Combined Application of Salinomycin and ATRA Induces Apoptosis and Differentiation of Acute Myeloid Leukemia Cells by Inhibiting WNT/β-Catenin Pathway
- Authors: Xi H.1, Lu H.1, Weng X.2, Sheng Y.1, Wu J.3, Li L.4, Cai X.2
-
Affiliations:
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai,, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai,, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- Issue: Vol 23, No 9 (2023)
- Pages: 1074-1084
- Section: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694402
- DOI: https://doi.org/10.2174/1871520623666230110121629
- ID: 694402
Cite item
Full Text
Abstract
Background and objective:All-trans retinoic acid (ATRA) is only effective in acute promyelocytic leukemia (APL), but not in other subtype of acute myeloid leukemia (AML). Salinomycin targets tumor cells rather than non-tumorigenic cells, and WNT/β-catenin pathway inhibition is one of the mechanisms of its anti-tumor activity. There is a crosstalk between RA and WNT/β-catenin pathway. Here, we investigate the effect of the combination of salinomycin and ATRA (S+RA) in non-APL AML cells.
Methods: Apoptosis was evaluated by cell viability and Annexin-V assay. Cell differentiation was analyzed by CD11c expression and morphology. To explore the underlying mechanisms, Western blot analysis and mitochondrial transmembrane potentials (m) were used.
Results & Discussion:S+RA induced differentiation and apoptosis in AML cell lines and AML primary cells. S+RA inhibited the β-catenin signal pathway as determined by the decreased protein levels of β-catenin, the low-density lipoprotein receptor-related proteins 6 (LRP6), and its downstream proteins such as survivin, c-Myc, caspase-3/7, cdc25A and cyclinD1 and reduced phosphorylation level of GSK3β S9. S+RA also increased the protein levels of CCAAT/enhancer-binding proteins (C/EBPs) and PU.1 and collapsed m. The above molecular and cellular changes induced by S+RA were inhibited by β-catenin specific activator and promoted by β-catenin specific inhibitor.
Conclusion: S+RA induced differentiation by β-catenin-inhibition-mediated up-regulation of C/EBPs and PU.1 and suppression of c-Myc. S+RA triggered apoptosis through β-catenin-inhibition-regulated m collapse and caspase-3/7 activation. Taken together, our findings may provide novel therapeutic strategies for AML patients by targeting the WNT/β-catenin pathway.
About the authors
Hui-Min Xi
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai,, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
Email: info@benthamscience.net
Hao Lu
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai,, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
Email: info@benthamscience.net
Xiang-Qin Weng
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai,, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Email: info@benthamscience.net
Yan Sheng
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai,, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
Email: info@benthamscience.net
Jing Wu
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
Email: info@benthamscience.net
Lu Li
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
Email: info@benthamscience.net
Xun Cai
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai,, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Author for correspondence.
Email: info@benthamscience.net
References
- Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M.; Ravandi, F. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J., 2021, 11(2), 41. doi: 10.1038/s41408-021-00425-3 PMID: 33619261
- Huang, M.E.; Ye, Y.C.; Chen, S.R.; Chai, J.R.; Lu, J.X.; Zhoa, L.; Gu, L.J.; Wang, Z.Y. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood, 1988, 72(2), 567-572. doi: 10.1182/blood.V72.2.567.567 PMID: 3165295
- Taciak, B.; Pruszynska, I.; Kiraga, L.; Bialasek, M.; Krol, M. Wnt signaling pathway in development and cancer. J. Physiol. Pharmacol., 2018, 69(2), 12. PMID: 29980141
- Reya, T.; Duncan, A.W.; Ailles, L.; Domen, J.; Scherer, D.C.; Willert, K.; Hintz, L.; Nusse, R.; Weissman, I.L. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003, 423(6938), 409-414. doi: 10.1038/nature01593 PMID: 12717450
- Staal, F.J.T.; Clevers, H.C. WNT signalling and haematopoiesis: A WNT-WNT situation. Nat. Rev. Immunol., 2005, 5(1), 21-30. doi: 10.1038/nri1529 PMID: 15630426
- Ysebaert, L.; Chicanne, G.; Demur, C.; De Toni, F.; Prade-Houdellier, N.; Ruidavets, J-B.; Mansat-De Mas, V.; Rigal-Huguet, F.; Laurent, G.; Payrastre, B.; Manenti, S.; Racaud-Sultan, C. Expression of β-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia, 2006, 20(7), 1211-1216. doi: 10.1038/sj.leu.2404239 PMID: 16688229
- Mikesch, J-H.; Steffen, B.; Berdel, W.E.; Serve, H.; Müller-Tidow, C. The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia, 2007, 21(8), 1638-1647. doi: 10.1038/sj.leu.2404732 PMID: 17554387
- Wang, Y.; Krivtsov, A.V.; Sinha, A.U.; North, T.E.; Goessling, W.; Feng, Z.; Zon, L.I.; Armstrong, S.A. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science, 2010, 327(5973), 1650-1653. doi: 10.1126/science.1186624 PMID: 20339075
- Kode, A.; Manavalan, J.S.; Mosialou, I.; Bhagat, G.; Rathinam, C.V.; Luo, N.; Khiabanian, H.; Lee, A.; Murty, V.V.; Friedman, R.; Brum, A.; Park, D.; Galili, N.; Mukherjee, S.; Teruya-Feldstein, J.; Raza, A.; Rabadan, R.; Berman, E.; Kousteni, S. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature, 2014, 506(7487), 240-244. doi: 10.1038/nature12883 PMID: 24429522
- Cardona-Echeverry, A.; Prada-Arismendy, J. Deciphering the role of Wnt signaling in acute myeloid leukemia prognosis: How alterations in DNA methylation come into play in patients' prognosis. J. Cancer Res. Clin. Oncol., 2020, 146(12), 3097-3109. doi: 10.1007/s00432-020-03407-3 PMID: 32980885
- Jiang, X.; Mak, P.Y.; Mu, H.; Tao, W.; Mak, D.H.; Kornblau, S.; Zhang, Q.; Ruvolo, P.; Burks, J.K.; Zhang, W.; McQueen, T.; Pan, R.; Zhou, H.; Konopleva, M.; Cortes, J.; Liu, Q.; Andreeff, M.; Carter, B.Z. Disruption of Wnt/β-catenin exerts antileukemia activity and synergizes with FLT3 inhibition in FLT3-mutant acute myeloid leukemia. Clin. Cancer Res., 2018, 24(10), 2417-2429. doi: 10.1158/1078-0432.CCR-17-1556 PMID: 29463558
- Suknuntha, K.; Thita, T.; Togarrati, P.P.; Ratanachamnong, P.; Wongtrakoongate, P.; Srihirun, S.; Slukvin, I.; Hongeng, S. Wnt signaling inhibitor FH535 selectively inhibits cell proliferation and potentiates imatinib-induced apoptosis in myeloid leukemia cell lines. Int. J. Hematol., 2017, 105(2), 196-205. doi: 10.1007/s12185-016-2116-x PMID: 27766528
- Takam Kamga, P.; Dal Collo, G.; Cassaro, A.; Bazzoni, R.; Delfino, P.; Adamo, A.; Bonato, A.; Carbone, C.; Tanasi, I.; Bonifacio, M.; Krampera, M. Small molecule inhibitors of microenvironmental Wnt/β-catenin signaling enhance the chemosensitivity of acute myeloid leukemia. Cancers, 2020, 12(9), 2696. doi: 10.3390/cancers12092696 PMID: 32967262
- Easwaran, V.; Pishvaian, M.; Salimuddin; Byers, S. Cross-regulation of β-catenin-LEF/TCF and retinoid signaling pathways. Curr. Biol., 1999, 9(23), 1415-1419. doi: 10.1016/S0960-9822(00)80088-3 PMID: 10607566
- Zhu, X.; Wang, W.; Zhang, X.; Bai, J.; Chen, G.; Li, L.; Li, M. All-trans retinoic acid-induced deficiency of the Wnt/β-catenin pathway enhances hepatic carcinoma stem cell differentiation. PLoS One, 2015, 10(11), e0143255. doi: 10.1371/journal.pone.0143255 PMID: 26571119
- Wang, S.; Huang, H.; Xiang, H.; Gu, B.; Li, W.; Chen, L.; Zhang, M. Wnt signaling modulates routes of retinoic acid-induced differentiation of embryonic stem cells. Stem Cells Dev., 2019, 28(19), 1334-1345. doi: 10.1089/scd.2019.0065 PMID: 31337269
- Dewangan, J.; Srivastava, S.; Rath, S.K. Salinomycin: A new paradigm in cancer therapy. Tumour Biol., 2017, 39(3) doi: 10.1177/1010428317695035 PMID: 28349817
- Zhao, Y.; Zhong, L.; Liu, L.; Yao, S.F.; Chen, M.; Li, L.W.; Shan, Z.L.; Xiao, C.L.; Gan, L.G.; Xu, T.; Liu, B.Z. Salinomycin induces apoptosis and differentiation in human acute promyelocytic leukemia cells. Oncol. Rep., 2018, 40(2), 877-886. doi: 10.3892/or.2018.6513 PMID: 29989650
- Roulston, G.D.R.; Burt, C.L.; Kettyle, L.M.J.; Matchett, K.B.; Keenan, H.L.; Mulgrew, N.M.; Ramsey, J.M.; Dougan, C.; McKiernan, J.; Grishagin, I.V.; Mills, K.I.; Thompson, A. Low-dose salinomycin induces anti-leukemic responses in AML and MLL. Oncotarget, 2016, 7(45), 73448-73461. doi: 10.18632/oncotarget.11866 PMID: 27612428
- Fuchs, D.; Daniel, V.; Sadeghi, M.; Opelz, G.; Naujokat, C. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem. Biophys. Res. Commun., 2010, 394(4), 1098-1104. doi: 10.1016/j.bbrc.2010.03.138 PMID: 20350531
- Lu, D.; Choi, M.Y.; Yu, J.; Castro, J.E.; Kipps, T.J.; Carson, D.A. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc. Natl. Acad. Sci. USA, 2011, 108(32), 13253-13257. doi: 10.1073/pnas.1110431108 PMID: 21788521
- Li, Y.P.; Said, F.; Gallagher, R.E. Retinoic acid-resistant HL-60 cells exclusively contain mutant retinoic acid receptor-α. Blood, 1994, 83(11), 3298-3302. doi: 10.1182/blood.V83.11.3298.3298 PMID: 8193365
- Lu, H.; Li, Z.; Ding, M.; Liang, C.; Weng, X.; Sheng, Y.; Wu, J.; Cai, X. Trametinib enhances ATRA-induced differentiation in AML cells. Leuk. Lymphoma, 2021, 62(14), 3361-3372. doi: 10.1080/10428194.2021.1961231 PMID: 34355652
- Liang, C.; Ding, M.; Weng, X.Q.; Sheng, Y.; Wu, J.; Li, Z.Y.; Cai, X. Combination of enzastaurin and ATRA exerts dose-dependent dual effects on ATRA-resistant acute promyelocytic leukemia cells. Am. J. Cancer Res., 2019, 9(5), 906-926. PMID: 31218101
- Tetsu, O.; McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 1999, 398(6726), 422-426. doi: 10.1038/18884 PMID: 10201372
- Vijayakumar, S.; Liu, G.; Rus, I.A.; Yao, S.; Chen, Y.; Akiri, G.; Grumolato, L.; Aaronson, S.A. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell, 2011, 19(5), 601-612. doi: 10.1016/j.ccr.2011.03.010 PMID: 21575861
- Ma, H.; Nguyen, C.; Lee, K.S.; Kahn, M. Differential roles for the coactivators CBP and p300 on TCF/β-catenin-mediated survivin gene expression. Oncogene, 2005, 24(22), 3619-3631. doi: 10.1038/sj.onc.1208433 PMID: 15782138
- Huang, Y.H.; Yeh, C.T. Functional compartmentalization of HSP60-survivin interaction between mitochondria and cytosol in cancer cells. Cells, 2019, 9(1), 23. doi: 10.3390/cells9010023 PMID: 31861751
- van de Wetering, M.; Sancho, E.; Verweij, C.; de Lau, W.; Oving, I.; Hurlstone, A.; van der Horn, K.; Batlle, E.; Coudreuse, D.; Haramis, A.P.; Tjon-Pon-Fong, M.; Moerer, P.; van den Born, M.; Soete, G.; Pals, S.; Eilers, M.; Medema, R.; Clevers, H. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 2002, 111(2), 241-250. doi: 10.1016/S0092-8674(02)01014-0 PMID: 12408868
- Song, J.H.; Park, E.; Kim, M.S.; Cho, K.M.; Park, S.H.; Lee, A.; Song, J.; Kim, H.J.; Koh, J.T.; Kim, T.S. L -Asparaginase-mediated downregulation of c-Myc promotes 1,25(OH)2 D3-induced myeloid differentiation in acute myeloid leukemia cells. Int. J. Cancer, 2017, 140(10), 2364-2374. doi: 10.1002/ijc.30662 PMID: 28224619
- Li, Z.Y.; Liang, C.; Ding, M.; Weng, X.Q.; Sheng, Y.; Wu, J.; Lu, H.; Cai, X. Enzastaurin enhances ATRA-induced differentiation of acute myeloid leukemia cells. Am. J. Transl. Res., 2020, 12(12), 7836-7854. PMID: 33437364
- Sheng, Y.; Ju, W.; Huang, Y.; Li, J.; Ozer, H.; Qiao, X.; Qian, Z. Activation of wnt/β-catenin signaling blocks monocyte-macrophage differentiation through antagonizing PU.1-targeted gene transcription. Leukemia, 2016, 30(10), 2106-2109. doi: 10.1038/leu.2016.146 PMID: 27211263
- Moldes, M.; Zuo, Y.; Morrison, R.F.; Silva, D.; Park, B.H.; Liu, J.; Farmer, S.R. Peroxisome-proliferator-activated receptor γ suppresses Wnt/β-catenin signalling during adipogenesis. Biochem. J., 2003, 376(3), 607-613. doi: 10.1042/bj20030426 PMID: 12954078
- Rosenbauer, F.; Owens, B.M.; Yu, L.; Tumang, J.R.; Steidl, U.; Kutok, J.L.; Clayton, L.K.; Wagner, K.; Scheller, M.; Iwasaki, H.; Liu, C.; Hackanson, B.; Akashi, K.; Leutz, A.; Rothstein, T.L.; Plass, C.; Tenen, D.G. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat. Genet., 2006, 38(1), 27-37. doi: 10.1038/ng1679 PMID: 16311598
- Hirouchi, T.; Takabatake, T.; Yoshida, K.; Nitta, Y.; Nakamura, M.; Tanaka, S.; Ichinohe, K.; Oghiso, Y.; Tanaka, K. Upregulation of c-myc gene accompanied by PU.1 deficiency in radiation-induced acute myeloid leukemia in mice. Exp. Hematol., 2008, 36(7), 871-885. doi: 10.1016/j.exphem.2008.01.015 PMID: 18375040
- Park, D.J.; Chumakov, A.M.; Vuong, P.T.; Chih, D.Y.; Gombart, A.F.; Miller, W.H., Jr; Koeffler, H.P. CCAAT/enhancer binding protein ε is a potential retinoid target gene in acute promyelocytic leukemia treatment. J. Clin. Invest., 1999, 103(10), 1399-1408. doi: 10.1172/JCI2887 PMID: 10330422
- Yoshida, H.; Ichikawa, H.; Tagata, Y.; Katsumoto, T.; Ohnishi, K.; Akao, Y.; Naoe, T.; Pandolfi, P.P.; Kitabayashi, I. PML-retinoic acid receptor alpha inhibits PML IV enhancement of PU.1-induced C/EB Pepsilon expression in myeloid differentiation. Mol. Cell. Biol., 2007, 27(16), 5819-5834. doi: 10.1128/MCB.02422-06 PMID: 17562868
- Hoffman, B.; Amanullah, A.; Shafarenko, M.; Liebermann, D.A. The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene, 2002, 21(21), 3414-3421. doi: 10.1038/sj.onc.1205400 PMID: 12032779
- Coller, H.A. Regulation of cell cycle entry and exit: A single cell perspective. Compr. Physiol., 2019, 10(1), 317-344. doi: 10.1002/cphy.c190014 PMID: 31853969
Supplementary files
