
- Li, S.-z.; Qiao, S.-f.; Zhang, J.-h.; Li, K. Quercetin increase the chemosensitivity of breast cancer cells to doxorubicin via PTEN/Akt pathway. Anticancer. Agents. Med. Chem., 2015, 15(9), 1185-1189.
- Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol., 2020, 87, 106807. doi: 10.1016/j.intimp.2020.106807 PMID: 32683299
- Aung, M.O.M.H.; Mat Nor, N.; Mohd Adnan, L.H.; Ahmad, N.Z.B.; Septama, A.W.; Nik Nurul Najihah, N.N.N.; Ohn, M.L.; Simbak, N. Effects of apigenin, luteolin, and quercetin on the natural killer (NK-92) cells proliferation: A potential role as immunomodulator. Sains Malays., 2021, 50(3), 821-828. doi: 10.17576/jsm-2021-5003-22
- Yu, C.S.; Yang, J.S.; Kuo, H.M.; Chung, J.G. Quercetin promoted natural killer cells activity and inhibits WEHI‐3 leukemia cells in Balb/C mice in vivo. FASEB J., 2007, 21(6), A1189-A1189. doi: 10.1096/fasebj.21.6.A1189-a
- Bae, J.H.; Kim, J.Y.; Kim, M.J.; Chang, S.H.; Park, Y.S.; Son, C.H.; Park, S.J.; Chung, J.S.; Lee, E.Y.; Kim, S.H.; Kang, C.D. Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70. J. Immunother., 2010, 33(4), 391-401. doi: 10.1097/CJI.0b013e3181d32f22 PMID: 20386467
- Kim, Y.H.; Lee, Y.J. TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation. J. Cell. Biochem., 2007, 100(4), 998-1009. doi: 10.1002/jcb.21098 PMID: 17031854
- Askar, M.A.; El-Nashar, H.A.S.; Al-Azzawi, M.A.; Rahman, S.S.A.; Elshawi, O.E. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer. Breast Cancer, 2022, 16, 11782234221086728. doi: 10.1177/11782234221086728 PMID: 35359610
- Mortezaee, K.; Najafi, M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103180. doi: 10.1016/j.critrevonc.2020.103180 PMID: 33264717
- Riganti, C.; Contino, M. New strategies to overcome resistance to chemotherapy and immune system in cancer. Int. J. Mol. Sci., 2019, 20(19), 4783.
- Jing, L.; Lin, J.; Yang, Y.; Tao, L.; Li, Y.; Liu, Z.; Zhao, Q.; Diao, A. Quercetin inhibiting the PD‐1/PD‐L1 interaction for immune‐enhancing cancer chemopreventive agent. Phytother. Res., 2021, 35(11), 6441-6451. doi: 10.1002/ptr.7297 PMID: 34560814
- Tan, C.; Hu, W.; He, Y.; Zhang, Y.; Zhang, G.; Xu, Y.; Tang, J. Cytokine-mediated therapeutic resistance in breast cancer. Cytokine, 2018, 108, 151-159. doi: 10.1016/j.cyto.2018.03.020 PMID: 29609137
- Liang, S.; Chen, Z.; Jiang, G.; Zhou, Y.; Liu, Q.; Su, Q.; Wei, W.; Du, J.; Wang, H. Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-κB/IL-6 signals. Cancer Lett., 2017, 386, 12-23. doi: 10.1016/j.canlet.2016.11.003 PMID: 27836733
- Jones, V.S.; Huang, R-Y.; Chen, L-P.; Chen, Z-S.; Fu, L.; Huang, R-P. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta, 2016, 1865(2), 255-265. PMID: 26993403
- Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231. doi: 10.1002/cbf.3266 PMID: 28498520
- Shi, H.; Li, X.Y.; Chen, Y.; Zhang, X.; Wu, Y.; Wang, Z.X.; Chen, P.H.; Dai, H.Q.; Feng, J.; Chatterjee, S.; Li, Z.J.; Huang, X.W.; Wei, H.Q.; Wang, J.; Lu, G.D.; Zhou, J. Quercetin induces apoptosis via downregulation of vascular endothelial growth Factor/Akt signaling pathway in acute myeloid leukemia cells. Front. Pharmacol., 2020, 11, 534171. doi: 10.3389/fphar.2020.534171 PMID: 33362534
- Cao, L.; Yang, Y.; Ye, Z.; Lin, B.; Zeng, J.; Li, C.; Liang, T.; Zhou, K.; Li, J. Quercetin-3-methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways. Int. J. Mol. Med., 2018, 42(3), 1625-1636. doi: 10.3892/ijmm.2018.3741 PMID: 29956731
- Senthilkumar, K.; Elumalai, P.; Arunkumar, R.; Banudevi, S.; Gunadharini, N.D.; Sharmila, G.; Selvakumar, K.; Arunakaran, J. Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Mol. Cell. Biochem., 2010, 344(1-2), 173-184. doi: 10.1007/s11010-010-0540-4 PMID: 20658310
- Lu, X.; Yang, F.; Chen, D.; Zhao, Q.; Chen, D.; Ping, H.; Xing, N. Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int. J. Biol. Sci., 2020, 16(7), 1121-1134. doi: 10.7150/ijbs.41686 PMID: 32174789
- Safi, A.; Heidarian, E.; Ahmadi, R. Quercetin synergistically enhances the anticancer efficacy of docetaxel through induction of apoptosis and modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 signaling pathways in MDA-MB-231 breast cancer cell line. Int. J. Mol. Cell. Med., 2021, 10(1), 11-22. PMID: 34268250
- Lan, C-Y.; Chen, S-Y.; Kuo, C-W.; Lu, C-C.; Yen, G-C. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. Yao Wu Shi Pin Fen Xi, 2019, 27(4), 887-896. PMID: 31590760
- Fan, Y.; Mao, R.; Yang, J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell, 2013, 4(3), 176-185. doi: 10.1007/s13238-013-2084-3 PMID: 23483479
- Sp, N.; Kang, D.; Kim, D.; Park, J.; Lee, H.; Kim, H.; Darvin, P.; Park, Y.M.; Yang, Y. Nobiletin inhibits CD36-dependent tumor angiogenesis, migration, invasion, and sphere formation through the Cd36/Stat3/Nf-Kb signaling axis. Nutrients, 2018, 10(6), 772. doi: 10.3390/nu10060772 PMID: 29914089
- Teng, Y.; Ross, J.L.; Cowell, J.K. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAK-STAT, 2014, 3(1), e28086. doi: 10.4161/jkst.28086 PMID: 24778926
- Mukherjee, A.; Khuda-Bukhsh, A.R. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall- cell lung-cancer cell line, A549. J. Pharmacopuncture, 2015, 18(1), 19-26. doi: 10.3831/KPI.2015.18.002 PMID: 25830055
- Shang, Y.; Cai, X.; Fan, D. Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr. Cancer Drug Targets, 2013, 13(9), 915-929. doi: 10.2174/15680096113136660097 PMID: 24168191
- Cai, W.; Yu, D.; Fan, J.; Liang, X.; Jin, H.; Liu, C.; Zhu, M.; Shen, T.; Zhang, R.; Hu, W.; Wei, Q.; Yu, J. Quercetin inhibits transforming growth factor β1-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells via the Smad pathway. Drug Des. Devel. Ther., 2018, 12, 4149-4161. doi: 10.2147/DDDT.S185618 PMID: 30584279
- Feng, J.; Song, D.; Jiang, S.; Yang, X.; Ding, T.; Zhang, H.; Luo, J.; Liao, J.; Yin, Q. Quercetin restrains TGF-β1-induced epithelialmesenchymal transition by inhibiting Twist1 and regulating E-cadherin expression. Biochem. Biophys. Res. Commun., 2018, 498(1), 132-138. doi: 10.1016/j.bbrc.2018.02.044 PMID: 29425820
- Ranganathan, S.; Halagowder, D.; Sivasithambaram, N.D. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS One, 2015, 10(10), e0141370. doi: 10.1371/journal.pone.0141370 PMID: 26491966
- Tang, S.N.; Singh, C.; Nall, D.; Meeker, D.; Shankar, S.; Srivastava, R.K. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J. Mol. Signal., 2010, 5(1), 14. doi: 10.1186/1750-2187-5-14 PMID: 20718984
- Sun, S.; Gong, F.; Liu, P.; Miao, Q. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway. Gene, 2018, 664, 50-57. doi: 10.1016/j.gene.2018.04.045 PMID: 29678660
- Shen, X.; Si, Y.; Wang, Z.; Wang, J.; Guo, Y.; Zhang, X. Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling. Int. J. Mol. Med., 2016, 38(2), 619-626. doi: 10.3892/ijmm.2016.2625 PMID: 27278820
- Sun, Z.J.; Chen, G.; Hu, X.; Zhang, W.; Liu, Y.; Zhu, L.X.; Zhou, Q.; Zhao, Y.F. Activation of PI3K/Akt/IKK-α/NF-κB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: its inhibition by quercetin. Apoptosis, 2010, 15(7), 850-863. doi: 10.1007/s10495-010-0497-5 PMID: 20386985
- Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234. doi: 10.1038/nrd1984 PMID: 16518375
- Liu, M.; Fu, M.; Yang, X.; Jia, G.; Shi, X.; Ji, J.; Liu, X.; Zhai, G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111284. doi: 10.1016/j.colsurfb.2020.111284 PMID: 32771817
- Patra, A.; Satpathy, S.; Shenoy, A.; Bush, J.; Kazi, M.; Hussain, M.D. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int. J. Nanomedicine, 2018, 13, 2869-2881. doi: 10.2147/IJN.S153094 PMID: 29844670
- Daglioglu, C. Enhancing tumor cell response to multidrug resistance with ph-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surf. B Biointerfaces, 2017, 156, 175-185. doi: 10.1016/j.colsurfb.2017.05.012 PMID: 28528134
- Marques, M.B.; Machado, A.P.; Santos, P.A.; Carrett-Dias, M.; Araújo, G.S.; da Silva Alves, B.; de Oliveira, B.S.; da Silva Júnior, F.M.R.; Dora, C.L.; Cañedo, A.D.; Filgueira, D.M.V.B.; Fernandes e Silva, E.; de Souza Votto, A.P. Anti-MDR effects of quercetin and its nanoemulsion in multidrug-resistant human leukemia cells. Anticancer. Agents Med. Chem., 2021, 21(14), 1911-1920. doi: 10.2174/1871520621999210104200722 PMID: 33397267
- Kioka, N.; Hosokawa, N.; Komano, T.; Hirayoshi, K.; Nagate, K.; Ueda, K. Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (MDR1) expression caused by arsenite. FEBS Lett., 1992, 301(3), 307-309. doi: 10.1016/0014-5793(92)80263-G PMID: 1349537
- Scambia, G.; Ranelletti, F.O.; Panici, P.B.; De Vincenzo, R.; Bonanno, G.; Ferrandina, G.; Piantelli, M.; Bussa, S.; Rumi, C.; Cianfriglia, M.; Mancuso, S. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol., 1994, 34(6), 459-464. doi: 10.1007/BF00685655 PMID: 7923555
- Yuan, J.; Wong, I.L.K.; Jiang, T.; Wang, S.W.; Liu, T.; Jin Wen, B.; Chow, L.M.C.; Wan Sheng, B. Synthesis of methylated quercetin derivatives and their reversal activities on P-gp- and BCRP-mediated multidrug resistance tumour cells. Eur. J. Med. Chem., 2012, 54, 413-422. doi: 10.1016/j.ejmech.2012.05.026 PMID: 22743241
- Hyun, H.; Moon, J.; Cho, S. Quercetin suppresses CYR61-mediated multidrug resistance in human gastric adenocarcinoma ags cells. Molecules, 2018, 23(2), 209. doi: 10.3390/molecules23020209 PMID: 29364834
- Chen, Z.; Huang, C.; Ma, T.; Jiang, L.; Tang, L.; Shi, T.; Zhang, S.; Zhang, L.; Zhu, P.; Li, J.; Shen, A. Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine, 2018, 43, 37-45. doi: 10.1016/j.phymed.2018.03.040 PMID: 29747752
- Yun, H.R.; Jo, Y.H.; Kim, J.; Shin, Y.; Kim, S.S.; Choi, T.G. Roles of autophagy in oxidative stress. Int. J. Mol. Sci., 2020, 21(9), 3289. doi: 10.3390/ijms21093289 PMID: 32384691
- Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967. doi: 10.1038/nrc2254 PMID: 17972889
- Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer, 2005, 5(9), 726-734. doi: 10.1038/nrc1692 PMID: 16148885
- Kim, H.; Moon, J.Y.; Ahn, K.S.; Cho, S.K. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid Med Cell Longev, 2013, 2013 doi: 10.1155/2013/596496
- Psahoulia, F.H.; Moumtzi, S.; Roberts, M.L.; Sasazuki, T.; Shirasawa, S.; Pintzas, A. Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha- RAS-transformed human colon cells. Carcinogenesis, 2007, 28(5), 1021-1031. doi: 10.1093/carcin/bgl232 PMID: 17148506
- Jakubowicz-Gil, J.; Langner, E.; Bądziul, D.; Wertel, I.; Rzeski, W. Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol. Appl. Pharmacol., 2013, 273(3), 580-589. doi: 10.1016/j.taap.2013.10.003 PMID: 24126416
- Calgarotto, A.K.; Maso, V.; Junior, G.C.F.; Nowill, A.E.; Filho, P.L.; Vassallo, J.; Saad, S.T.O. Antitumor activities of quercetin and green tea in xenografts of human leukemia HL60 cells. Sci. Rep., 2018, 8(1), 3459. doi: 10.1038/s41598-018-21516-5 PMID: 29472583
- Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557. doi: 10.1007/s10495-016-1334-2 PMID: 28188387
- Luo, C.; Liu, Y.; Wang, P.; Song, C.; Wang, K.; Dai, L.; Zhang, J.; Ye, H. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother., 2016, 82, 595-605. doi: 10.1016/j.biopha.2016.05.029 PMID: 27470402
- Lou, M.; Zhang, L.; Ji, P.; Feng, F.; Liu, J.; Yang, C.; Li, B.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother., 2016, 84, 1-9. doi: 10.1016/j.biopha.2016.08.055 PMID: 27621033
- Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978. doi: 10.4161/auto.7.9.15863 PMID: 21610320
- Wu, L.; Li, J.; Liu, T.; Li, S.; Feng, J.; Yu, Q.; Zhang, J.; Chen, J.; Zhou, Y.; Ji, J.; Chen, K.; Mao, Y.; Wang, F.; Dai, W.; Fan, X.; Wu, J.; Guo, C. Quercetin shows anti‐tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med., 2019, 8(10), 4806-4820. doi: 10.1002/cam4.2388 PMID: 31273958
- Jang, E.; Kim, I.Y.; Kim, H.; Lee, D.M.; Seo, D.Y.; Lee, J.A.; Choi, K.S.; Kim, E. Quercetin and chloroquine synergistically kill glioma cells by inducing organelle stress and disrupting Ca2+ homeostasis. Biochem. Pharmacol., 2020, 178, 114098. doi: 10.1016/j.bcp.2020.114098 PMID: 32540484
- Bi, Y.; Shen, C.; Li, C.; Liu, Y.; Gao, D.; Shi, C.; Peng, F.; Liu, Z.; Zhao, B.; Zheng, Z.; Wang, X.; Hou, X.; Liu, H.; Wu, J.; Zou, H.; Wang, K.; Zhong, C.; Zhang, J.; Shi, C.; Zhao, S. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. Tumour Biol., 2016, 37(3), 3549-3560. doi: 10.1007/s13277-015-4125-4 PMID: 26454746
- Tsai, T.F.; Hwang, T.I-S.; Lin, J-F.; Chen, H-E.; Yang, S-C.; Lin, Y-C.; Chou, K-Y.; Chou, K-Y. Suppression of quercetin-induced autophagy enhances cytotoxicity through elevating apoptotic cell death in human bladder cancer cells. Urol. Sci., 2019, 30(2), 58. doi: 10.4103/UROS.UROS_22_18
- Chang, J.L.; Chow, J.M.; Chang, J.H.; Wen, Y.C.; Lin, Y.W.; Yang, S.F.; Lee, W.J.; Chien, M.H. Quercetin simultaneously induces G0/G1-phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells. Environ. Toxicol., 2017, 32(7), 1857-1868. doi: 10.1002/tox.22408 PMID: 28251795
- Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D'Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136. doi: 10.1016/j.jnutbio.2016.12.011 PMID: 28092744
- Taylor, M.A.; Khathayer, F.; Ray, S.K. Quercetin and sodium butyrate synergistically increase apoptosis in rat C6 and human T98G glioblastoma cells through inhibition of autophagy. Neurochem. Res., 2019, 44(7), 1715-1725. doi: 10.1007/s11064-019-02802-8 PMID: 31011879
- Li, J.; Tang, C.; Li, L.; Li, R.; Fan, Y. Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro. J. Neurooncol., 2016, 129(1), 39-45. doi: 10.1007/s11060-016-2149-2 PMID: 27174198
- Moon, J.H.; Eo, S.K.; Lee, J.H.; Park, S.Y. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol. Rep., 2015, 34(1), 375-381. doi: 10.3892/or.2015.3991 PMID: 25997470
- Wang, Z.X.; Ma, J.; Li, X.Y.; Wu, Y.; Shi, H.; Chen, Y.; Lu, G.; Shen, H.M.; Lu, G.D.; Zhou, J. Quercetin induces p53‐independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species‐dependent ferroptosis. Br. J. Pharmacol., 2021, 178(5), 1133-1148. doi: 10.1111/bph.15350 PMID: 33347603
- Chung, Y.; Lee, J.; Jung, S.; Lee, Y.; Cho, J.W.; Oh, Y.J. Dysregulated autophagy contributes to caspase-dependent neuronal apoptosis. Cell Death Dis., 2018, 9(12), 1189. doi: 10.1038/s41419-018-1229-y PMID: 30538224
- Jung, S.; Jeong, H.; Yu, S.W. Autophagy as a decisive process for cell death. Exp. Mol. Med., 2020, 52(6), 921-930. doi: 10.1038/s12276-020-0455-4 PMID: 32591647
- Wu, B.; Zeng, W.; Ouyang, W.; Xu, Q.; Chen, J.; Wang, B.; Zhang, X. Quercetin induced NUPR1-dependent autophagic cell death by disturbing reactive oxygen species homeostasis in osteosarcoma cells. J. Clin. Biochem. Nutr., 2020, 67(2), 137-145. doi: 10.3164/jcbn.19-121 PMID: 33041510
- Zhao, Y.; Fan, D.; Zheng, Z.P.; Li, E.T.S.; Chen, F.; Cheng, K.W.; Wang, M. 8-C-(E-phenylethenyl) quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation. Mol. Nutr. Food Res., 2017, 61(2), 1600437. doi: 10.1002/mnfr.201600437 PMID: 27670274
- Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.R.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl. Med. J., 2017, 118(2), 123-128. doi: 10.4149/BLL_2017_025 PMID: 28814095
- Collado, M.; Blasco, M.A.; Serrano, M. Cellular senescence in cancer and aging. Cell, 2007, 130(2), 223-233. doi: 10.1016/j.cell.2007.07.003 PMID: 17662938
- Ewald, J.A.; Desotelle, J.A.; Wilding, G.; Jarrard, D.F. Therapy-induced senescence in cancer. J. Natl. Cancer Inst., 2010, 102(20), 1536-1546. doi: 10.1093/jnci/djq364 PMID: 20858887
- Özsoy, S.; Becer, E.; Kabadayı, H.; Vatansever, H.S.; Yücecan, S. Quercetin-mediated apoptosis and cellular senescence in human colon cancer. Anticancer. Agents Med. Chem., 2020, 20(11), 1387-1396. doi: 10.2174/1871520620666200408082026 PMID: 32268873
- Kovacovicova, K.; Skolnaja, M.; Heinmaa, M.; Mistrik, M.; Pata, P.; Pata, I.; Bartek, J.; Vinciguerra, M. Senolytic cocktail Dasatinib + Quercetin (D + Q) does not enhance the efficacy of senescence-inducing chemotherapy in liver cancer. Front. Oncol., 2018, 8, 459. doi: 10.3389/fonc.2018.00459 PMID: 30425964
- Zamin, L.L.; Filippi-Chiela, E.C.; Dillenburg-Pilla, P.; Horn, F.; Salbego, C.; Lenz, G. Resveratrol and quercetin cooperate to induce senescence-like growth arrest in C6 rat glioma cells. Cancer Sci., 2009, 100(9), 1655-1662. doi: 10.1111/j.1349-7006.2009.01215.x PMID: 19496785
- Klimaszewska-Wiśniewska, A.; Hałas-Wiśniewska, M.; Izdebska, M.; Gagat, M.; Grzanka, A.; Grzanka, D. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem., 2017, 119(2), 99-112. doi: 10.1016/j.acthis.2016.11.003 PMID: 27887793
Arquivos suplementares
