Advances in VEGFR Inhibitors: A Comprehensive Review of Novel Anticancer Agents


Дәйексөз келтіру

Толық мәтін

Аннотация

Cancer, characterized by aberrant cell growth, presents a formidable health challenge, impacting millions of individuals worldwide each year. Among the myriad mechanisms facilitating tumor progression, Vascular Endothelial Growth Factor receptors (VEGFR) play a pivotal role in driving angiogenesis the process by which tumors develop their own blood supply. This vascularization not only supports tumor nourishment and growth but also facilitates metastasis, enabling cancer to spread to distant sites. VEGFR inhibitors offer a strategic approach to disrupt the VEGF-VEGFR binding pathway, thereby impeding angiogenesis, metastasis, and the proliferation of cancer cells. This review elucidates the latest advancements in medicinal chemistry pertaining to VEGFR inhibitors, showcasing a variety of chemical moieties and assessing their efficacy across different cancer cell lines. The novel compounds highlighted in this review exhibit significant promise for anticancer evaluation through targeted VEGFR kinase inhibition. A robust body of in vivo, in vitro, and ex vivo studies supports these findings, demonstrating the antitumor effects of these compounds. Computational analyses further enhance our understanding by predicting compound binding affinities, pharmacokinetics, and overall drug-likeness. Despite the significant progress made in developing effective VEGFR inhibitors, challenges remain in refining these agents for optimal cancer treatment. This review not only summarizes the advancements achieved in VEGFR inhibitor development but also emphasizes the ongoing hurdles that must be addressed to enhance the efficacy of cancer therapies.

Авторлар туралы

Sumeet Jha

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences,, Lovely Professional University

Email: info@benthamscience.net

Sneha Gupta

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences,, Lovely Professional University

Email: info@benthamscience.net

Supriya Rani

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University

Email: info@benthamscience.net

Pinky Arora

Department of Biochemistry, School of Bioengineering and Biosciences,, Lovely Professional University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Neeraj Choudhary

Department of Pharmacognosy, GNA School of Pharmacy, GNA University

Email: info@benthamscience.net

Shubham Kumar

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University,

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Rossi, F.; Fredericks, N.; Snowden, A.; Allegrezza, M.J.; Moreno-Nieves, U.Y. Next generation natural killer cells for cancer immunotherapy. Front. Immunol., 2022, 13, 886429. doi: 10.3389/fimmu.2022.886429 PMID: 35720306
  2. Moritz, A. Cancer is not a disease!: It’s a survival mechanism: Discover cancer’s hidden purpose, heal its root causes, and be healthier than ever!; Black stone, 2009.
  3. Stone, A. Living with Advanced Disease in a Canadian Cancer Hospital. 2016. Thesis, University of Toronto, 2016.
  4. Ali, E.S.; Sharker, S.M.; Islam, M.T.; Khan, I.N.; Shaw, S.; Rahman, M.A.; Uddin, S.J.; Shill, M.C.; Rehman, S.; Das, N. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. In: Seminars in cancer biology; Elsevier, 2021; 69, pp. 52-68. doi: 10.1016/j.semcancer.2020.01.011
  5. Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H-Y.; Lin, L-T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P. Broad targeting of resistance to apoptosis in cancer. In: Seminars in cancer biology; Elsevier, 2015; Vol. 35, pp. S78-S103. doi: 10.1016/j.semcancer.2015.03.001
  6. Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
  7. Cordani, M.; Somoza, Á. Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell. Mol. Life Sci., 2019, 76(7), 1215-1242. doi: 10.1007/s00018-018-2973-y PMID: 30483817
  8. Zhou, B.B.S.; Zhang, H.; Damelin, M.; Geles, K.G.; Grindley, J.C.; Dirks, P.B. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov., 2009, 8(10), 806-823. doi: 10.1038/nrd2137 PMID: 19794444
  9. Dancey, J.E.; Chen, H.X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov., 2006, 5(8), 649-659. doi: 10.1038/nrd2089 PMID: 16883303
  10. Klein, C.A. Cancer progression and the invisible phase of metastatic colonization. Nat. Rev. Cancer, 2020, 20(11), 681-694. doi: 10.1038/s41568-020-00300-6 PMID: 33024261
  11. Peart, O. Metastatic breast cancer. Radiol. Technol., 2017, 88(5), 519M-539M. PMID: 28500107
  12. Langley, R.R.; Fidler, I.J. The seed and soil hypothesis revisited—The role of tumor‐stroma interactions in metastasis to different organs. Int. J. Cancer, 2011, 128(11), 2527-2535. doi: 10.1002/ijc.26031 PMID: 21365651
  13. Marusic, K. A New War on Cancer: The Unlikely Heroes Revolutionizing Prevention; Island Press, 2023.
  14. Kennedy, R.F., Jr Limited boxed set: The real anthony fauci: Bill gates, big pharma, and the global war on democracy and public health; Simon and Schuster, 2023.
  15. Sun, Y.; Peng, Z-L. Programmed cell death and cancer. Postgrad. Med. J., 2009, 85(1001), 134-140. doi: 10.1136/pgmj.2008.072629 PMID: 19351640
  16. Zörnig, M.; Hueber, A-O.; Baum, W.; Evan, G. Apoptosis regulators and their role in tumorigenesis. Biochimica et Biophysica Acta (BBA)-. Rev. Can., 2001, 1551(2), F1-F37.
  17. Antolin, A.; Workman, P.; Mestres, J.; Al-Lazikani, B. Polypharmacology in precision oncology: current applications and future prospects. Curr. Pharm. Des., 2017, 22(46), 6935-6945. doi: 10.2174/1381612822666160923115828 PMID: 27669965
  18. Weth, F.R.; Hoggarth, G.B.; Weth, A.F.; Paterson, E.; White, M.P.; Tan, S.T.; Peng, L.; Gray, C. Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br. J. Cancer, 2023, 1-13. PMID: 38012383
  19. Guo, T.; Ma, S. Recent advances in the discovery of multitargeted tyrosine kinase inhibitors as anticancer agents. ChemMedChem, 2021, 16(4), 600-620. doi: 10.1002/cmdc.202000658 PMID: 33179854
  20. Zheng, P.P.; Li, J.; Kros, J.M. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research‐practice gaps, challenges, and insights. Med. Res. Rev., 2018, 38(1), 325-376. doi: 10.1002/med.21463 PMID: 28862319
  21. Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark, T.J., Jr; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J.; Newbold, K.; Nikiforov, Y.E.; Randolph, G.; Rosenthal, M.S.; Sawka, A.M.; Shah, M.; Shaha, A.; Smallridge, R.; Wong-Clark, C.K. 2021 American thyroid association guidelines for management of patients with anaplastic thyroid cancer: American thyroid association anaplastic thyroid cancer guidelines task force. Thyroid, 2021, 31(3), 337-386. doi: 10.1089/thy.2020.0944 PMID: 33728999
  22. Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79. doi: 10.1016/j.ejpb.2015.03.018 PMID: 25813885
  23. Keefe, D.M.K.; Bateman, E.H. Tumor control versus adverse events with targeted anticancer therapies. Nat. Rev. Clin. Oncol., 2012, 9(2), 98-109. doi: 10.1038/nrclinonc.2011.192 PMID: 22182972
  24. Schmidinger, M. Understanding and managing toxicities of vascular endothelial growth factor (VEGF) inhibitors. Eur. J. Cancer, Suppl., 2013, 11(2), 172-191. doi: 10.1016/j.ejcsup.2013.07.016 PMID: 26217127
  25. Pandey, A.K.; Singhi, E.K.; Arroyo, J.P.; Ikizler, T.A.; Gould, E.R.; Brown, J.; Beckman, J.A.; Harrison, D.G.; Moslehi, J. Mechanisms of VEGF (vascular endothelial growth factor) inhibitor–associated hypertension and vascular disease. Hypertension, 2018, 71(2), e1-e8. doi: 10.1161/HYPERTENSIONAHA.117.10271 PMID: 29279311
  26. Tabernero, J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol. Cancer Res., 2007, 5(3), 203-220. doi: 10.1158/1541-7786.MCR-06-0404 PMID: 17374728
  27. Longo, R.; Gasparini, G. Challenges for patient selection with VEGF inhibitors. Cancer Chemother. Pharmacol., 2007, 60(2), 151-170. doi: 10.1007/s00280-006-0403-6 PMID: 17370072
  28. Duda, D.G.; Batchelor, T.T.; Willett, C.G.; Jain, R.K. VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects. Trends Mol. Med., 2007, 13(6), 223-230. doi: 10.1016/j.molmed.2007.04.001 PMID: 17462954
  29. Jin, H.; Wang, L.; Bernards, R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat. Rev. Drug Discov., 2023, 22(3), 213-234. doi: 10.1038/s41573-022-00615-z PMID: 36509911
  30. Moreira, S.I.; Fernandes, A.P.; Ramos, J.M. Vascular endothelial growth factor (VEGF) inhibition-A critical review. Anti-cancer Agent. Med. Chem., 2007, 7(2), 223-245.
  31. Roskoski, R., Jr Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol. Res., 2017, 120, 116-132. doi: 10.1016/j.phrs.2017.03.010 PMID: 28330784
  32. Baudino, T. T. Targeted cancer therapy: the next generation of cancer treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20. doi: 10.2174/1570163812666150602144310 PMID: 26033233
  33. Advani, A.S.; Carraway, H.E.; Karp, J.E.; Horak, I.D. Acute lymphoblastic leukemia and lymphoma in adults. In: The Lymphoid Neoplasms; CRC Press, 2010.
  34. Nikolic, I.; Leiva, M.; Sabio, G. The role of stress kinases in metabolic disease. Nat. Rev. Endocrinol., 2020, 16(12), 697-716. doi: 10.1038/s41574-020-00418-5 PMID: 33067545
  35. Laganà, A.; Vitale, S.; Nigro, A.; Sofo, V.; Salmeri, F.; Rossetti, P.; Rapisarda, A.; La Vignera, S.; Condorelli, R.; Rizzo, G.; Buscema, M. Pleiotropic actions of peroxisome proliferator-activated receptors (PPARs) in dysregulated metabolic homeostasis, inflammation and cancer: current evidence and future perspectives. Int. J. Mol. Sci., 2016, 17(7), 999. doi: 10.3390/ijms17070999 PMID: 27347932
  36. Ferrara, N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int., 1999, 56(3), 794-814. doi: 10.1046/j.1523-1755.1999.00610.x PMID: 10469350
  37. Ghalehbandi, S.; Yuzugulen, J.; Pranjol, M.Z.I.; Pourgholami, M.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur. J. Pharmacol., 2023, 949, 175586. doi: 10.1016/j.ejphar.2023.175586 PMID: 36906141
  38. Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl. 3), 4-10. doi: 10.1159/000088478 PMID: 16301830
  39. Gupta, M.K.; Qin, R-Y. Mechanism and its regulation of tumor-induced angiogenesis. World J. Gastroenterol., 2003, 9(6), 1144-1155. doi: 10.3748/wjg.v9.i6.1144 PMID: 12800214
  40. Gude, R.P.; Patil, P.; Kamran, M.Z.; Goel, P.N. Development of novel anti-cancer strategies based on angiogenesis inhibition. In: Anti-Angiogenesis Drug Discovery and Development; Elsevier, 2014; pp. 147-190. doi: 10.1016/B978-0-12-803963-2.50005-3
  41. Kitimu, S.R.; Kirira, P.; Abdille, A.A.; Sokei, J.; Ochwang’i, D.; Mwitari, P.; Makanya, A.; Maina, N. Anti-angiogenic and anti-metastatic effects of biogenic silver nanoparticles synthesized using Azadirachta indica. Adv. Biosci. Biotechnol., 2022, 13(4), 188-206. doi: 10.4236/abb.2022.134010
  42. Farghaly, T.A.; Al-Hasani, W.A.; Abdulwahab, H.G. An updated patent review of VEGFR-2 inhibitors (2017-present). Expert Opin. Ther. Pat., 2021, 31(11), 989-1007. doi: 10.1080/13543776.2021.1935872 PMID: 34043477
  43. Gardner, V.; Madu, C.O.; Lu, Y. Anti-VEGF therapy in cancer: A double-edged sword. In: Physiologic and pathologic angiogenesis-signaling mechanisms and targeted therapy; Intechopen, 2017.
  44. Nitulescu, G.M.; Stancov, G.; Seremet, O.C.; Nitulescu, G.; Mihai, D.P.; Duta-Bratu, C.G.; Barbuceanu, S.F.; Olaru, O.T. The importance of the pyrazole scaffold in the design of protein kinases inhibitors as targeted anticancer therapies. Molecules, 2023, 28(14), 5359. doi: 10.3390/molecules28145359 PMID: 37513232
  45. Abdullaziz, M.A.; Abdel-Mohsen, H.T.; El Kerdawy, A.M.; Ragab, F.A.F.; Ali, M.M.; Abu-bakr, S.M.; Girgis, A.S.; El Diwani, H.I. Design, synthesis, molecular docking and cytotoxic evaluation of novel 2-furybenzimidazoles as VEGFR-2 inhibitors. Eur. J. Med. Chem., 2017, 136, 315-329. doi: 10.1016/j.ejmech.2017.04.068 PMID: 28505536
  46. Ismail, M.M.F.; Shawer, T.Z.; Ibrahim, R.S.; Abusaif, M.S.; Kamal, M.M.; Allam, R.M.; Ammar, Y.A. Novel quinoxaline-3-propanamides as VGFR-2 inhibitors and apoptosis inducers. RSC Advances, 2023, 13(45), 31908-31924. doi: 10.1039/D3RA05066A PMID: 37915441
  47. Fischer, A.; Smieško, M. Allosteric binding sites on nuclear receptors: Focus on drug efficacy and selectivity. Int. J. Mol. Sci., 2020, 21(2), 534. doi: 10.3390/ijms21020534 PMID: 31947677
  48. De Amici, M.; Dallanoce, C.; Holzgrabe, U.; Tränkle, C.; Mohr, K. Allosteric ligands for G protein-coupled receptors: A novel strategy with attractive therapeutic opportunities. Med. Res. Rev., 2010, 30(3), 463-549. doi: 10.1002/med.20166 PMID: 19557759
  49. Akhtar, N.; Khan, R.A. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions’. Prog. Lipid Res., 2016, 64, 192-230. doi: 10.1016/j.plipres.2016.08.005 PMID: 27697511
  50. Dristant, U.; Mukherjee, K.; Saha, S.; Maity, D. An overview of polymeric nanoparticles-based drug delivery system in cancer treatment. Technol. Cancer Res. Treat., 2023, 22, 15330338231152083. doi: 10.1177/15330338231152083 PMID: 36718541
  51. Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res., 2017, 68, 1-11. doi: 10.1016/j.plipres.2017.07.001 PMID: 28778472
  52. Buse, J.; El-Aneed, A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine (Lond.), 2010, 5(8), 1237-1260. doi: 10.2217/nnm.10.107 PMID: 21039200
  53. Kalomiraki, M.; Thermos, K.; Chaniotakis, N.A. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int. J. Nanomedicine, 2015, 11, 1-12. PMID: 26730187
  54. Norouzi, M.; Nazari, B.; Miller, D.W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today, 2016, 21(11), 1835-1849. doi: 10.1016/j.drudis.2016.07.006 PMID: 27423369
  55. Abdel-Mohsen, H.T.; Ibrahim, M.A.; Nageeb, A.M.; El Kerdawy, A.M. Receptor-based pharmacophore modeling, molecular docking, synthesis and biological evaluation of novel VEGFR-2, FGFR-1, and BRAF multi-kinase inhibitors. BMC Chem., 2024, 18(1), 42. doi: 10.1186/s13065-024-01135-0 PMID: 38395926
  56. Fouad, M.A.; Osman, A.A.; Abdelhamid, N.M.; Rashad, M.W.; Nabawy, A.Y.; El Kerdawy, A.M. Discovery of dual kinase inhibitors targeting VEGFR2 and FAK: structure-based pharmacophore modeling, virtual screening, and molecular docking studies. BMC Chem., 2024, 18(1), 29. doi: 10.1186/s13065-024-01130-5 PMID: 38347617
  57. Yadav, M.; Khandelwal, R.; Mudgal, U.; Srinitha, S.; Khandekar, N.; Nayarisseri, A.; Vuree, S.; Singh, S.K. Identification of potent VEGF inhibitors for the clinical treatment of glioblastoma, a virtual screening approach. Asian Pac. J. Cancer Prev., 2019, 20(9), 2681-2692. doi: 10.31557/APJCP.2019.20.9.2681 PMID: 31554364
  58. Schmidt, F.; Matter, H.; Hessler, G.; Czich, A. Predictive in silico off-target profiling in drug discovery. Future Med. Chem., 2014, 6(3), 295-317. doi: 10.4155/fmc.13.202 PMID: 24575966
  59. Elkamhawy, A.; Ali, E.M.H.; Lee, K. New horizons in drug discovery of lymphocyte-specific protein tyrosine kinase (Lck) inhibitors: a decade review (2011–2021) focussing on structure–activity relationship (SAR) and docking insights. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1572-1600. doi: 10.1080/14756366.2021.1937143 PMID: 34233563
  60. Van Vleet, T.R.; Liguori, M.J.; Lynch, J.J.; Rao, M.; Warder, S. Screening strategies and methods for better off-target liability prediction and identification of small-molecule pharmaceuticals. Adv. Life Sci., 2019, 24(1), 1-24.
  61. Finn, R.S. Current and future treatment strategies for patients with advanced hepatocellular carcinoma: role of mTOR inhibition. Liver Cancer, 2012, 1(3-4), 247-256. doi: 10.1159/000343839 PMID: 24159589
  62. Lyon, A.R.; Dent, S.; Stanway, S.; Earl, H.; Brezden-Masley, C.; Cohen-Solal, A.; Tocchetti, C.G.; Moslehi, J.J.; Groarke, J.D.; Bergler-Klein, J.; Khoo, V.; Tan, L.L.; Anker, M.S.; von Haehling, S.; Maack, C.; Pudil, R.; Barac, A.; Thavendiranathan, P.; Ky, B.; Neilan, T.G.; Belenkov, Y.; Rosen, S.D.; Iakobishvili, Z.; Sverdlov, A.L.; Hajjar, L.A.; Macedo, A.V.S.; Manisty, C.; Ciardiello, F.; Farmakis, D.; de Boer, R.A.; Skouri, H.; Suter, T.M.; Cardinale, D.; Witteles, R.M.; Fradley, M.G.; Herrmann, J.; Cornell, R.F.; Wechelaker, A.; Mauro, M.J.; Milojkovic, D.; de Lavallade, H.; Ruschitzka, F.; Coats, A.J.S.; Seferovic, P.M.; Chioncel, O.; Thum, T.; Bauersachs, J.; Andres, M.S.; Wright, D.J.; López-Fernández, T.; Plummer, C.; Lenihan, D. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the cardio‐oncology study group of the heart failure association of the European society of cardiology in collaboration with the international cardio‐oncology society. Eur. J. Heart Fail., 2020, 22(11), 1945-1960. doi: 10.1002/ejhf.1920 PMID: 32463967
  63. Ferrara, Napoleone. VEGF as a therapeutic target in cancer. Oncol., 69, Suppl. 3, 2005, 11-16.
  64. Mohamed, T.K.; Batran, R.Z.; Elseginy, S.A.; Ali, M.M.; Mahmoud, A.E. Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis. Bioorg. Chem., 2019, 85, 253-273. doi: 10.1016/j.bioorg.2018.12.040 PMID: 30641320
  65. Pal, K.; Madamsetty, V.S.; Dutta, S.K.; Mukhopadhyay, D. Co-delivery of everolimus and vinorelbine via a tumor-targeted liposomal formulation inhibits tumor growth and metastasis in RCC. Int. J. Nanomedicine, 2019, 14, 5109-5123. doi: 10.2147/IJN.S204221 PMID: 31371950
  66. Albiges, L.; Gizzi, M.; Carton, E.; Escudier, B. Axitinib in metastatic renal cell carcinoma. Expert Rev. Anticancer Ther., 2015, 15(5), 499-507. doi: 10.1586/14737140.2015.1033408 PMID: 25907705
  67. Bracarda, S.; Castellano, D.; Procopio, G.; Sepúlveda, J.M.; Sisani, M.; Verzoni, E.; Schmidinger, M. Axitinib safety in metastatic renal cell carcinoma: suggestions for daily clinical practice based on case studies. Expert Opin. Drug Saf., 2014, 13(4), 497-510. doi: 10.1517/14740338.2014.888413 PMID: 24641566
  68. Escudier, B.; Worden, F.; Kudo, M. Sorafenib: key lessons from over 10 years of experience. Expert Rev. Anticancer Ther., 2019, 19(2), 177-189. doi: 10.1080/14737140.2019.1559058 PMID: 30575405
  69. Li, Q.; Cheng, X.; Zhou, C.; Tang, Y.; Li, F.; Zhang, B.; Huang, T.; Wang, J.; Tu, S. Fruquintinib enhances the antitumor immune responses of anti-programmed death receptor-1 in colorectal cancer. Front. Oncol., 2022, 12, 841977. doi: 10.3389/fonc.2022.841977 PMID: 35371995
  70. Patell, K.; Mears, V. L.; Storandt, M.H.; Mahipal, A. Metabolism, toxicity and management of fruquintinib: a novel drug for metastatic colorectal cancer. Expert Opin. Drug Metabol. Toxicol., 2024, 20(4), 2364. doi: 10.1080/17425255.2024.2332364
  71. Mulet-Margalef, N.; Garcia del Muro, X. Sunitinib in the treatment of gastrointestinal stromal tumor: patient selection and perspectives. OncoTargets Ther., 2016, 9, 7573-7582. doi: 10.2147/OTT.S101385 PMID: 28008275
  72. Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; Sherman, S.I.; Smit, J.W.A.; Chung, J.; Kappeler, C.; Peña, C.; Molnár, I.; Schlumberger, M.J. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet, 2014, 384(9940), 319-328. doi: 10.1016/S0140-6736(14)60421-9 PMID: 24768112
  73. Jászai, J.; Schmidt, M. Trends and challenges in tumor anti-angiogenic therapies. Cells, 2019, 8(9), 1102. doi: 10.3390/cells8091102 PMID: 31540455
  74. Ranieri, G.; Mammì, M.; Donato Di Paola, E.; Russo, E.; Gallelli, L.; Citraro, R.; Gadaleta, C.D.; Marech, I.; Ammendola, M.; De Sarro, G. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: A new treatment for metastatic soft tissue sarcoma. Crit. Rev. Oncol. Hematol., 2014, 89(2), 322-329. doi: 10.1016/j.critrevonc.2013.08.012 PMID: 24041629
  75. Shamroe, C.L.; Comeau, J.M. Ponatinib. Ann. Pharmacother., 2013, 47(11), 1540-1546. doi: 10.1177/1060028013501144 PMID: 24265264
  76. Prasad, V.; Mailankody, S. The accelerated approval of oncologic drugs: lessons from ponatinib. JAMA, 2014, 311(4), 353-354. doi: 10.1001/jama.2013.284531 PMID: 24449310
  77. Sia, D.; Alsinet, C.; Newell, P.; Villanueva, A. VEGF signaling in cancer treatment. Curr. Pharm. Des., 2014, 20(17), 2834-2842. doi: 10.2174/13816128113199990590 PMID: 23944367
  78. Shinkaruk, S.; Bayle, M.; Laïn, G.; Déléris, G. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents, 2003, 3(2), 95-117. doi: 10.2174/1568011033353452 PMID: 12678905
  79. Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol., 2016, 17(10), 611-625. doi: 10.1038/nrm.2016.87 PMID: 27461391
  80. Fuh, G.; Wu, P.; Liang, W.C.; Ultsch, M.; Lee, C.V.; Moffat, B.; Wiesmann, C. Structure-function studies of two synthetic anti-vascular endothelial growth factor Fabs and comparison with the Avastin Fab. J. Biol. Chem., 2006, 281(10), 6625-6631. doi: 10.1074/jbc.M507783200 PMID: 16373345
  81. Wood, Jeanette M. Inhibition of vascular endothelial growth factor (VEGF) as a novel approach for cancer therapy. Medicina-Buenos Aires, 60, 2000, 41-47.
  82. Amini, A.; Masoumi Moghaddam, S.; Morris, D.L.; Pourgholami, M.H. The critical role of vascular endothelial growth factor in tumor angiogenesis. Curr. Cancer Drug Targets, 2012, 12(1), 23-43. doi: 10.2174/156800912798888956 PMID: 22111836
  83. Saharinen, P.; Eklund, L.; Pulkki, K.; Bono, P.; Alitalo, K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med., 2011, 17(7), 347-362. doi: 10.1016/j.molmed.2011.01.015 PMID: 21481637
  84. Leite de Oliveira, R.; Hamm, A.; Mazzone, M. Growing tumor vessels: More than one way to skin a cat – Implications for angiogenesis targeted cancer therapies. Mol. Aspects Med., 2011, 32(2), 71-87. doi: 10.1016/j.mam.2011.04.001 PMID: 21540050
  85. Kiselyov, A.; Balakin, K.V.; Tkachenko, S.E. VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs, 2007, 16(1), 83-107. doi: 10.1517/13543784.16.1.83 PMID: 17155856
  86. Byrne, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). J. Cell. Mol. Med., 2005, 9(4), 777-794. doi: 10.1111/j.1582-4934.2005.tb00379.x PMID: 16364190
  87. Fakhri, S.; Abbaszadeh, F.; Jorjani, M.; Pourgholami, M.H. The effects of anticancer medicinal herbs on vascular endothelial growth factor based on pharmacological aspects: a review study. Nutr. Cancer, 2021, 73(1), 1-15. doi: 10.1080/01635581.2019.1673451 PMID: 31648565
  88. Malekan, M.; Ebrahimzadeh, M.A. Vascular endothelial growth factor receptors VEGFR as target in breast cancer treatment: current status in preclinical and clinical studies and future directions. Curr. Top. Med. Chem., 2022, 22(11), 891-920. doi: 10.2174/1568026622666220308161710 PMID: 35260067
  89. Marzouk, A.A.; Abdel-Aziz, S.A.; Abdelrahman, K.S.; Wanas, A.S.; Gouda, A.M.; Youssif, B.G.M.; Abdel-Aziz, M. Design and synthesis of new 1,6-dihydropyrimidin-2-thio derivatives targeting VEGFR-2: Molecular docking and antiproliferative evaluation. Bioorg. Chem., 2020, 102, 104090. doi: 10.1016/j.bioorg.2020.104090 PMID: 32683176
  90. Al-Muntaser, S.M.; Al-Karmalawy, A.A.; El-Naggar, A.M.; Ali, A.K.; Abd El-Sattar, N.E.A.; Abbass, E.M. Novel 4-thiophenyl-pyrazole, pyridine, and pyrimidine derivatives as potential antitumor candidates targeting both EGFR and VEGFR-2; design, synthesis, biological evaluations, and in silico studies. RSC Advances, 2023, 13(18), 12184-12203. doi: 10.1039/D3RA00416C PMID: 37082377
  91. Ruzi, Z.; Bozorov, K.; Nie, L.; Zhao, J.; Aisa, H.A. Novel pyrazolo3,4-dpyrimidines as potential anticancer agents: Synthesis, VEGFR-2 inhibition, and mechanisms of action. Biomed. Pharmacother., 2022, 156, 113948. doi: 10.1016/j.biopha.2022.113948 PMID: 36411633
  92. Mghwary, A.E.S.; Gedawy, E.M.; Kamal, A.M.; Abuel-Maaty, S.M. Novel thienopyrimidine derivatives as dual EGFR and VEGFR-2 inhibitors: design, synthesis, anticancer activity and effect on cell cycle profile. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 838-852. doi: 10.1080/14756366.2019.1593160 PMID: 30919701
  93. Abd El-Mageed, M.M.A.; Eissa, A.A.M.; Farag, A.E.S.; Osman, E.E.A. Design and synthesis of novel furan, furo2,3-dpyrimidine and furo3,2-e1,2,4triazolo1,5-cpyrimidine derivatives as potential VEGFR-2 inhibitors. Bioorg. Chem., 2021, 116, 105336. doi: 10.1016/j.bioorg.2021.105336 PMID: 34530235
  94. El-Metwally, S.A.; Elkady, H.; Hagras, M.; Husein, D.Z.; Ibrahim, I.M.; Taghour, M.S.; El-Mahdy, H.A.; Ismail, A.; Alsfouk, B.A.; Elkaeed, E.B.; Metwaly, A.M.; Eissa, I.H. Design, synthesis, anti-proliferative evaluation, docking, and MD simulation studies of new thieno2,3- d pyrimidines targeting VEGFR-2. RSC Advances, 2023, 13(33), 23365-23385. doi: 10.1039/D3RA03128D PMID: 37545598
  95. Abdel-Mohsen, H.T.; Girgis, A.S.; Mahmoud, A.E.E.; Ali, M.M.; El Diwani, H.I. New 2,4‐disubstituted‐2‐thiopyrimidines as VEGFR‐2 inhibitors: Design, synthesis, and biological evaluation. Arch. Pharm. (Weinheim), 2019, 352(11), 1900089. doi: 10.1002/ardp.201900089 PMID: 31463965
  96. Cuartas, V.; Aragón-Muriel, A.; Liscano, Y.; Polo-Cerón, D.; Crespo-Ortiz, M.P.; Quiroga, J.; Abonia, R.; Insuasty, B. Anticancer activity of pyrimidodiazepines based on 2-chloro-4-anilinoquinazoline: synthesis, DNA binding and molecular docking. RSC Advances, 2021, 11(38), 23310-23329. doi: 10.1039/D1RA03509F PMID: 35479808
  97. Farouk, A.K.B.A.W.; Abdelrasheed Allam, H.; Rashwan, E.; George, R.F.; Abbas, S.E.S. Design and synthesis of some new 6-bromo-2-(pyridin-3-yl)-4-substituted quinazolines as multi tyrosine kinase inhibitors. Bioorg. Chem., 2022, 128, 106099. doi: 10.1016/j.bioorg.2022.106099 PMID: 35994884
  98. Abdallah, A.E.; Mabrouk, R.R.; Al Ward, M.M.S.; Eissa, S.I.; Elkaeed, E.B.; Mehany, A.B.M.; Abo-Saif, M.A.; El-Feky, O.A.; Alesawy, M.S.; El-Zahabi, M.A. Synthesis, biological evaluation, and molecular docking of new series of antitumor and apoptosis inducers designed as VEGFR-2 inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 573-591. doi: 10.1080/14756366.2021.2017911 PMID: 35012403
  99. Wei, D.; Fan, H.; Zheng, K.; Qin, X.; Yang, L.; Yang, Y.; Duan, Y.; Zhang, Q.; Zeng, C.; Hu, L. Synthesis and anti-tumor activity of 1,4 dioxino2,3-f quinazoline derivatives as dual inhibitors of c-Met and VEGFR-2. Bioorg. Chem., 2019, 88, 102916. doi: 10.1016/j.bioorg.2019.04.010 PMID: 31026719
  100. Wang, R.; Liu, H.; You, Y.Y.; Wang, X.Y.; Lv, B.B.; Cao, L.Q.; Xue, J.Y.; Xu, Y.G.; Shi, L. Discovery of novel VEGFR-2 inhibitors embedding 6,7-dimethoxyquinazoline and diarylamide fragments. Bioorg. Med. Chem. Lett., 2021, 36, 127788. doi: 10.1016/j.bmcl.2021.127788 PMID: 33460739
  101. Eissa, I.H.; El-Helby, A.G.A.; Mahdy, H.A.; Khalifa, M.M.; Elnagar, H.A.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; El-Adl, K. Discovery of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg. Chem., 2020, 105, 104380. doi: 10.1016/j.bioorg.2020.104380 PMID: 33128967
  102. Zhao, Y.; Liu, F.; He, G.; Li, K.; Zhu, C.; Yu, W.; Zhang, C.; Xie, M.; Lin, J.; Zhang, J.; Jin, Y. Discovery of arylamide-5-anilinoquinazoline-8-nitro derivatives as VEGFR-2 kinase inhibitors: Synthesis, in vitro biological evaluation and molecular docking. Bioorg. Med. Chem. Lett., 2019, 29(23), 126711. doi: 10.1016/j.bmcl.2019.126711 PMID: 31668972
  103. Wei, H.; Duan, Y.; Gou, W.; Cui, J.; Ning, H.; Li, D.; Qin, Y.; Liu, Q.; Li, Y. Design, synthesis and biological evaluation of novel 4-anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem., 2019, 181, 111552. doi: 10.1016/j.ejmech.2019.07.055 PMID: 31387063
  104. El-Adl, K.; Sakr, H.M.; Yousef, R.G.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Abulkhair, H.S.; Eissa, I.H. Discovery of new quinoxaline-2(1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg. Chem., 2021, 114, 105105. doi: 10.1016/j.bioorg.2021.105105 PMID: 34175720
  105. Ahmed, M.F.; Santali, E.Y. Discovery of pyridine- sulfonamide hybrids as a new scaffold for the development of potential VEGFR-2 inhibitors and apoptosis inducers. Bioorg. Chem., 2021, 111, 104842. doi: 10.1016/j.bioorg.2021.104842 PMID: 33798847
  106. Saleh, N.M.; El-Gaby, M.S.A.; El-Adl, K.; Abd El-Sattar, N.E.A. Design, green synthesis, molecular docking and anticancer evaluations of diazepam bearing sulfonamide moieties as VEGFR-2 inhibitors. Bioorg. Chem., 2020, 104, 104350. doi: 10.1016/j.bioorg.2020.104350 PMID: 33142416
  107. Al-Warhi, T.; Abualnaja, M.; Abu Ali, O.A.; Alyamani, N.M.; Elsaid, F.G.; Shati, A.A.; Albogami, S.; Fayad, E.; Abu Almaaty, A.H.; Mohamed, K.O.; Alamoudi, W.M.; Zaki, I. Design, synthesis and cytotoxicity screening of new thiazole derivatives as potential anticancer agents through VEGFR-2 inhibition. Symmetry (Basel), 2022, 14(9), 1814. doi: 10.3390/sym14091814
  108. Al-Sanea, M.M.; Hamdi, A.; Mohamed, A.A.B.; El-Shafey, H.W.; Moustafa, M.; Elgazar, A.A.; Eldehna, W.M.; Ur Rahman, H.; Parambi, D.G.T.; Elbargisy, R.M.; Selim, S.; Bukhari, S.N.A.; Magdy Hendawy, O.; Tawfik, S.S. New benzothiazole hybrids as potential VEGFR-2 inhibitors: design, synthesis, anticancer evaluation, and in silico study. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2166036. doi: 10.1080/14756366.2023.2166036 PMID: 36691927
  109. Othman, I.M.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.M.; Abd El-Karim, S.S.; Nossier, E.S. Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors. RSC Advances, 2021, 12(1), 561-577. doi: 10.1039/D1RA08055E PMID: 35424523
  110. Saleh, N.M.; El-Gazzar, M.G.; Aly, H.M.; Othman, R.A. Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 dual TK inhibitors. Front Chem., 2020, 7, 917. doi: 10.3389/fchem.2019.00917 PMID: 32039146
  111. Abd El-Lateef, H.M.; Elbastawesy, M.A.I.; Abdelghani Ibrahim, T.M.; Khalaf, M.M.; Gouda, M.; Wahba, M.G.F.; Zaki, I.; Morcoss, M.M. Design, synthesis, docking study, and antiproliferative evaluation of novel schiff base–benzimidazole hybrids with VEGFR-2 inhibitory activity. Molecules, 2023, 28(2), 481. doi: 10.3390/molecules28020481 PMID: 36677536
  112. Yuan, X.; Yang, Q.; Liu, T.; Li, K.; Liu, Y.; Zhu, C.; Zhang, Z.; Li, L.; Zhang, C.; Xie, M.; Lin, J.; Zhang, J.; Jin, Y. Design, synthesis and in vitro evaluation of 6-amide-2-aryl benzoxazole/benzimidazole derivatives against tumor cells by inhibiting VEGFR-2 kinase. Eur. J. Med. Chem., 2019, 179, 147-165. doi: 10.1016/j.ejmech.2019.06.054 PMID: 31252306
  113. Zeidan, M.A.; Mostafa, A.S.; Gomaa, R.M.; Abou-zeid, L.A.; El-Mesery, M.; El-Sayed, M.A.A.; Selim, K.B. Design, synthesis and docking study of novel picolinamide derivatives as anticancer agents and VEGFR-2 inhibitors. Eur. J. Med. Chem., 2019, 168, 315-329. doi: 10.1016/j.ejmech.2019.02.050 PMID: 30826508
  114. El-Adl, K.; El-Helby, A.A.; Sakr, H.; Eissa, I.H.; El-Hddad, S.S.A.; M I A Shoman, F. Design, synthesis, molecular docking and anticancer evaluations of 5-benzylidenethiazolidine-2,4-dione derivatives targeting VEGFR-2 enzyme. Bioorg. Chem., 2020, 102, 104059. doi: 10.1016/j.bioorg.2020.104059 PMID: 32653608
  115. Elkaeed, E.B.; Yousef, R.G.; Elkady, H.; Gobaara, I.M.M.; Alsfouk, B.A.; Husein, D.Z.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: In vitro anticancer and VEGFR-2 inhibitory effects. Molecules, 2022, 27(14), 4606. doi: 10.3390/molecules27144606 PMID: 35889478
  116. Liu, X.; Li, Y.; Zhang, Q.; Pan, Q.; Zheng, P.; Dai, X.; Bai, Z.; Zhu, W. Design, synthesis, and biological evaluation of 1, 2, 4 triazolo4, 3-a pyrazine derivatives as novel dual c-Met/VEGFR-2 inhibitors. Front Chem., 2022, 10, 815534. doi: 10.3389/fchem.2022.815534 PMID: 35464202
  117. Abdelsalam, E.A.; Abd El-Hafeez, A.A.; Eldehna, W.M.; El Hassab, M.A.; Marzouk, H.M.M.; Elaasser, M.M.; Abou Taleb, N.A.; Amin, K.M.; Abdel-Aziz, H.A.; Ghosh, P.; Hammad, S.F. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 2265-2282. doi: 10.1080/14756366.2022.2104841 PMID: 36000167
  118. AbdelHaleem, A.; Mansour, A.O.; AbdelKader, M.; Arafa, R.K. Selective VEGFR-2 inhibitors: Synthesis of pyridine derivatives, cytotoxicity and apoptosis induction profiling. Bioorg. Chem., 2020, 103, 104222. doi: 10.1016/j.bioorg.2020.104222 PMID: 32889383
  119. Al-Warhi, T.; Sallam, A.A.; Hemeda, L.; El Hassab, M.; Aljaeed, N.; Alotaibi, O.; Doghish, A.; Noshy, M.; Eldehna, W.; Ibrahim, M. Identification of novel cyanopyridones and pyrido2, 3-D pyrimidines as anticancer agents with dual VEGFR-2/HER-2 inhibitory action: synthesis, biological evaluation and molecular docking studies. Pharmaceuticals (Basel), 2022, 15(10), 1262. doi: 10.3390/ph15101262 PMID: 36297374
  120. Raslan, R.R.; Ammar, Y.A.; Fouad, S.A.; Hessein, S.A.; Shmiess, N.A.M.; Ragab, A. Evaluation of the anti-proliferative activity of 2-oxo-pyridine and 1′ H -spiro-pyridine derivatives as a new class of EGFR Wt and VEGFR-2 inhibitors with apoptotic inducers. RSC Advances, 2023, 13(15), 10440-10458. doi: 10.1039/D3RA00887H PMID: 37020892
  121. Warda, E.T.; Shehata, I.A.; El-Ashmawy, M.B.; El-Gohary, N.S. New series of isoxazole derivatives targeting EGFR-TK: Synthesis, molecular modeling and antitumor evaluation. Bioorg. Med. Chem., 2020, 28(21), 115674. doi: 10.1016/j.bmc.2020.115674 PMID: 33065442
  122. Shen, F.Q.; Shi, L.; Wang, Z.F.; Wang, C.R.; Chen, J.J.; Liu, Y.; Qiu, H.Y.; Zhu, H.L. Design, synthesis, biological evaluation of benzoyl amide derivatives containing nitrogen heterocyclic ring as potential VEGFR-2 inhibitors. Bioorg. Med. Chem., 2019, 27(17), 3813-3824. doi: 10.1016/j.bmc.2019.07.007 PMID: 31327679
  123. Merde, İ.B.; Önel, G.T.; Akkoç, S.; Karaköy, Z.; Türkmenoğlu, B. Focusing on new piperazinyl‐methyl‐3 (2H) pyridazinone based derivatives: Design, synthesis, anticancer activity and computational studies. ChemistrySelect, 2023, 8(25), e202300910. doi: 10.1002/slct.202300910
  124. Ezelarab, H.A.; Ali, T.F.; Abbas, S.H.; Sayed, A.M.; Beshr, E.A.; Hassan, H.A. New antiproliferative 3-substituted oxindoles inhibiting EGFR/VEGFR-2 and tubulin polymerization. Mol. Divers., 2023, 1-18. PMID: 36790582
  125. Abdelgawad, M.A.; Hayallah, A.M.; Bukhari, S.N.A.; Musa, A.; Elmowafy, M.; Abdel-Rahman, H.M.; Abd El-Gaber, M.K. Design, synthesis, molecular modeling, and anticancer evaluation of new VEGFR-2 inhibitors based on the indolin-2-One scaffold. Pharmaceuticals (Basel), 2022, 15(11), 1416. doi: 10.3390/ph15111416 PMID: 36422546
  126. Kassab, A.E.; Gedawy, E.M.; Hamed, M.I.A.; Doghish, A.S.; Hassan, R.A. Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 922-939. doi: 10.1080/14756366.2021.1901089 PMID: 33896327
  127. Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study, and structureactivity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), 595-614.
  128. El-Sayed, W.A.; Alminderej, F.M.; Mounier, M.M.; Nossier, E.S.; Saleh, S.M.; F Kassem, A.; New, A. 1, 2, 3-Triazole-Coumarin-Glycoside Hybrids and Their 1, 2, 4-triazolyl thioglycoside analogs targeting mitochondria apoptotic pathway: Synthesis, anticancer activity and docking simulation. Molecules, 2022, 27(17), 5688. doi: 10.3390/molecules27175688 PMID: 36080455

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025