Synthetic Methodologies and SAR of Quinazoline Derivatives as PI3K Inhibitors
- Authors: Raj A.1, Kumar A.1, Singh A.1, Singh H.1, Thareja S.1, Kumar P.1
-
Affiliations:
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
- Issue: Vol 23, No 9 (2023)
- Pages: 1013-1047
- Section: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694399
- DOI: https://doi.org/10.2174/1871520623666230116163424
- ID: 694399
Cite item
Full Text
Abstract
PI3K is an important anticancer target as it controls cellular functions such as growth, transformation, proliferation, motility and differentiation. Plasma cell cancer (multiple myeloma) occurs more than 10% among all haematological malignancies and accounts for 2% of all cancer-related deaths each year, it is mainly regulated by PI3K/AKT signaling cascade. Quinazoline derivatives have been reported as promising PI3K inhibitors. Lapatinib, afatinib, gefitinib, erlotinib, idelalisib and copanlisib are quinazoline-based, FDA-approved PI3K inhibitors, while compounds like NVPBYL719, GDC-0032, AZD8186, AZD-6482, etc. are under different stages of clinical trials. In light of the above-mentioned facts, in the present study, we have reported different synthetic approaches, mechanisms of anticancer action, and structure-activity relationship analysis of reported quinazoline derivatives as PI3K inhibitors to help researchers working in the field in designing better and isoform-selective PI3K inhibitors.
Keywords
About the authors
Aditya Raj
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Email: info@benthamscience.net
Adarsh Kumar
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Email: info@benthamscience.net
Ankit Singh
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Email: info@benthamscience.net
Harshwardhan Singh
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Email: info@benthamscience.net
Suresh Thareja
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Email: info@benthamscience.net
Pradeep Kumar
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab
Author for correspondence.
Email: info@benthamscience.net
References
- World Health Organization. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Int. Agency Res. Cancer., 2020, 13-15.
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Zhang, Y.; Peng, S.; Lin, S.; Ji, M.; Du, T.; Chen, X.; Xu, H. Discovery of a novel photoswitchable PI3K inhibitor toward optically-controlled anticancer activity. Bioorg. Med. Chem., 2022, 72, 116975. doi: 10.1016/j.bmc.2022.116975 PMID: 36049360
- Spanò, V.; Barreca, M.; Cilibrasi, V.; Genovese, M.; Renda, M.; Montalbano, A.; Galietta, L.J.V.; Barraja, P. Evaluation of fused pyrrolothiazole systems as correctors of mutant CFTR protein. Molecules, 2021, 26(5), 1275. doi: 10.3390/molecules26051275 PMID: 33652850
- Barreca, M.; Spanò, V.; Raimondi, M.V.; Bivacqua, R.; Giuffrida, S.; Montalbano, A.; Cavalli, A.; Bertoni, F.; Barraja, P. GPCR inhibition in treating lymphoma. ACS Med. Chem. Lett., 2022, 13(3), 358-364. doi: 10.1021/acsmedchemlett.1c00600
- Falasca, M. PI3K/Akt signalling pathway specific inhibitors: A novel strategy to sensitize cancer cells to anti-cancer drugs. Curr. Pharm. Des., 2010, 16(12), 1410-1416. doi: 10.2174/138161210791033950 PMID: 20166984
- Rashid, M.; Karim, S.; Ali, B.; Khan, S.; Ahmad, M.; Husain, A.; Mishra, R. PI3K signaling pathway targeting by using different molecular approaches to treat cancer. J. Chin. Pharm. Sci., 2017, 26(9), 621-634. doi: 10.5246/jcps.2017.09.070
- Vanhaesebroeck, B.; Waterfield, M.D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res., 1999, 253(1), 239-254. doi: 10.1006/excr.1999.4701 PMID: 10579926
- Geering, B.; Cutillas, P.R.; Nock, G.; Gharbi, S.I.; Vanhaesebroeck, B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 7809-7814. doi: 10.1073/pnas.0700373104 PMID: 17470792
- Maehama, T.; Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem., 1998, 273(22), 13375-13378. doi: 10.1074/jbc.273.22.13375 PMID: 9593664
- Wu, P.; Su, Y.; Liu, X.; Yang, B.; He, Q.; Hu, Y. Discovery of novel 2-piperidinol-3-(arylsulfonyl)quinoxalines as phosphoinositide 3-kinase α (PI3Kα) inhibitors. Bioorg. Med. Chem., 2012, 20(9), 2837-2844. doi: 10.1016/j.bmc.2012.03.026 PMID: 22480851
- Ando, Y.; Iwasa, S.; Takahashi, S.; Saka, H.; Kakizume, T.; Natsume, K.; Suenaga, N.; Quadt, C.; Yamada, Y. Phase I study of alpelisib (BYL719), an α-specific PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci., 2019, 110(3), 1021-1031. doi: 10.1111/cas.13923 PMID: 30588709
- Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2016, 109, 314-341. doi: 10.1016/j.ejmech.2016.01.012 PMID: 26807863
- Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med., 2014, 46(6), 372-383. doi: 10.3109/07853890.2014.912836 PMID: 24897931
- Wick, M.J.; Dong, L.Q.; Riojas, R.A.; Ramos, F.J.; Liu, F. Mechanism of phosphorylation of protein kinase B/Akt by a constitutively active 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem., 2000, 275(51), 40400-40406. doi: 10.1074/jbc.M003937200 PMID: 11006271
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials 06 biological sciences 0601 biochemistry and cell biology. Mol. Cancer, 2019, 18, 1-28.
- Elmenier, F.M.; Lasheen, D.S.; Abouzid, K.A.M. Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur. J. Med. Chem., 2019, 183, 111718. doi: 10.1016/j.ejmech.2019.111718 PMID: 31581005
- Gupta, A.K.; Cerniglia, G.J.; Mick, R.; Ahmed, M.S.; Bakanauskas, V.J.; Muschel, R.J.; McKenna, W.G. Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int. J. Radiat. Oncol. Biol. Phys., 2003, 56(3), 846-853. doi: 10.1016/S0360-3016(03)00214-1 PMID: 12788194
- Liu, Y.; Jiang, N.; Wu, J.; Dai, W.; Rosenblum, J.S. Polo-like kinases inhibited by wortmannin. Labeling site and downstream effects. J. Biol. Chem., 2007, 282(4), 2505-2511. doi: 10.1074/jbc.M609603200 PMID: 17135248
- Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 2000, 6(4), 909-919. doi: 10.1016/S1097-2765(05)00089-4 PMID: 11090628
- Liu, N.; Rowley, B.R.; Bull, C.O.; Schneider, C.; Haegebarth, A.; Schatz, C.A.; Fracasso, P.R.; Wilkie, D.P.; Hentemann, M.; Wilhelm, S.M.; Scott, W.J.; Mumberg, D.; Ziegelbauer, K. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther., 2013, 12(11), 2319-2330. doi: 10.1158/1535-7163.MCT-12-0993-T PMID: 24170767
- Meng, D.; He, W.; Zhang, Y.; Liang, Z.; Zheng, J.; Zhang, X.; Zheng, X.; Zhan, P.; Chen, H.; Li, W.; Cai, L. Development of PI3K inhibitors: Advances in clinical trials and new strategies. Pharmacol. Res., 2021, 173, 105900. doi: 10.1016/j.phrs.2021.105900 PMID: 34547385
- Scott, W.J.; Hentemann, M.F.; Rowley, R.B.; Bull, C.O.; Jenkins, S.; Bullion, A.M.; Johnson, J.; Redman, A.; Robbins, A.H.; Esler, W.; Fracasso, R.P.; Garrison, T.; Hamilton, M.; Michels, M.; Wood, J.E.; Wilkie, D.P.; Xiao, H.; Levy, J.; Stasik, E.; Liu, N.; Schaefer, M.; Brands, M.; Lefranc, J. Discovery and SAR of Novel 2,3-Dihydroimidazo1,2-cquinazoline PI3K Inhibitors: Identification of Copanlisib (BAY 80-6946). ChemMedChem, 2016, 11(14), 1517-1530. doi: 10.1002/cmdc.201600148 PMID: 27310202
- Soulières, D.; Faivre, S.; Mesía, R.; Remenár, É.; Li, S.H.; Karpenko, A.; Dechaphunkul, A.; Ochsenreither, S.; Kiss, L.A.; Lin, J.C.; Nagarkar, R.; Tamás, L.; Kim, S.B.; Erfán, J.; Alyasova, A.; Kasper, S.; Barone, C.; Turri, S.; Chakravartty, A.; Chol, M.; Aimone, P.; Hirawat, S.; Licitra, L. Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol., 2017, 18(3), 323-335. doi: 10.1016/S1470-2045(17)30064-5 PMID: 28131786
- de Gooijer, M.C.; Zhang, P.; Buil, L.C.M.; Çitirikkaya, C.H.; Thota, N.; Beijnen, J.H.; van Tellingen, O. Buparlisib is a brain penetrable pan-PI3K inhibitor. Sci. Rep., 2018, 8(1), 10784. doi: 10.1038/s41598-018-29062-w PMID: 30018387
- Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. PI3K inhibitors in cancer: Clinical implications and adverse effects. Int. J. Mol. Sci., 2021, 22(7), 3464. doi: 10.3390/ijms22073464 PMID: 33801659
- Sabbah, D.A.; Hajjo, R.; Bardaweel, S.K.; Zhong, H.A. Phosphatidylinositol 3-kinase (PI3K) inhibitors: A recent update on inhibitor design and clinical trials (2016-2020). Expert Opin. Ther. Pat., 2021, 31(10), 877-892. doi: 10.1080/13543776.2021.1924150 PMID: 33970742
- Mayer, I.A.; Abramson, V.G.; Formisano, L.; Balko, J.M.; Estrada, M.V.; Sanders, M.E.; Juric, D.; Solit, D.; Berger, M.F.; Won, H.H.; Li, Y.; Cantley, L.C.; Winer, E.; Arteaga, C.L. A phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2- metastatic breast cancer. Clin. Cancer Res., 2017, 23(1), 26-34. doi: 10.1158/1078-0432.CCR-16-0134 PMID: 27126994
- André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; Inoue, K.; Pápai, Z.; Takahashi, M.; Ghaznawi, F.; Mills, D.; Kaper, M.; Miller, M.; Conte, P.F.; Iwata, H.; Rugo, H.S. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2negative advanced breast cancer: final overall survival results from SOLAR-1. Ann. Oncol., 2021, 32(2), 208-217. doi: 10.1016/j.annonc.2020.11.011 PMID: 33246021
- Wu, P.; Su, Y.; Liu, X.; Zhang, L.; Ye, Y.; Xu, J.; Weng, S.; Li, Y.; Liu, T.; Huang, S.; Yang, B.; He, Q.; Hu, Y. Synthesis and biological evaluation of novel 2-arylamino-3-(arylsulfonyl)quinoxalines as PI3Kα inhibitors. Eur. J. Med. Chem., 2011, 46(11), 5540-5548. doi: 10.1016/j.ejmech.2011.09.015 PMID: 21945250
- Furet, P.; Guagnano, V.; Fairhurst, R.A.; Imbach-Weese, P.; Bruce, I.; Knapp, M.; Fritsch, C.; Blasco, F.; Blanz, J.; Aichholz, R.; Hamon, J.; Fabbro, D.; Caravatti, G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett., 2013, 23(13), 3741-3748. doi: 10.1016/j.bmcl.2013.05.007 PMID: 23726034
- Juric, D.; de Bono, J.S.; LoRusso, P.M.; Nemunaitis, J.; Heath, E.I.; Kwak, E.L.; Macarulla Mercadé, T.; Geuna, E.; Jose de Miguel-Luken, M.; Patel, C.; Kuida, K.; Sankoh, S.; Westin, E.H.; Zohren, F.; Shou, Y.; Tabernero, J. A first-in-human, Phase I, dose-escalation study of TAK-117. A selective PI3Ka isoform inhibitor, in patients with advanced solid malignancies. Clin. Cancer Res., 2017, 23(17), 5015-5023. doi: 10.1158/1078-0432.CCR-16-2888 PMID: 28490463
- Dent, S.; Cortés, J.; Im, Y.H.; Diéras, V.; Harbeck, N.; Krop, I.E.; Wilson, T.R.; Cui, N.; Schimmoller, F.; Hsu, J.Y.; He, J.; De Laurentiis, M.; Sousa, S.; Drullinsky, P.; Jacot, W. Phase III randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: The SANDPIPER trial. Ann. Oncol., 2021, 32(2), 197-207. doi: 10.1016/j.annonc.2020.10.596 PMID: 33186740
- Mateo, J.; Ganji, G.; Lemech, C.; Burris, H.A.; Han, S.W.; Swales, K.; Decordova, S.; DeYoung, M.P.; Smith, D.A.; Kalyana-Sundaram, S.; Wu, J.; Motwani, M.; Kumar, R.; Tolson, J.M.; Rha, S.Y.; Chung, H.C.; Eder, J.P.; Sharma, S.; Bang, Y.J.; Infante, J.R.; Yan, L.; de Bono, J.S.; Arkenau, H.T. A first-time-inhuman study of GSK2636771, a phosphoinositide 3 kinase beta-selective inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2017, 23(19), 5981-5992. doi: 10.1158/1078-0432.CCR-17-0725 PMID: 28645941
- Shah, A.; Mangaonkar, A. Idelalisib. Ann. Pharmacother., 2015, 49(10), 1162-1170. doi: 10.1177/1060028015594813 PMID: 26185276
- Somoza, J.R.; Koditek, D.; Villaseñor, A.G.; Novikov, N.; Wong, M.H.; Liclican, A.; Xing, W.; Lagpacan, L.; Wang, R.; Schultz, B.E.; Papalia, G.A.; Samuel, D.; Lad, L.; McGrath, M.E. Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ. J. Biol. Chem., 2015, 290(13), 8439-8446. doi: 10.1074/jbc.M114.634683 PMID: 25631052
- Burris, H.A., III; Flinn, I.W.; Patel, M.R.; Fenske, T.S.; Deng, C.; Brander, D.M.; Gutierrez, M.; Essell, J.H.; Kuhn, J.G.; Miskin, H.P.; Sportelli, P.; Weiss, M.S.; Vakkalanka, S.; Savona, M.R.; O'Connor, O.A. Umbralisib, a novel PI3Kδ and casein kinase-1ε inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: an open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol., 2018, 19(4), 486-496. doi: 10.1016/S1470-2045(18)30082-2 PMID: 29475723
- Evans, C.A.; Liu, T.; Lescarbeau, A.; Nair, S.J.; Grenier, L.; Pradeilles, J.A.; Glenadel, Q.; Tibbitts, T.; Rowley, A.M.; DiNitto, J.P.; Brophy, E.E.; O'Hearn, E.L.; Ali, J.A.; Winkler, D.G.; Goldstein, S.I.; O'Hearn, P.; Martin, C.M.; Hoyt, J.G.; Soglia, J.R.; Cheung, C.; Pink, M.M.; Proctor, J.L.; Palombella, V.J.; Tremblay, M.R.; Castro, A.C. Discovery of a selective phosphoinositide-3-kinase (PI3K)-γ inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med. Chem. Lett., 2016, 7(9), 862-867. doi: 10.1021/acsmedchemlett.6b00238 PMID: 27660692
- Drew, S.L.; Thomas-Tran, R.; Beatty, J.W.; Fournier, J.; Lawson, K.V.; Miles, D.H.; Mata, G.; Sharif, E.U.; Yan, X.; Mailyan, A.K.; Ginn, E.; Chen, J.; Wong, K.; Soni, D.; Dhanota, P.; Chen, P.Y.; Shaqfeh, S.G.; Meleza, C.; Pham, A.T.; Chen, A.; Zhao, X.; Banuelos, J.; Jin, L.; Schindler, U.; Walters, M.J.; Young, S.W.; Walker, N.P.; Leleti, M.R.; Powers, J.P.; Jeffrey, J.L. Discovery of potent and selective PI3Kγ inhibitors. J. Med. Chem., 2020, 63(19), 11235-11257. doi: 10.1021/acs.jmedchem.0c01203 PMID: 32865410
- Sarker, D.; Ang, J.E.; Baird, R.; Kristeleit, R.; Shah, K.; Moreno, V.; Clarke, P.A.; Raynaud, F.I.; Levy, G.; Ware, J.A.; Mazina, K.; Lin, R.; Wu, J.; Fredrickson, J.; Spoerke, J.M.; Lackner, M.R.; Yan, Y.; Friedman, L.S.; Kaye, S.B.; Derynck, M.K.; Workman, P.; de Bono, J.S. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(1), 77-86. doi: 10.1158/1078-0432.CCR-14-0947 PMID: 25370471
- Blair, H.A. Duvelisib: First global approval. Drugs, 2018, 78(17), 1847-1853. doi: 10.1007/s40265-018-1013-4 PMID: 30430368
- Zhang, M.; Jang, H.; Nussinov, R.; Nussinov, R. PI3K inhibitors: Review and new strategies. Chem. Sci., 2020, 11(23), 5855-5865. doi: 10.1039/D0SC01676D PMID: 32953006
- Welker, M.E.; Kulik, G. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Bioorg. Med. Chem., 2013, 21(14), 4063-4091. doi: 10.1016/j.bmc.2013.04.083 PMID: 23735831
- Knight, S.D.; Adams, N.D.; Burgess, J.L.; Chaudhari, A.M.; Darcy, M.G.; Donatelli, C.A.; Luengo, J.I.; Newlander, K.A.; Parrish, C.A.; Ridgers, L.H.; Sarpong, M.A.; Schmidt, S.J.; Van Aller, G.S.; Carson, J.D.; Diamond, M.A.; Elkins, P.A.; Gardiner, C.M.; Garver, E.; Gilbert, S.A.; Gontarek, R.R.; Jackson, J.R.; Kershner, K.L.; Luo, L.; Raha, K.; Sherk, C.S.; Sung, C.M.; Sutton, D.; Tummino, P.J.; Wegrzyn, R.J.; Auger, K.R.; Dhanak, D. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett., 2010, 1(1), 39-43. doi: 10.1021/ml900028r PMID: 24900173
- Heffron, T.P.; Ndubaku, C.O.; Salphati, L.; Alicke, B.; Cheong, J.; Drobnick, J.; Edgar, K.; Gould, S.E.; Lee, L.B.; Lesnick, J.D.; Lewis, C.; Nonomiya, J.; Pang, J.; Plise, E.G.; Sideris, S.; Wallin, J.; Wang, L.; Zhang, X.; Olivero, A.G. Discovery of clinical development candidate GDC-0084, a brain penetrant inhibitor of PI3K and mTOR. ACS Med. Chem. Lett., 2016, 7(4), 351-356. doi: 10.1021/acsmedchemlett.6b00005 PMID: 27096040
- Kumar, A.; Singh, A.K.; Thareja, S.; Kumar, P. A review of pyridine and pyrimidine derivatives as anti-MRSA agents. Antiinfect. Agents, 2022, 21(2), 23. doi: 10.2174/2211352520666220705085733
- Rahman, M.U.; Jeyabalan, G.; Saraswat, P.; Parveen, G.; Khan, S.; Yar, M.S. Quinazolines and anticancer activity: A current perspectives. Synth. Commun., 2017, 47(5), 379-408. doi: 10.1080/00397911.2016.1269926
- Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38(3), 775-828. doi: 10.1002/med.21466 PMID: 28902434
- Mohammadkhani, L.; Heravi, M.M. Microwave-assisted synthesis of quinazolines and quinazolinones: An overview. Front Chem., 2020, 8, 580086. doi: 10.3389/fchem.2020.580086 PMID: 33282829
- Karan, R.; Agarwal, P.; Sinha, M.; Mahato, N. Recent advances on quinazoline derivatives: A potential bioactive scaffold in medicinal chemistry. Chem. Engineering, 2021, 5(4), 73. doi: 10.3390/chemengineering5040073
- Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 1-27. doi: 10.1155/2014/395637 PMID: 25692041
- Szumilak, M.; Lichota, A.; Olczak, A.; Szczesio, M.; Stańczak, A. Molecular insight into quinazoline derivatives with cytotoxic activity. J. Mol. Struct., 2019, 1194, 28-34. doi: 10.1016/j.molstruc.2019.05.042
- Rahman, M.U.; Rathore, A.; Siddiqui, A.A.; Parveen, G.; Yar, M.S. Synthesis and characterization of quinazoline derivatives: Search for hybrid molecule as diuretic and antihypertensive agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 733-743. doi: 10.3109/14756366.2013.845820 PMID: 24156743
- Alafeefy, A.M.; Kadi, A.A.; Al-Deeb, O.A.; El-Tahir, K.E.H.; Aljaber, N.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur. J. Med. Chem., 2010, 45(11), 4947-4952. doi: 10.1016/j.ejmech.2010.07.067 PMID: 20817329
- Ugale, V.G.; Bari, S.B. Quinazolines: New horizons in anticonvulsant therapy. Eur. J. Med. Chem., 2014, 80, 447-501. doi: 10.1016/j.ejmech.2014.04.072 PMID: 24813877
- Xie, D.; Shi, J.; Zhang, A.; Lei, Z.; Zu, G.; Fu, Y.; Gan, X.; Yin, L.; Song, B.; Hu, D. Syntheses, antiviral activities and induced resistance mechanisms of novel quinazoline derivatives containing a dithioacetal moiety. Bioorg. Chem., 2018, 80, 433-443. doi: 10.1016/j.bioorg.2018.06.026 PMID: 29986188
- Gupta, T.; Rohilla, A.; Pathak, A.; Akhtar, M.J.; Haider, M.R.; Yar, M.S. Current perspectives on quinazolines with potent biological activities: A review. Synth. Commun., 2018, 48(10), 1099-1127. doi: 10.1080/00397911.2018.1431282
- Verma, N.; Rai, A.K.; Kaushik, V.; Brünnert, D.; Chahar, K.R.; Pandey, J.; Goyal, P. Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Sci. Rep., 2016, 6(1), 33949. doi: 10.1038/srep33949 PMID: 27653775
- Tarceva, E.; Cohen, M.H.; Johnson, J.R.; Chen, Y.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Erlotinib (Tarceva) tablets. 2005, 10, 461-466.
- Cameron, D.A.; Stein, S. Drug insight: Intracellular inhibitors of HER2-clinical development of lapatinib in breast cancer. Nat. Clin. Pract. Oncol., 2008, 5(9), 512-520. doi: 10.1038/ncponc1156 PMID: 18594499
- Abbas, S.Y. 4(3H)-quinazolinone derivatives: Syntheses, physical properties, chemical reaction, and biological properties. Quinazolinone Quinazoline Deriv., 2020, 4, 1-22. doi: 10.5772/intechopen.90104
- Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. A simple and efficient approach to the synthesis of 2-phenylquinazolines via sp(3) C-H functionalization. Org. Lett., 2010, 12(12), 2841-2843. doi: 10.1021/ol100954x PMID: 20481477
- Hashem, H.E. Synthesis of quinazoline and quinazolinone derivatives. Quinazolinone Quinazoline Deriv., 2020, 4, 1-12.
- Sen, S.; Hati, S. Synthesis of quinazolines and dihydroquinazolines: o-iodoxybenzoic acid mediated tandem reaction of o-aminobenzylamine with aldehydes. Synthesis, 2016, 48(9), 1389-1398. doi: 10.1055/s-0035-1560416
- Karnakar, K.; Shankar, J.; Murthy, S.N.; Ramesh, K.; Nageswar, Y.V.D. An efficient protocol for the synthesis of 2-phenylquinazolines catalyzed by ceric ammonium nitrate (CAN). Synlett, 2011, 1089-1096.
- Wang, D.; Gao, F. Quinazoline derivatives: Synthesis and bioactivities. Chem. Cent. J., 2013, 7(1), 95. doi: 10.1186/1752-153X-7-95 PMID: 23731671
- Tian, X.C.; Huang, X.; Wang, D.; Gao, F. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water. Chem. Pharm. Bull., 2014, 62(8), 824-829. doi: 10.1248/cpb.c14-00264 PMID: 24920051
- Sharif, M. Quinazolin-4(3H)-ones: A tangible synthesis protocol via an oxidative olefin bond cleavage using metal-catalyst free conditions. Appl. Sci., 2020, 10(8), 2815. doi: 10.3390/app10082815
- Ferrini, S.; Ponticelli, F.; Taddei, M. Convenient synthetic approach to 2,4-disubstituted quinazolines. Org. Lett., 2007, 9(1), 69-72. doi: 10.1021/ol062540s PMID: 17192087
- Bansal, R.; Malhotra, A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur. J. Med. Chem., 2021, 211, 113016. doi: 10.1016/j.ejmech.2020.113016 PMID: 33243532
- Fan, Y.H.; Ding, H.W.; Liu, D.D.; Song, H.R.; Xu, Y.N.; Wang, J. Novel 4-aminoquinazoline derivatives induce growth inhibition, cell cycle arrest and apoptosis via PI3Kα inhibition. Bioorg. Med. Chem., 2018, 26(8), 1675-1685. doi: 10.1016/j.bmc.2018.02.015 PMID: 29475582
- Xi, L.; Zhang, J.Q.; Liu, Z.C.; Zhang, J.H.; Yan, J.F.; Jin, Y.; Lin, J. Novel 5-anilinoquinazoline-8-nitro derivatives as inhibitors of VEGFR-2 tyrosine kinase: Synthesis, biological evaluation and molecular docking. Org. Biomol. Chem., 2013, 11(26), 4367-4378. doi: 10.1039/c3ob40368h PMID: 23715382
- Wu, X.; Li, M.; Qu, Y.; Tang, W.; Zheng, Y.; Lian, J.; Ji, M.; Xu, L. Design and synthesis of novel Gefitinib analogues with improved anti-tumor activity. Bioorg. Med. Chem., 2010, 18(11), 3812-3822. doi: 10.1016/j.bmc.2010.04.046 PMID: 20466555
- Ding, H.W.; Deng, C.L.; Li, D.D.; Liu, D.D.; Chai, S.M.; Wang, W.; Zhang, Y.; Chen, K.; Li, X.; Wang, J.; Song, S.J.; Song, H.R. Design, synthesis and biological evaluation of novel 4-aminoquinazolines as dual target inhibitors of EGFR-PI3Kα. Eur. J. Med. Chem., 2018, 146, 460-470. doi: 10.1016/j.ejmech.2018.01.081 PMID: 29407971
- Yadav, R.R.; Guru, S.K.; Joshi, P.; Mahajan, G.; Mintoo, M.J.; Kumar, V.; Bharate, S.S.; Mondhe, D.M.; Vishwakarma, R.A.; Bhushan, S.; Bharate, S.B. 6-Aryl substituted 4-(4-cyanomethyl) phenylamino quinazolines as a new class of isoform-selective PI3K-alpha inhibitors. Eur. J. Med. Chem., 2016, 122, 731-743. doi: 10.1016/j.ejmech.2016.07.006 PMID: 27479483
- Fan, Y.H.; Li, W.; Liu, D.D.; Bai, M.X.; Song, H.R.; Xu, Y.N.; Lee, S.; Zhou, Z.P.; Wang, J.; Ding, H.W. Design, synthesis, and biological evaluation of novel 3-substituted imidazo1,2-apyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors. Eur. J. Med. Chem., 2017, 139, 95-106. doi: 10.1016/j.ejmech.2017.07.074 PMID: 28800461
- Al-Ashmawy, A.A.K.; Elokely, K.M.; Perez-Leal, O.; Rico, M.; Gordon, J.; Mateo, G.; Omar, A.M.; Abou-Gharbia, M.; Childers, W.E. Jr Discovery and SAR of novel disubstituted quinazolines as dual PI3Kalpha/mTOR inhibitors targeting breast cancer. ACS Med. Chem. Lett., 2020, 11(11), 2156-2164. doi: 10.1021/acsmedchemlett.0c00289 PMID: 33214824
- Shao, T.; Wang, J.; Chen, J.G.; Wang, X.M.; Li, H.; Li, Y.P.; Li, Y.; Yang, G.D.; Mei, Q.B.; Zhang, S.Q. Discovery of 2-methoxy-3-phenylsulfonamino-5-(quinazolin-6-yl or quinolin-6-yl)benzamides as novel PI3K inhibitors and anticancer agents by bioisostere. Eur. J. Med. Chem., 2014, 75, 96-105. doi: 10.1016/j.ejmech.2014.01.053 PMID: 24530495
- Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Zhang, K.; Dong, Y.; Jin, J.; Chen, J.; Zhang, J.; Sheng, L.; Li, Y.; Chen, X.; Xu, H. Discovery and optimization of 2-amino-4-methylquinazoline derivatives as highly potent phosphatidylinositol 3-kinase inhibitors for cancer treatment. J. Med. Chem., 2018, 61(14), 6087-6109. doi: 10.1021/acs.jmedchem.8b00416 PMID: 29927604
- Zeid, I.F.; Mohamed, N.A.; Khalifa, N.M.; Kassem, E.M.; Nossier, E.S.; Salman, A.A.; Mahmoud, K.; Al-Omar, M.A. PI3K inhibitors of novel hydrazide analogues linked 2-pyridinyl quinazolone scaffold as anticancer agents. J. Chem., 2019, 2019, 1-12. doi: 10.1155/2019/6321573
- Hu, H.; Dong, Y.; Li, M.; Wang, R.; Zhang, X.; Gong, P.; Zhao, Y. Design, synthesis and biological evaluation of novel thieno3,2-dpyrimidine and quinazoline derivatives as potent antitumor agents. Bioorg. Chem., 2019, 90, 103086. doi: 10.1016/j.bioorg.2019.103086 PMID: 31280016
- Zhang, H.; Xin, M.H.; Xie, X.X.; Mao, S.; Zuo, S.J.; Lu, S.M.; Zhang, S.Q. Synthesis and antitumor activity evaluation of PI3K inhibitors containing 3-substituted quinazolin-4(3H)-one moiety. Bioorg. Med. Chem., 2015, 23(24), 7765-7776. doi: 10.1016/j.bmc.2015.11.027 PMID: 26652969
- Wang, X.M.; Xin, M.H.; Xu, J.; Kang, B.R.; Li, Y.; Lu, S.M.; Zhang, S.Q. Synthesis and antitumor activities evaluation of m-(4-morpholinoquinazolin-2-yl)benzamides in vitro and in vivo. Eur. J. Med. Chem., 2015, 96, 382-395. doi: 10.1016/j.ejmech.2015.04.037 PMID: 25911625
- Dong, J,; Huang, J,; Zhou, J,; Tan, Y,; Jin, J,; Tan, X,; Wang, B,; Yu, T,; Wu, C,; Chen, S,; Wang, TL. Discovery of 3-Quinazolin-4(3H)-on-3-yl-2,N-dimethylpropanamides as Orally Active and Selective PI3Kα Inhibitors CS Med. Chem. Lett., 2020, 11, 1463-1469.
- Minhang, X.; Hei, Y.; Hao, Z.; Mao, S. Discovery of 6-benzamide containing 4-phenylquinazoline derivatives as novel PI3K δ inhibitors. Eur. J. Med. Chem., 2017, 14, 167-174.
- Teng, Y.; Li, X.; Ren, S.; Cheng, Y.; Xi, K.; Shen, H.; Ma, W.; Luo, G.; Xiang, H. Discovery of novel quinazoline derivatives as potent PI3Kδ inhibitors with high selectivity. Eur. J. Med. Chem., 2020, 208, 112865. doi: 10.1016/j.ejmech.2020.112865 PMID: 32987316
- Kim, Y.S.; Cheon, M.G.; Boggu, P.R.; Koh, S.Y.; Park, G.M.; Kim, G.; Park, S.H.; Park, S.L.; Lee, C.W.; Kim, J.W.; Jung, Y.H. Synthesis and biological evaluation of novel purinyl quinazolinone derivatives as PI3Kδ-specific inhibitors for the treatment of hematologic malignancies. Bioorg. Med. Chem., 2021, 45, 116312. doi: 10.1016/j.bmc.2021.116312 PMID: 34332211
- Feng, Y.; Duan, W.; Fan, S.; Zhang, H.; Zhang, S.Q.; Xin, M. Synthesis and biological evaluation of 4-(piperid-3-yl)amino substituted 6-pyridylquinazolines as potent PI3Kδ inhibitors. Bioorg. Med. Chem., 2019, 27(19), 115035. doi: 10.1016/j.bmc.2019.07.051 PMID: 31434616
- Wei, M.; Zhang, X.; Wang, X.; Song, Z.; Ding, J. Phosphoinositide 3-kinase delta (PI3K d) inhibitors. Eur. J. Med. Chem., 2017, 125, 1156-1171. doi: 10.1016/j.ejmech.2016.11.014 PMID: 27846451
- Ma, C.C.; Zhang, C.M.; Tang, L.Q.; Liu, Z.P. Discovery of novel quinazolinone derivatives as high potent and selective PI3Kδ and PI3Kδ/γ inhibitors. Eur. J. Med. Chem., 2018, 151, 9-17. doi: 10.1016/j.ejmech.2018.03.068 PMID: 29601991
- Hoegenauer, K.; Soldermann, N.; Stauffer, F.; Furet, P.; Graveleau, N.; Smith, A.B.; Hebach, C.; Hollingworth, G.J.; Lewis, I.; Gutmann, S.; Rummel, G.; Knapp, M.; Wolf, R.M.; Blanz, J.; Feifel, R.; Burkhart, C.; Zécri, F. Discovery and pharmacological characterization of novel quinazoline-based PI3K delta-selective inhibitors. ACS Med. Chem. Lett., 2016, 7(8), 762-767. doi: 10.1021/acsmedchemlett.6b00119 PMID: 27563400
- Ma, X.; Wei, J.; Wang, C.; Gu, D.; Hu, Y.; Sheng, R. Design, synthesis and biological evaluation of novel benzothiadiazine derivatives as potent PI3Kδ-selective inhibitors for treating B-cell-mediated malignancies. Eur. J. Med. Chem., 2019, 170, 112-125. doi: 10.1016/j.ejmech.2019.03.005 PMID: 30878826
- Peng, X.X.; Feng, K.R.; Ren, Y.J. Molecular modeling studies of quinazolinone derivatives as novel PI3Kδ selective inhibitors. RSC Advances, 2017, 7(89), 56344-56358. doi: 10.1039/C7RA10870B
- Xin, M.; Hei, Y.Y.; Zhang, H.; Shen, Y.; Zhang, S.Q. Design and synthesis of novel 6-aryl substituted 4-anilinequinazoline derivatives as potential PI3Kδ inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(9), 1972-1977. doi: 10.1016/j.bmcl.2017.03.020 PMID: 28325601
- Xin, M.; Duan, W.; Feng, Y.; Hei, Y.; Zhang, H.; Shen, Y.; Zhao, H.; Mao, S.; Zhang, S. Bioorganic and medicinal chemistry novel 6-aryl substituted 4-pyrrolidineaminoquinazoline derivatives as potent phosphoinositide 3-kinase delta (PI3K d) inhibitors. Bioorg. Med. Chem., 2018, 26, 2028-2040. doi: 10.1016/j.bmc.2018.03.002 PMID: 29534936
- Ding, H.W.; Wang, S.; Qin, X.C.; Wang, J.; Song, H.R.; Zhao, Q.C.; Song, S.J. Design, synthesis, and biological evaluation of some novel 4-aminoquinazolines as Pan-PI3K inhibitors. Bioorg. Med. Chem., 2019, 27(13), 2729-2740. doi: 10.1016/j.bmc.2019.04.024 PMID: 31097403
- Thakur, A.; Tawa, G.J.; Henderson, M.J.; Danchik, C.; Liu, S.; Shah, P.; Wang, A.Q.; Dunn, G.; Kabir, M.; Padilha, E.C.; Xu, X.; Simeonov, A.; Kharbanda, S.; Stone, R.; Grewal, G. Design, synthesis, and biological evaluation of quinazolin-4-one-based hydroxamic acids as dual PI3K/HDAC inhibitors. J. Med. Chem., 2020, 63(8), 4256-4292. doi: 10.1021/acs.jmedchem.0c00193 PMID: 32212730
- Zhang, K.; Lai, F.; Lin, S.; Ji, M.; Zhang, J.; Zhang, Y.; Jin, J.; Fu, R.; Wu, D.; Tian, H.; Xue, N.; Sheng, L.; Zou, X.; Li, Y.; Chen, X.; Xu, H. Design, synthesis, and biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting phosphoinositide 3-kinases and histone deacetylases. J. Med. Chem., 2019, 62(15), 6992-7014. doi: 10.1021/acs.jmedchem.9b00390 PMID: 31117517
- Wang, Z.; Liu, L.; Dai, H.; Si, X.; Zhang, L.; Li, E.; Yang, Z.; Chao, G.; Zheng, J.; Ke, Y.; Lihong, S.; Zhang, Q.; Liu, H. Design, synthesis and biological evaluation of novel 2,4-disubstituted quinazoline derivatives targeting H1975 cells via EGFR-PI3K signaling pathway. Bioorg. Med. Chem., 2021, 43, 116265. doi: 10.1016/j.bmc.2021.116265 PMID: 34192644
- Nara, S.; Garlapati, A. Design, synthesis and molecular docking study of hybrids of quinazolin-4 (3H)-one as anticancer agents: Design, synthesis and study of molecular coupling of hybrids of quinazolino. Ars Pharm., 2018, 4, 121-131.
- Zheng, Y.G.; Zhang, W.Q.; Meng, L.; Wu, X.Q.; Zhang, L.; An, L.; Li, C.L.; Gao, C.Y.; Xu, L.; Liu, Y. Design, synthesis and biological evaluation of 4-aniline quinazoline derivatives conjugated with hydrogen sulfide (H2S) donors as potent EGFR inhibitors against L858R resistance mutation. Eur. J. Med. Chem., 2020, 202, 112522. doi: 10.1016/j.ejmech.2020.112522 PMID: 32619886
- Zhang, K.; Ji, M.; Lin, S.; Peng, S.; Zhang, Z.; Zhang, M.; Zhang, J.; Zhang, Y.; Wu, D.; Tian, H.; Chen, X.; Xu, H. Design, synthesis, and biological evaluation of a novel photocaged PI3K inhibitor toward precise cancer treatment. J. Med. Chem., 2021, 64(11), 7331-7340. doi: 10.1021/acs.jmedchem.0c02186 PMID: 33876637
- Wani, Z.A.; Guru, S.K.; Rao, A.V.S.; Sharma, S.; Mahajan, G.; Behl, A.; Kumar, A.; Sharma, P.R.; Kamal, A.; Bhushan, S.; Mondhe, D.M. A novel quinazolinone chalcone derivative induces mitochondrial dependent apoptosis and inhibits PI3K/Akt/mTOR signaling pathway in human colon cancer HCT-116 cells. Food Chem. Toxicol., 2016, 87, 1-11. doi: 10.1016/j.fct.2015.11.016 PMID: 26615871
- Srinivas, M.; Singh Pathania, A.; Mahajan, P.; Verma, P.K.; Chobe, S.S.; Malik, F.A.; Nargotra, A.; Vishwakarma, R.A.; Sawant, S.D. Design and synthesis of 1,4-substituted 1H-1,2,3-triazolo-quinazolin-4(3H)-ones by Huisgen 1,3-dipolar cycloaddition with PI3Kγ isoform selective activity. Bioorg. Med. Chem. Lett., 2018, 28(6), 1005-1010. doi: 10.1016/j.bmcl.2018.02.032 PMID: 29486969
- Hei, Y.Y.; Xin, M.; Zhang, H.; Xie, X.X.; Mao, S.; Zhang, S.Q. Synthesis and antitumor activity evaluation of 4,6-disubstituted quinazoline derivatives as novel PI3K inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(18), 4408-4413. doi: 10.1016/j.bmcl.2016.08.015 PMID: 27544401
- Yang, H.; Li, Q.; Su, M.; Luo, F.; Liu, Y.; Wang, D.; Fan, Y. Design, synthesis, and biological evaluation of novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives as potential anticancer agents via PI3K inhibition. Bioorg. Med. Chem., 2021, 46, 116346. doi: 10.1016/j.bmc.2021.116346 PMID: 34403956
- Wu, Y.; Dai, W.; Chen, X.; Geng, A.; Chen, Y.; Lu, T.; Zhu, Y. Design, synthesis and biological evaluation of 2,3-dihydroimidazo1,2-cquinazoline derivatives as novel phosphatidylinositol 3-kinase and histone deacetylase dual inhibitors. RSC Advances, 2017, 7(82), 52180-52186. doi: 10.1039/C7RA08835C
Supplementary files
