Synthetic Methodologies and SAR of Quinazoline Derivatives as PI3K Inhibitors


Cite item

Full Text

Abstract

PI3K is an important anticancer target as it controls cellular functions such as growth, transformation, proliferation, motility and differentiation. Plasma cell cancer (multiple myeloma) occurs more than 10% among all haematological malignancies and accounts for 2% of all cancer-related deaths each year, it is mainly regulated by PI3K/AKT signaling cascade. Quinazoline derivatives have been reported as promising PI3K inhibitors. Lapatinib, afatinib, gefitinib, erlotinib, idelalisib and copanlisib are quinazoline-based, FDA-approved PI3K inhibitors, while compounds like NVPBYL719, GDC-0032, AZD8186, AZD-6482, etc. are under different stages of clinical trials. In light of the above-mentioned facts, in the present study, we have reported different synthetic approaches, mechanisms of anticancer action, and structure-activity relationship analysis of reported quinazoline derivatives as PI3K inhibitors to help researchers working in the field in designing better and isoform-selective PI3K inhibitors.

About the authors

Aditya Raj

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Adarsh Kumar

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Ankit Singh

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Harshwardhan Singh

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Suresh Thareja

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Pradeep Kumar

Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Author for correspondence.
Email: info@benthamscience.net

References

  1. World Health Organization. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Int. Agency Res. Cancer., 2020, 13-15.
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  3. Zhang, Y.; Peng, S.; Lin, S.; Ji, M.; Du, T.; Chen, X.; Xu, H. Discovery of a novel photoswitchable PI3K inhibitor toward optically-controlled anticancer activity. Bioorg. Med. Chem., 2022, 72, 116975. doi: 10.1016/j.bmc.2022.116975 PMID: 36049360
  4. Spanò, V.; Barreca, M.; Cilibrasi, V.; Genovese, M.; Renda, M.; Montalbano, A.; Galietta, L.J.V.; Barraja, P. Evaluation of fused pyrrolothiazole systems as correctors of mutant CFTR protein. Molecules, 2021, 26(5), 1275. doi: 10.3390/molecules26051275 PMID: 33652850
  5. Barreca, M.; Spanò, V.; Raimondi, M.V.; Bivacqua, R.; Giuffrida, S.; Montalbano, A.; Cavalli, A.; Bertoni, F.; Barraja, P. GPCR inhibition in treating lymphoma. ACS Med. Chem. Lett., 2022, 13(3), 358-364. doi: 10.1021/acsmedchemlett.1c00600
  6. Falasca, M. PI3K/Akt signalling pathway specific inhibitors: A novel strategy to sensitize cancer cells to anti-cancer drugs. Curr. Pharm. Des., 2010, 16(12), 1410-1416. doi: 10.2174/138161210791033950 PMID: 20166984
  7. Rashid, M.; Karim, S.; Ali, B.; Khan, S.; Ahmad, M.; Husain, A.; Mishra, R. PI3K signaling pathway targeting by using different molecular approaches to treat cancer. J. Chin. Pharm. Sci., 2017, 26(9), 621-634. doi: 10.5246/jcps.2017.09.070
  8. Vanhaesebroeck, B.; Waterfield, M.D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res., 1999, 253(1), 239-254. doi: 10.1006/excr.1999.4701 PMID: 10579926
  9. Geering, B.; Cutillas, P.R.; Nock, G.; Gharbi, S.I.; Vanhaesebroeck, B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 7809-7814. doi: 10.1073/pnas.0700373104 PMID: 17470792
  10. Maehama, T.; Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem., 1998, 273(22), 13375-13378. doi: 10.1074/jbc.273.22.13375 PMID: 9593664
  11. Wu, P.; Su, Y.; Liu, X.; Yang, B.; He, Q.; Hu, Y. Discovery of novel 2-piperidinol-3-(arylsulfonyl)quinoxalines as phosphoinositide 3-kinase α (PI3Kα) inhibitors. Bioorg. Med. Chem., 2012, 20(9), 2837-2844. doi: 10.1016/j.bmc.2012.03.026 PMID: 22480851
  12. Ando, Y.; Iwasa, S.; Takahashi, S.; Saka, H.; Kakizume, T.; Natsume, K.; Suenaga, N.; Quadt, C.; Yamada, Y. Phase I study of alpelisib (BYL719), an α-specific PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci., 2019, 110(3), 1021-1031. doi: 10.1111/cas.13923 PMID: 30588709
  13. Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2016, 109, 314-341. doi: 10.1016/j.ejmech.2016.01.012 PMID: 26807863
  14. Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med., 2014, 46(6), 372-383. doi: 10.3109/07853890.2014.912836 PMID: 24897931
  15. Wick, M.J.; Dong, L.Q.; Riojas, R.A.; Ramos, F.J.; Liu, F. Mechanism of phosphorylation of protein kinase B/Akt by a constitutively active 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem., 2000, 275(51), 40400-40406. doi: 10.1074/jbc.M003937200 PMID: 11006271
  16. Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials 06 biological sciences 0601 biochemistry and cell biology. Mol. Cancer, 2019, 18, 1-28.
  17. Elmenier, F.M.; Lasheen, D.S.; Abouzid, K.A.M. Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur. J. Med. Chem., 2019, 183, 111718. doi: 10.1016/j.ejmech.2019.111718 PMID: 31581005
  18. Gupta, A.K.; Cerniglia, G.J.; Mick, R.; Ahmed, M.S.; Bakanauskas, V.J.; Muschel, R.J.; McKenna, W.G. Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int. J. Radiat. Oncol. Biol. Phys., 2003, 56(3), 846-853. doi: 10.1016/S0360-3016(03)00214-1 PMID: 12788194
  19. Liu, Y.; Jiang, N.; Wu, J.; Dai, W.; Rosenblum, J.S. Polo-like kinases inhibited by wortmannin. Labeling site and downstream effects. J. Biol. Chem., 2007, 282(4), 2505-2511. doi: 10.1074/jbc.M609603200 PMID: 17135248
  20. Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 2000, 6(4), 909-919. doi: 10.1016/S1097-2765(05)00089-4 PMID: 11090628
  21. Liu, N.; Rowley, B.R.; Bull, C.O.; Schneider, C.; Haegebarth, A.; Schatz, C.A.; Fracasso, P.R.; Wilkie, D.P.; Hentemann, M.; Wilhelm, S.M.; Scott, W.J.; Mumberg, D.; Ziegelbauer, K. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther., 2013, 12(11), 2319-2330. doi: 10.1158/1535-7163.MCT-12-0993-T PMID: 24170767
  22. Meng, D.; He, W.; Zhang, Y.; Liang, Z.; Zheng, J.; Zhang, X.; Zheng, X.; Zhan, P.; Chen, H.; Li, W.; Cai, L. Development of PI3K inhibitors: Advances in clinical trials and new strategies. Pharmacol. Res., 2021, 173, 105900. doi: 10.1016/j.phrs.2021.105900 PMID: 34547385
  23. Scott, W.J.; Hentemann, M.F.; Rowley, R.B.; Bull, C.O.; Jenkins, S.; Bullion, A.M.; Johnson, J.; Redman, A.; Robbins, A.H.; Esler, W.; Fracasso, R.P.; Garrison, T.; Hamilton, M.; Michels, M.; Wood, J.E.; Wilkie, D.P.; Xiao, H.; Levy, J.; Stasik, E.; Liu, N.; Schaefer, M.; Brands, M.; Lefranc, J. Discovery and SAR of Novel 2,3-Dihydroimidazo1,2-cquinazoline PI3K Inhibitors: Identification of Copanlisib (BAY 80-6946). ChemMedChem, 2016, 11(14), 1517-1530. doi: 10.1002/cmdc.201600148 PMID: 27310202
  24. Soulières, D.; Faivre, S.; Mesía, R.; Remenár, É.; Li, S.H.; Karpenko, A.; Dechaphunkul, A.; Ochsenreither, S.; Kiss, L.A.; Lin, J.C.; Nagarkar, R.; Tamás, L.; Kim, S.B.; Erfán, J.; Alyasova, A.; Kasper, S.; Barone, C.; Turri, S.; Chakravartty, A.; Chol, M.; Aimone, P.; Hirawat, S.; Licitra, L. Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol., 2017, 18(3), 323-335. doi: 10.1016/S1470-2045(17)30064-5 PMID: 28131786
  25. de Gooijer, M.C.; Zhang, P.; Buil, L.C.M.; Çitirikkaya, C.H.; Thota, N.; Beijnen, J.H.; van Tellingen, O. Buparlisib is a brain penetrable pan-PI3K inhibitor. Sci. Rep., 2018, 8(1), 10784. doi: 10.1038/s41598-018-29062-w PMID: 30018387
  26. Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. PI3K inhibitors in cancer: Clinical implications and adverse effects. Int. J. Mol. Sci., 2021, 22(7), 3464. doi: 10.3390/ijms22073464 PMID: 33801659
  27. Sabbah, D.A.; Hajjo, R.; Bardaweel, S.K.; Zhong, H.A. Phosphatidylinositol 3-kinase (PI3K) inhibitors: A recent update on inhibitor design and clinical trials (2016-2020). Expert Opin. Ther. Pat., 2021, 31(10), 877-892. doi: 10.1080/13543776.2021.1924150 PMID: 33970742
  28. Mayer, I.A.; Abramson, V.G.; Formisano, L.; Balko, J.M.; Estrada, M.V.; Sanders, M.E.; Juric, D.; Solit, D.; Berger, M.F.; Won, H.H.; Li, Y.; Cantley, L.C.; Winer, E.; Arteaga, C.L. A phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2- metastatic breast cancer. Clin. Cancer Res., 2017, 23(1), 26-34. doi: 10.1158/1078-0432.CCR-16-0134 PMID: 27126994
  29. André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; Inoue, K.; Pápai, Z.; Takahashi, M.; Ghaznawi, F.; Mills, D.; Kaper, M.; Miller, M.; Conte, P.F.; Iwata, H.; Rugo, H.S. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2–negative advanced breast cancer: final overall survival results from SOLAR-1. Ann. Oncol., 2021, 32(2), 208-217. doi: 10.1016/j.annonc.2020.11.011 PMID: 33246021
  30. Wu, P.; Su, Y.; Liu, X.; Zhang, L.; Ye, Y.; Xu, J.; Weng, S.; Li, Y.; Liu, T.; Huang, S.; Yang, B.; He, Q.; Hu, Y. Synthesis and biological evaluation of novel 2-arylamino-3-(arylsulfonyl)quinoxalines as PI3Kα inhibitors. Eur. J. Med. Chem., 2011, 46(11), 5540-5548. doi: 10.1016/j.ejmech.2011.09.015 PMID: 21945250
  31. Furet, P.; Guagnano, V.; Fairhurst, R.A.; Imbach-Weese, P.; Bruce, I.; Knapp, M.; Fritsch, C.; Blasco, F.; Blanz, J.; Aichholz, R.; Hamon, J.; Fabbro, D.; Caravatti, G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett., 2013, 23(13), 3741-3748. doi: 10.1016/j.bmcl.2013.05.007 PMID: 23726034
  32. Juric, D.; de Bono, J.S.; LoRusso, P.M.; Nemunaitis, J.; Heath, E.I.; Kwak, E.L.; Macarulla Mercadé, T.; Geuna, E.; Jose de Miguel-Luken, M.; Patel, C.; Kuida, K.; Sankoh, S.; Westin, E.H.; Zohren, F.; Shou, Y.; Tabernero, J. A first-in-human, Phase I, dose-escalation study of TAK-117. A selective PI3Ka isoform inhibitor, in patients with advanced solid malignancies. Clin. Cancer Res., 2017, 23(17), 5015-5023. doi: 10.1158/1078-0432.CCR-16-2888 PMID: 28490463
  33. Dent, S.; Cortés, J.; Im, Y.H.; Diéras, V.; Harbeck, N.; Krop, I.E.; Wilson, T.R.; Cui, N.; Schimmoller, F.; Hsu, J.Y.; He, J.; De Laurentiis, M.; Sousa, S.; Drullinsky, P.; Jacot, W. Phase III randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: The SANDPIPER trial. Ann. Oncol., 2021, 32(2), 197-207. doi: 10.1016/j.annonc.2020.10.596 PMID: 33186740
  34. Mateo, J.; Ganji, G.; Lemech, C.; Burris, H.A.; Han, S.W.; Swales, K.; Decordova, S.; DeYoung, M.P.; Smith, D.A.; Kalyana-Sundaram, S.; Wu, J.; Motwani, M.; Kumar, R.; Tolson, J.M.; Rha, S.Y.; Chung, H.C.; Eder, J.P.; Sharma, S.; Bang, Y.J.; Infante, J.R.; Yan, L.; de Bono, J.S.; Arkenau, H.T. A first-time-inhuman study of GSK2636771, a phosphoinositide 3 kinase beta-selective inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2017, 23(19), 5981-5992. doi: 10.1158/1078-0432.CCR-17-0725 PMID: 28645941
  35. Shah, A.; Mangaonkar, A. Idelalisib. Ann. Pharmacother., 2015, 49(10), 1162-1170. doi: 10.1177/1060028015594813 PMID: 26185276
  36. Somoza, J.R.; Koditek, D.; Villaseñor, A.G.; Novikov, N.; Wong, M.H.; Liclican, A.; Xing, W.; Lagpacan, L.; Wang, R.; Schultz, B.E.; Papalia, G.A.; Samuel, D.; Lad, L.; McGrath, M.E. Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ. J. Biol. Chem., 2015, 290(13), 8439-8446. doi: 10.1074/jbc.M114.634683 PMID: 25631052
  37. Burris, H.A., III; Flinn, I.W.; Patel, M.R.; Fenske, T.S.; Deng, C.; Brander, D.M.; Gutierrez, M.; Essell, J.H.; Kuhn, J.G.; Miskin, H.P.; Sportelli, P.; Weiss, M.S.; Vakkalanka, S.; Savona, M.R.; O'Connor, O.A. Umbralisib, a novel PI3Kδ and casein kinase-1ε inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: an open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol., 2018, 19(4), 486-496. doi: 10.1016/S1470-2045(18)30082-2 PMID: 29475723
  38. Evans, C.A.; Liu, T.; Lescarbeau, A.; Nair, S.J.; Grenier, L.; Pradeilles, J.A.; Glenadel, Q.; Tibbitts, T.; Rowley, A.M.; DiNitto, J.P.; Brophy, E.E.; O'Hearn, E.L.; Ali, J.A.; Winkler, D.G.; Goldstein, S.I.; O'Hearn, P.; Martin, C.M.; Hoyt, J.G.; Soglia, J.R.; Cheung, C.; Pink, M.M.; Proctor, J.L.; Palombella, V.J.; Tremblay, M.R.; Castro, A.C. Discovery of a selective phosphoinositide-3-kinase (PI3K)-γ inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med. Chem. Lett., 2016, 7(9), 862-867. doi: 10.1021/acsmedchemlett.6b00238 PMID: 27660692
  39. Drew, S.L.; Thomas-Tran, R.; Beatty, J.W.; Fournier, J.; Lawson, K.V.; Miles, D.H.; Mata, G.; Sharif, E.U.; Yan, X.; Mailyan, A.K.; Ginn, E.; Chen, J.; Wong, K.; Soni, D.; Dhanota, P.; Chen, P.Y.; Shaqfeh, S.G.; Meleza, C.; Pham, A.T.; Chen, A.; Zhao, X.; Banuelos, J.; Jin, L.; Schindler, U.; Walters, M.J.; Young, S.W.; Walker, N.P.; Leleti, M.R.; Powers, J.P.; Jeffrey, J.L. Discovery of potent and selective PI3Kγ inhibitors. J. Med. Chem., 2020, 63(19), 11235-11257. doi: 10.1021/acs.jmedchem.0c01203 PMID: 32865410
  40. Sarker, D.; Ang, J.E.; Baird, R.; Kristeleit, R.; Shah, K.; Moreno, V.; Clarke, P.A.; Raynaud, F.I.; Levy, G.; Ware, J.A.; Mazina, K.; Lin, R.; Wu, J.; Fredrickson, J.; Spoerke, J.M.; Lackner, M.R.; Yan, Y.; Friedman, L.S.; Kaye, S.B.; Derynck, M.K.; Workman, P.; de Bono, J.S. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(1), 77-86. doi: 10.1158/1078-0432.CCR-14-0947 PMID: 25370471
  41. Blair, H.A. Duvelisib: First global approval. Drugs, 2018, 78(17), 1847-1853. doi: 10.1007/s40265-018-1013-4 PMID: 30430368
  42. Zhang, M.; Jang, H.; Nussinov, R.; Nussinov, R. PI3K inhibitors: Review and new strategies. Chem. Sci., 2020, 11(23), 5855-5865. doi: 10.1039/D0SC01676D PMID: 32953006
  43. Welker, M.E.; Kulik, G. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Bioorg. Med. Chem., 2013, 21(14), 4063-4091. doi: 10.1016/j.bmc.2013.04.083 PMID: 23735831
  44. Knight, S.D.; Adams, N.D.; Burgess, J.L.; Chaudhari, A.M.; Darcy, M.G.; Donatelli, C.A.; Luengo, J.I.; Newlander, K.A.; Parrish, C.A.; Ridgers, L.H.; Sarpong, M.A.; Schmidt, S.J.; Van Aller, G.S.; Carson, J.D.; Diamond, M.A.; Elkins, P.A.; Gardiner, C.M.; Garver, E.; Gilbert, S.A.; Gontarek, R.R.; Jackson, J.R.; Kershner, K.L.; Luo, L.; Raha, K.; Sherk, C.S.; Sung, C.M.; Sutton, D.; Tummino, P.J.; Wegrzyn, R.J.; Auger, K.R.; Dhanak, D. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett., 2010, 1(1), 39-43. doi: 10.1021/ml900028r PMID: 24900173
  45. Heffron, T.P.; Ndubaku, C.O.; Salphati, L.; Alicke, B.; Cheong, J.; Drobnick, J.; Edgar, K.; Gould, S.E.; Lee, L.B.; Lesnick, J.D.; Lewis, C.; Nonomiya, J.; Pang, J.; Plise, E.G.; Sideris, S.; Wallin, J.; Wang, L.; Zhang, X.; Olivero, A.G. Discovery of clinical development candidate GDC-0084, a brain penetrant inhibitor of PI3K and mTOR. ACS Med. Chem. Lett., 2016, 7(4), 351-356. doi: 10.1021/acsmedchemlett.6b00005 PMID: 27096040
  46. Kumar, A.; Singh, A.K.; Thareja, S.; Kumar, P. A review of pyridine and pyrimidine derivatives as anti-MRSA agents. Antiinfect. Agents, 2022, 21(2), 23. doi: 10.2174/2211352520666220705085733
  47. Rahman, M.U.; Jeyabalan, G.; Saraswat, P.; Parveen, G.; Khan, S.; Yar, M.S. Quinazolines and anticancer activity: A current perspectives. Synth. Commun., 2017, 47(5), 379-408. doi: 10.1080/00397911.2016.1269926
  48. Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38(3), 775-828. doi: 10.1002/med.21466 PMID: 28902434
  49. Mohammadkhani, L.; Heravi, M.M. Microwave-assisted synthesis of quinazolines and quinazolinones: An overview. Front Chem., 2020, 8, 580086. doi: 10.3389/fchem.2020.580086 PMID: 33282829
  50. Karan, R.; Agarwal, P.; Sinha, M.; Mahato, N. Recent advances on quinazoline derivatives: A potential bioactive scaffold in medicinal chemistry. Chem. Engineering, 2021, 5(4), 73. doi: 10.3390/chemengineering5040073
  51. Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 1-27. doi: 10.1155/2014/395637 PMID: 25692041
  52. Szumilak, M.; Lichota, A.; Olczak, A.; Szczesio, M.; Stańczak, A. Molecular insight into quinazoline derivatives with cytotoxic activity. J. Mol. Struct., 2019, 1194, 28-34. doi: 10.1016/j.molstruc.2019.05.042
  53. Rahman, M.U.; Rathore, A.; Siddiqui, A.A.; Parveen, G.; Yar, M.S. Synthesis and characterization of quinazoline derivatives: Search for hybrid molecule as diuretic and antihypertensive agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 733-743. doi: 10.3109/14756366.2013.845820 PMID: 24156743
  54. Alafeefy, A.M.; Kadi, A.A.; Al-Deeb, O.A.; El-Tahir, K.E.H.; Aljaber, N.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur. J. Med. Chem., 2010, 45(11), 4947-4952. doi: 10.1016/j.ejmech.2010.07.067 PMID: 20817329
  55. Ugale, V.G.; Bari, S.B. Quinazolines: New horizons in anticonvulsant therapy. Eur. J. Med. Chem., 2014, 80, 447-501. doi: 10.1016/j.ejmech.2014.04.072 PMID: 24813877
  56. Xie, D.; Shi, J.; Zhang, A.; Lei, Z.; Zu, G.; Fu, Y.; Gan, X.; Yin, L.; Song, B.; Hu, D. Syntheses, antiviral activities and induced resistance mechanisms of novel quinazoline derivatives containing a dithioacetal moiety. Bioorg. Chem., 2018, 80, 433-443. doi: 10.1016/j.bioorg.2018.06.026 PMID: 29986188
  57. Gupta, T.; Rohilla, A.; Pathak, A.; Akhtar, M.J.; Haider, M.R.; Yar, M.S. Current perspectives on quinazolines with potent biological activities: A review. Synth. Commun., 2018, 48(10), 1099-1127. doi: 10.1080/00397911.2018.1431282
  58. Verma, N.; Rai, A.K.; Kaushik, V.; Brünnert, D.; Chahar, K.R.; Pandey, J.; Goyal, P. Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Sci. Rep., 2016, 6(1), 33949. doi: 10.1038/srep33949 PMID: 27653775
  59. Tarceva, E.; Cohen, M.H.; Johnson, J.R.; Chen, Y.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Erlotinib (Tarceva) tablets. 2005, 10, 461-466.
  60. Cameron, D.A.; Stein, S. Drug insight: Intracellular inhibitors of HER2-clinical development of lapatinib in breast cancer. Nat. Clin. Pract. Oncol., 2008, 5(9), 512-520. doi: 10.1038/ncponc1156 PMID: 18594499
  61. Abbas, S.Y. 4(3H)-quinazolinone derivatives: Syntheses, physical properties, chemical reaction, and biological properties. Quinazolinone Quinazoline Deriv., 2020, 4, 1-22. doi: 10.5772/intechopen.90104
  62. Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. A simple and efficient approach to the synthesis of 2-phenylquinazolines via sp(3) C-H functionalization. Org. Lett., 2010, 12(12), 2841-2843. doi: 10.1021/ol100954x PMID: 20481477
  63. Hashem, H.E. Synthesis of quinazoline and quinazolinone derivatives. Quinazolinone Quinazoline Deriv., 2020, 4, 1-12.
  64. Sen, S.; Hati, S. Synthesis of quinazolines and dihydroquinazolines: o-iodoxybenzoic acid mediated tandem reaction of o-aminobenzylamine with aldehydes. Synthesis, 2016, 48(9), 1389-1398. doi: 10.1055/s-0035-1560416
  65. Karnakar, K.; Shankar, J.; Murthy, S.N.; Ramesh, K.; Nageswar, Y.V.D. An efficient protocol for the synthesis of 2-phenylquinazolines catalyzed by ceric ammonium nitrate (CAN). Synlett, 2011, 1089-1096.
  66. Wang, D.; Gao, F. Quinazoline derivatives: Synthesis and bioactivities. Chem. Cent. J., 2013, 7(1), 95. doi: 10.1186/1752-153X-7-95 PMID: 23731671
  67. Tian, X.C.; Huang, X.; Wang, D.; Gao, F. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water. Chem. Pharm. Bull., 2014, 62(8), 824-829. doi: 10.1248/cpb.c14-00264 PMID: 24920051
  68. Sharif, M. Quinazolin-4(3H)-ones: A tangible synthesis protocol via an oxidative olefin bond cleavage using metal-catalyst free conditions. Appl. Sci., 2020, 10(8), 2815. doi: 10.3390/app10082815
  69. Ferrini, S.; Ponticelli, F.; Taddei, M. Convenient synthetic approach to 2,4-disubstituted quinazolines. Org. Lett., 2007, 9(1), 69-72. doi: 10.1021/ol062540s PMID: 17192087
  70. Bansal, R.; Malhotra, A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur. J. Med. Chem., 2021, 211, 113016. doi: 10.1016/j.ejmech.2020.113016 PMID: 33243532
  71. Fan, Y.H.; Ding, H.W.; Liu, D.D.; Song, H.R.; Xu, Y.N.; Wang, J. Novel 4-aminoquinazoline derivatives induce growth inhibition, cell cycle arrest and apoptosis via PI3Kα inhibition. Bioorg. Med. Chem., 2018, 26(8), 1675-1685. doi: 10.1016/j.bmc.2018.02.015 PMID: 29475582
  72. Xi, L.; Zhang, J.Q.; Liu, Z.C.; Zhang, J.H.; Yan, J.F.; Jin, Y.; Lin, J. Novel 5-anilinoquinazoline-8-nitro derivatives as inhibitors of VEGFR-2 tyrosine kinase: Synthesis, biological evaluation and molecular docking. Org. Biomol. Chem., 2013, 11(26), 4367-4378. doi: 10.1039/c3ob40368h PMID: 23715382
  73. Wu, X.; Li, M.; Qu, Y.; Tang, W.; Zheng, Y.; Lian, J.; Ji, M.; Xu, L. Design and synthesis of novel Gefitinib analogues with improved anti-tumor activity. Bioorg. Med. Chem., 2010, 18(11), 3812-3822. doi: 10.1016/j.bmc.2010.04.046 PMID: 20466555
  74. Ding, H.W.; Deng, C.L.; Li, D.D.; Liu, D.D.; Chai, S.M.; Wang, W.; Zhang, Y.; Chen, K.; Li, X.; Wang, J.; Song, S.J.; Song, H.R. Design, synthesis and biological evaluation of novel 4-aminoquinazolines as dual target inhibitors of EGFR-PI3Kα. Eur. J. Med. Chem., 2018, 146, 460-470. doi: 10.1016/j.ejmech.2018.01.081 PMID: 29407971
  75. Yadav, R.R.; Guru, S.K.; Joshi, P.; Mahajan, G.; Mintoo, M.J.; Kumar, V.; Bharate, S.S.; Mondhe, D.M.; Vishwakarma, R.A.; Bhushan, S.; Bharate, S.B. 6-Aryl substituted 4-(4-cyanomethyl) phenylamino quinazolines as a new class of isoform-selective PI3K-alpha inhibitors. Eur. J. Med. Chem., 2016, 122, 731-743. doi: 10.1016/j.ejmech.2016.07.006 PMID: 27479483
  76. Fan, Y.H.; Li, W.; Liu, D.D.; Bai, M.X.; Song, H.R.; Xu, Y.N.; Lee, S.; Zhou, Z.P.; Wang, J.; Ding, H.W. Design, synthesis, and biological evaluation of novel 3-substituted imidazo1,2-apyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors. Eur. J. Med. Chem., 2017, 139, 95-106. doi: 10.1016/j.ejmech.2017.07.074 PMID: 28800461
  77. Al-Ashmawy, A.A.K.; Elokely, K.M.; Perez-Leal, O.; Rico, M.; Gordon, J.; Mateo, G.; Omar, A.M.; Abou-Gharbia, M.; Childers, W.E. Jr Discovery and SAR of novel disubstituted quinazolines as dual PI3Kalpha/mTOR inhibitors targeting breast cancer. ACS Med. Chem. Lett., 2020, 11(11), 2156-2164. doi: 10.1021/acsmedchemlett.0c00289 PMID: 33214824
  78. Shao, T.; Wang, J.; Chen, J.G.; Wang, X.M.; Li, H.; Li, Y.P.; Li, Y.; Yang, G.D.; Mei, Q.B.; Zhang, S.Q. Discovery of 2-methoxy-3-phenylsulfonamino-5-(quinazolin-6-yl or quinolin-6-yl)benzamides as novel PI3K inhibitors and anticancer agents by bioisostere. Eur. J. Med. Chem., 2014, 75, 96-105. doi: 10.1016/j.ejmech.2014.01.053 PMID: 24530495
  79. Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Zhang, K.; Dong, Y.; Jin, J.; Chen, J.; Zhang, J.; Sheng, L.; Li, Y.; Chen, X.; Xu, H. Discovery and optimization of 2-amino-4-methylquinazoline derivatives as highly potent phosphatidylinositol 3-kinase inhibitors for cancer treatment. J. Med. Chem., 2018, 61(14), 6087-6109. doi: 10.1021/acs.jmedchem.8b00416 PMID: 29927604
  80. Zeid, I.F.; Mohamed, N.A.; Khalifa, N.M.; Kassem, E.M.; Nossier, E.S.; Salman, A.A.; Mahmoud, K.; Al-Omar, M.A. PI3K inhibitors of novel hydrazide analogues linked 2-pyridinyl quinazolone scaffold as anticancer agents. J. Chem., 2019, 2019, 1-12. doi: 10.1155/2019/6321573
  81. Hu, H.; Dong, Y.; Li, M.; Wang, R.; Zhang, X.; Gong, P.; Zhao, Y. Design, synthesis and biological evaluation of novel thieno3,2-dpyrimidine and quinazoline derivatives as potent antitumor agents. Bioorg. Chem., 2019, 90, 103086. doi: 10.1016/j.bioorg.2019.103086 PMID: 31280016
  82. Zhang, H.; Xin, M.H.; Xie, X.X.; Mao, S.; Zuo, S.J.; Lu, S.M.; Zhang, S.Q. Synthesis and antitumor activity evaluation of PI3K inhibitors containing 3-substituted quinazolin-4(3H)-one moiety. Bioorg. Med. Chem., 2015, 23(24), 7765-7776. doi: 10.1016/j.bmc.2015.11.027 PMID: 26652969
  83. Wang, X.M.; Xin, M.H.; Xu, J.; Kang, B.R.; Li, Y.; Lu, S.M.; Zhang, S.Q. Synthesis and antitumor activities evaluation of m-(4-morpholinoquinazolin-2-yl)benzamides in vitro and in vivo. Eur. J. Med. Chem., 2015, 96, 382-395. doi: 10.1016/j.ejmech.2015.04.037 PMID: 25911625
  84. Dong, J,; Huang, J,; Zhou, J,; Tan, Y,; Jin, J,; Tan, X,; Wang, B,; Yu, T,; Wu, C,; Chen, S,; Wang, TL. Discovery of 3-Quinazolin-4(3H)-on-3-yl-2,N-dimethylpropanamides as Orally Active and Selective PI3Kα Inhibitors CS Med. Chem. Lett., 2020, 11, 1463-1469.
  85. Minhang, X.; Hei, Y.; Hao, Z.; Mao, S. Discovery of 6-benzamide containing 4-phenylquinazoline derivatives as novel PI3K δ inhibitors. Eur. J. Med. Chem., 2017, 14, 167-174.
  86. Teng, Y.; Li, X.; Ren, S.; Cheng, Y.; Xi, K.; Shen, H.; Ma, W.; Luo, G.; Xiang, H. Discovery of novel quinazoline derivatives as potent PI3Kδ inhibitors with high selectivity. Eur. J. Med. Chem., 2020, 208, 112865. doi: 10.1016/j.ejmech.2020.112865 PMID: 32987316
  87. Kim, Y.S.; Cheon, M.G.; Boggu, P.R.; Koh, S.Y.; Park, G.M.; Kim, G.; Park, S.H.; Park, S.L.; Lee, C.W.; Kim, J.W.; Jung, Y.H. Synthesis and biological evaluation of novel purinyl quinazolinone derivatives as PI3Kδ-specific inhibitors for the treatment of hematologic malignancies. Bioorg. Med. Chem., 2021, 45, 116312. doi: 10.1016/j.bmc.2021.116312 PMID: 34332211
  88. Feng, Y.; Duan, W.; Fan, S.; Zhang, H.; Zhang, S.Q.; Xin, M. Synthesis and biological evaluation of 4-(piperid-3-yl)amino substituted 6-pyridylquinazolines as potent PI3Kδ inhibitors. Bioorg. Med. Chem., 2019, 27(19), 115035. doi: 10.1016/j.bmc.2019.07.051 PMID: 31434616
  89. Wei, M.; Zhang, X.; Wang, X.; Song, Z.; Ding, J. Phosphoinositide 3-kinase delta (PI3K d) inhibitors. Eur. J. Med. Chem., 2017, 125, 1156-1171. doi: 10.1016/j.ejmech.2016.11.014 PMID: 27846451
  90. Ma, C.C.; Zhang, C.M.; Tang, L.Q.; Liu, Z.P. Discovery of novel quinazolinone derivatives as high potent and selective PI3Kδ and PI3Kδ/γ inhibitors. Eur. J. Med. Chem., 2018, 151, 9-17. doi: 10.1016/j.ejmech.2018.03.068 PMID: 29601991
  91. Hoegenauer, K.; Soldermann, N.; Stauffer, F.; Furet, P.; Graveleau, N.; Smith, A.B.; Hebach, C.; Hollingworth, G.J.; Lewis, I.; Gutmann, S.; Rummel, G.; Knapp, M.; Wolf, R.M.; Blanz, J.; Feifel, R.; Burkhart, C.; Zécri, F. Discovery and pharmacological characterization of novel quinazoline-based PI3K delta-selective inhibitors. ACS Med. Chem. Lett., 2016, 7(8), 762-767. doi: 10.1021/acsmedchemlett.6b00119 PMID: 27563400
  92. Ma, X.; Wei, J.; Wang, C.; Gu, D.; Hu, Y.; Sheng, R. Design, synthesis and biological evaluation of novel benzothiadiazine derivatives as potent PI3Kδ-selective inhibitors for treating B-cell-mediated malignancies. Eur. J. Med. Chem., 2019, 170, 112-125. doi: 10.1016/j.ejmech.2019.03.005 PMID: 30878826
  93. Peng, X.X.; Feng, K.R.; Ren, Y.J. Molecular modeling studies of quinazolinone derivatives as novel PI3Kδ selective inhibitors. RSC Advances, 2017, 7(89), 56344-56358. doi: 10.1039/C7RA10870B
  94. Xin, M.; Hei, Y.Y.; Zhang, H.; Shen, Y.; Zhang, S.Q. Design and synthesis of novel 6-aryl substituted 4-anilinequinazoline derivatives as potential PI3Kδ inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(9), 1972-1977. doi: 10.1016/j.bmcl.2017.03.020 PMID: 28325601
  95. Xin, M.; Duan, W.; Feng, Y.; Hei, Y.; Zhang, H.; Shen, Y.; Zhao, H.; Mao, S.; Zhang, S. Bioorganic and medicinal chemistry novel 6-aryl substituted 4-pyrrolidineaminoquinazoline derivatives as potent phosphoinositide 3-kinase delta (PI3K d) inhibitors. Bioorg. Med. Chem., 2018, 26, 2028-2040. doi: 10.1016/j.bmc.2018.03.002 PMID: 29534936
  96. Ding, H.W.; Wang, S.; Qin, X.C.; Wang, J.; Song, H.R.; Zhao, Q.C.; Song, S.J. Design, synthesis, and biological evaluation of some novel 4-aminoquinazolines as Pan-PI3K inhibitors. Bioorg. Med. Chem., 2019, 27(13), 2729-2740. doi: 10.1016/j.bmc.2019.04.024 PMID: 31097403
  97. Thakur, A.; Tawa, G.J.; Henderson, M.J.; Danchik, C.; Liu, S.; Shah, P.; Wang, A.Q.; Dunn, G.; Kabir, M.; Padilha, E.C.; Xu, X.; Simeonov, A.; Kharbanda, S.; Stone, R.; Grewal, G. Design, synthesis, and biological evaluation of quinazolin-4-one-based hydroxamic acids as dual PI3K/HDAC inhibitors. J. Med. Chem., 2020, 63(8), 4256-4292. doi: 10.1021/acs.jmedchem.0c00193 PMID: 32212730
  98. Zhang, K.; Lai, F.; Lin, S.; Ji, M.; Zhang, J.; Zhang, Y.; Jin, J.; Fu, R.; Wu, D.; Tian, H.; Xue, N.; Sheng, L.; Zou, X.; Li, Y.; Chen, X.; Xu, H. Design, synthesis, and biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting phosphoinositide 3-kinases and histone deacetylases. J. Med. Chem., 2019, 62(15), 6992-7014. doi: 10.1021/acs.jmedchem.9b00390 PMID: 31117517
  99. Wang, Z.; Liu, L.; Dai, H.; Si, X.; Zhang, L.; Li, E.; Yang, Z.; Chao, G.; Zheng, J.; Ke, Y.; Lihong, S.; Zhang, Q.; Liu, H. Design, synthesis and biological evaluation of novel 2,4-disubstituted quinazoline derivatives targeting H1975 cells via EGFR-PI3K signaling pathway. Bioorg. Med. Chem., 2021, 43, 116265. doi: 10.1016/j.bmc.2021.116265 PMID: 34192644
  100. Nara, S.; Garlapati, A. Design, synthesis and molecular docking study of hybrids of quinazolin-4 (3H)-one as anticancer agents: Design, synthesis and study of molecular coupling of hybrids of quinazolino. Ars Pharm., 2018, 4, 121-131.
  101. Zheng, Y.G.; Zhang, W.Q.; Meng, L.; Wu, X.Q.; Zhang, L.; An, L.; Li, C.L.; Gao, C.Y.; Xu, L.; Liu, Y. Design, synthesis and biological evaluation of 4-aniline quinazoline derivatives conjugated with hydrogen sulfide (H2S) donors as potent EGFR inhibitors against L858R resistance mutation. Eur. J. Med. Chem., 2020, 202, 112522. doi: 10.1016/j.ejmech.2020.112522 PMID: 32619886
  102. Zhang, K.; Ji, M.; Lin, S.; Peng, S.; Zhang, Z.; Zhang, M.; Zhang, J.; Zhang, Y.; Wu, D.; Tian, H.; Chen, X.; Xu, H. Design, synthesis, and biological evaluation of a novel photocaged PI3K inhibitor toward precise cancer treatment. J. Med. Chem., 2021, 64(11), 7331-7340. doi: 10.1021/acs.jmedchem.0c02186 PMID: 33876637
  103. Wani, Z.A.; Guru, S.K.; Rao, A.V.S.; Sharma, S.; Mahajan, G.; Behl, A.; Kumar, A.; Sharma, P.R.; Kamal, A.; Bhushan, S.; Mondhe, D.M. A novel quinazolinone chalcone derivative induces mitochondrial dependent apoptosis and inhibits PI3K/Akt/mTOR signaling pathway in human colon cancer HCT-116 cells. Food Chem. Toxicol., 2016, 87, 1-11. doi: 10.1016/j.fct.2015.11.016 PMID: 26615871
  104. Srinivas, M.; Singh Pathania, A.; Mahajan, P.; Verma, P.K.; Chobe, S.S.; Malik, F.A.; Nargotra, A.; Vishwakarma, R.A.; Sawant, S.D. Design and synthesis of 1,4-substituted 1H-1,2,3-triazolo-quinazolin-4(3H)-ones by Huisgen 1,3-dipolar cycloaddition with PI3Kγ isoform selective activity. Bioorg. Med. Chem. Lett., 2018, 28(6), 1005-1010. doi: 10.1016/j.bmcl.2018.02.032 PMID: 29486969
  105. Hei, Y.Y.; Xin, M.; Zhang, H.; Xie, X.X.; Mao, S.; Zhang, S.Q. Synthesis and antitumor activity evaluation of 4,6-disubstituted quinazoline derivatives as novel PI3K inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(18), 4408-4413. doi: 10.1016/j.bmcl.2016.08.015 PMID: 27544401
  106. Yang, H.; Li, Q.; Su, M.; Luo, F.; Liu, Y.; Wang, D.; Fan, Y. Design, synthesis, and biological evaluation of novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives as potential anticancer agents via PI3K inhibition. Bioorg. Med. Chem., 2021, 46, 116346. doi: 10.1016/j.bmc.2021.116346 PMID: 34403956
  107. Wu, Y.; Dai, W.; Chen, X.; Geng, A.; Chen, Y.; Lu, T.; Zhu, Y. Design, synthesis and biological evaluation of 2,3-dihydroimidazo1,2-cquinazoline derivatives as novel phosphatidylinositol 3-kinase and histone deacetylase dual inhibitors. RSC Advances, 2017, 7(82), 52180-52186. doi: 10.1039/C7RA08835C

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bentham Science Publishers