Bioactive Products Targeting C-Met As Potential Antitumour Drugs


Цитировать

Полный текст

Аннотация

Objective:With increasing duration of treatment, many tumours gradually develop drug resistance. Therefore, novel antitumour drugs need to be developed to treat patients with tumours. Targeting c-met inhibitors may be an effective treatment strategy.

Methods:Scientific databases such as ScienceDirect, PubMed, the Wiley Online Library, and Social Sciences Citation Index were used to collect information. All the relevant literature was reviewed, and the available literature was screened. The upstream and downstream pathways of c-Met and their relevance to antitumour effects were searched based on the articles' title, abstract, and full text. The c-Met-targeting drugs with antitumour effects are summarized below. A "citation within a citation" or snowballing approach was used in this screening process to identify additional papers that may have been missed in the initial literature screening process. High-quality studies published in peer-reviewed journals were summarized and prioritized for citation in the review.

Results:In recent years, research on small-molecule targeted drugs has developed rapidly. Many results have also been achieved in the synthesis and isolation of c-Met inhibitors from natural compounds and traditional Chinese medicines.

Conclusion:This article summarizes the developments in anti-c-Met drugs, which are synthesized and isolated from natural compounds and traditional Chinese medicine (TCM). This study provides primary resources for the development of c-Met inhibitors.

Abstract:Mesenchymal‒epithelial transition factor (c-Met), a receptortyrosine kinase (RTK), plays a vital role in cell proliferation, migration and invasion, and tumour metastasis

Об авторах

Liying Zhao

Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine

Email: info@benthamscience.net

Chunmei Qian

1.Shanghai Municipal Hospital of Traditional Chinese Medicine 2.Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xiaoqi Ma

Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xiaoyu Wang

Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Cooper, C.S.; Park, M.; Blair, D.G.; Tainsky, M.A.; Huebner, K.; Croce, C.M.; Vande Woude, G.F. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature, 1984, 311(5981), 29-33. doi: 10.1038/311029a0 PMID: 6590967
  2. Altintas, D.M.; Gallo, S.; Basilico, C.; Cerqua, M.; Bocedi, A.; Vitacolonna, A.; Botti, O.; Casanova, E.; Rancati, I.; Milanese, C.; Notari, S.; Gambardella, G.; Ricci, G.; Mastroberardino, P.G.; Boccaccio, C.; Crepaldi, T.; Comoglio, P.M. The PSI domain of the MET oncogene encodes a functional disulfide isomerase essential for the maturation of the receptor precursor. Int. J. Mol. Sci., 2022, 23(20), 12427. doi: 10.3390/ijms232012427 PMID: 36293286
  3. Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1_suppl), S7-S19. doi: 10.1177/1758834011422556 PMID: 22128289
  4. Stoker, M.; Gherardi, E.; Perryman, M.; Gray, J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature, 1987, 327(6119), 239-242. doi: 10.1038/327239a0 PMID: 2952888
  5. Pai, P.; Kittur, S.K. Hepatocyte growth factor: A novel tumor marker for breast cancer. J. Cancer Res. Ther., 2023, 19(Suppl. 1), S121-S125. doi: 10.4103/jcrt.JCRT_1084_16 PMID: 37147943
  6. Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; Zeng, Z.; Xiong, W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer, 2018, 17(1), 45. doi: 10.1186/s12943-018-0796-y PMID: 29455668
  7. Park, K.C.; Richardson, D.R. The c-MET oncoprotein: Function, mechanisms of degradation and its targeting by novel anti-cancer agents. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(10), 129650. doi: 10.1016/j.bbagen.2020.129650 PMID: 32522525
  8. Fanti, S.; Stephenson, E.; Rocha-Vieira, E.; Protonotarios, A.; Kanoni, S.; Shahaj, E.; Longhi, M.P.; Vyas, V.S.; Dyer, C.; Pontarini, E.; Asimaki, A.; Bueno-Beti, C.; De Gaspari, M.; Rizzo, S.; Basso, C.; Bombardieri, M.; Coe, D.; Wang, G.; Harding, D.; Gallagher, I.; Solito, E.; Elliott, P.; Heymans, S.; Sikking, M.; Savvatis, K.; Mohiddin, S.A.; Marelli-Berg, F.M. Circulating c-Met-expressing memory T cells define cardiac autoimmunity. Circulation, 2022, 146(25), 1930-1945. doi: 10.1161/CIRCULATIONAHA.121.055610 PMID: 36417924
  9. Halliday, G.; Porter, R.J.; Black, C.J.; Arends, M.J.; Din, S. c-MET immunohistochemical expression in sporadic and inflammatory bowel disease associated lesions. World J. Gastroenterol., 2022, 28(13), 1338-1346. doi: 10.3748/wjg.v28.i13.1338 PMID: 35645542
  10. Sharma, R.; Malviya, R. Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer. Biochim. Biophys. Acta Rev. Cancer, 2023, 1878(3), 188869. doi: 10.1016/j.bbcan.2023.188869 PMID: 36842767
  11. Raj, S.; Kesari, K.K.; Kumar, A.; Rathi, B.; Sharma, A.; Gupta, P.K.; Jha, S.K.; Jha, N.K.; Slama, P.; Roychoudhury, S.; Kumar, D. Molecular mechanisms of regulations of c-MET/HGF signaling in head and neck cancer. Mol. Cancer, 2022, 21(1), 31. doi: 10.1186/s12943-022-01503-1 PMID: 35081970
  12. Luo, T.; Zhang, S.G.; Zhu, L.F.; Zhang, F.X.; Li, W.; Zhao, K.; Wen, X.X.; Yu, M.; Zhan, Y.Q.; Chen, H.; Ge, C.H.; Gao, H.Y.; Wang, L.; Yang, X.M.; Li, C.Y. A selective c-Met and Trks inhibitor Indo5 suppresses hepatocellular carcinoma growth. J. Exp. Clin. Cancer Res., 2019, 38(1), 130. doi: 10.1186/s13046-019-1104-4 PMID: 30885237
  13. Yu, Y.; Peng, X.D.; Qian, X.J.; Zhang, K.M.; Huang, X.; Chen, Y.H.; Li, Y.T.; Feng, G.K.; Zhang, H.L.; Xu, X.L.; Li, S.; Li, X.; Mai, J.; Li, Z.L.; Huang, Y.; Yang, D.; Zhou, L.H.; Zhong, Z.Y.; Li, J.D.; Deng, R.; Zhu, X.F. Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis. Signal Transduct. Target. Ther., 2021, 6(1), 401. doi: 10.1038/s41392-021-00790-2 PMID: 34848680
  14. Ma, X.L.; Nie, Y.Y.; Xie, S.H.; Zheng, H.; Tong, Y.; Wang, Y.C.; Yan, T.Q.; Meng, X.; Cao, J.Z.; Tang, W.G.; Guo, L.; Lu, R.Q. ASAP2 interrupts c-MET-CIN85 interaction to sustain HGF/c-MET-induced malignant potentials in hepatocellular carcinoma. Exp. Hematol. Oncol., 2023, 12(1), 38. doi: 10.1186/s40164-023-00393-3 PMID: 37061723
  15. Zhang, Y.; Gao, X.; Zhu, Y.; Kadel, D.; Sun, H.; Chen, J.; Luo, Q.; Sun, H.; Yang, L.; Yang, J.; Sheng, Y.; Zheng, Y.; Zhu, K.; Dong, Q.; Qin, L. The dual blockade of MET and VEGFR2 signaling demonstrates pronounced inhibition on tumor growth and metastasis of hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 93. doi: 10.1186/s13046-018-0750-2 PMID: 29712569
  16. Xing, F.; Liu, Y.; Sharma, S.; Wu, K.; Chan, M.D.; Lo, H.W.; Carpenter, R.L.; Metheny-Barlow, L.J.; Zhou, X.; Qasem, S.A.; Pasche, B.; Watabe, K. Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res., 2016, 76(17), 4970-4980. doi: 10.1158/0008-5472.CAN-15-3541 PMID: 27364556
  17. Lai, Y.C.; Ushio, N.; Rahman, M.M.; Katanoda, Y.; Ogihara, K.; Naya, Y.; Moriyama, A.; Iwanaga, T.; Saitoh, Y.; Sogawa, T.; Sunaga, T.; Momoi, Y.; Izumi, H.; Miyoshi, N.; Endo, Y.; Fujiki, M.; Kawaguchi, H.; Miura, N. Aberrant expression of microRNAs and the miR‐1/MET pathway in canine hepatocellular carcinoma. Vet. Comp. Oncol., 2018, 16(2), 288-296. doi: 10.1111/vco.12379 PMID: 29314614
  18. Ogunwobi, O.O.; Puszyk, W.; Dong, H.J.; Liu, C. Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLoS One, 2013, 8(5), e63765. doi: 10.1371/journal.pone.0063765 PMID: 23723997
  19. Sennino, B.; Ishiguro-Oonuma, T.; Wei, Y.; Naylor, R.M.; Williamson, C.W.; Bhagwandin, V.; Tabruyn, S.P.; You, W.K.; Chapman, H.A.; Christensen, J.G.; Aftab, D.T.; McDonald, D.M. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov., 2012, 2(3), 270-287. doi: 10.1158/2159-8290.CD-11-0240 PMID: 22585997
  20. Horikawa, T.; Sheen, T.S.; Takeshita, H.; Sato, H.; Furukawa, M.; Yoshizaki, T. Induction of c-Met proto-oncogene by Epstein-Barr virus latent membrane protein-1 and the correlation with cervical lymph node metastasis of nasopharyngeal carcinoma. Am. J. Pathol., 2001, 159(1), 27-33. doi: 10.1016/S0002-9440(10)61669-0 PMID: 11438450
  21. Du, F.; Li, X.; Feng, W.; Qiao, C.; Chen, J.; Jiang, M.; Qiu, Z.; Qian, M.; Tian, D.; Nie, Y.; Fan, D.; Wu, K.; Xia, L. SOX13 promotes colorectal cancer metastasis by transactivating SNAI2 and c-MET. Oncogene, 2020, 39(17), 3522-3540. doi: 10.1038/s41388-020-1233-4 PMID: 32111984
  22. Han, C.; Zhou, Y.; An, Q.; Li, F.; Li, D.; Zhang, X.; Yu, Z.; Zheng, L.; Duan, Z.; Kan, Q. MicroRNA-1 (miR-1) inhibits gastric cancer cell proliferation and migration by targeting MET. Tumour Biol., 2015, 36(9), 6715-6723. doi: 10.1007/s13277-015-3358-6 PMID: 25874496
  23. Qu, W.; Chen, X.; Wang, J.; Lv, J.; Yan, D. MicroRNA-1 inhibits ovarian cancer cell proliferation and migration through c-Met pathway. Clin. Chim. Acta, 2017, 473, 237-244. doi: 10.1016/j.cca.2017.07.008 PMID: 28698064
  24. Reid, J.F.; Sokolova, V.; Zoni, E.; Lampis, A.; Pizzamiglio, S.; Bertan, C.; Zanutto, S.; Perrone, F.; Camerini, T.; Gallino, G.; Verderio, P.; Leo, E.; Pilotti, S.; Gariboldi, M.; Pierotti, M.A. miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation. Mol. Cancer Res., 2012, 10(4), 504-515. doi: 10.1158/1541-7786.MCR-11-0342 PMID: 22343615
  25. Wang, Y.; Tai, Q.; Zhang, J.; Kang, J.; Gao, F.; Zhong, F.; Cai, L.; Fang, F.; Gao, Y. MiRNA-206 inhibits hepatocellular carcinoma cell proliferation and migration but promotes apoptosis by modulating cMET expression. Acta Biochim. Biophys. Sin., 2019, 51(3), 243-253. doi: 10.1093/abbs/gmy119 PMID: 30805592
  26. Sheng, X.J.; Li, Z.; Sun, M.; Wang, Z.H.; Zhou, D.M.; Li, J.Q.; Zhao, Q.; Sun, X.F.; Liu, Q.C. MACC1 induces metastasis in ovarian carcinoma by upregulating hepatocyte growth factor receptor c-MET. Oncol. Lett., 2014, 8(2), 891-897. doi: 10.3892/ol.2014.2184 PMID: 25009663
  27. Ayoub, N.M.; Ibrahim, D.R.; Alkhalifa, A.E.; Al-Husein, B.A. Crizotinib induced antitumor activity and synergized with chemotherapy and hormonal drugs in breast cancer cells via downregulating MET and estrogen receptor levels. Invest. New Drugs, 2021, 39(1), 77-88. doi: 10.1007/s10637-020-00989-0 PMID: 32833135
  28. Shang, R.; Song, X.; Wang, P.; Zhou, Y.; Lu, X.; Wang, J.; Xu, M.; Chen, X.; Utpatel, K.; Che, L.; Liang, B.; Cigliano, A.; Evert, M.; Calvisi, D.F.; Chen, X. Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut, 2021, 70(9), 1746-1757. doi: 10.1136/gutjnl-2020-320716 PMID: 33144318
  29. Abdelhameed, A.S.; Attwa, M.W.; Kadi, A.A. Identification of iminium intermediates generation in the metabolism of tepotinib using LC-MS/MS: In silico and practical approaches to bioactivation pathway elucidation. Molecules, 2020, 25(21), 5004. doi: 10.3390/molecules25215004 PMID: 33126762
  30. Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; Raskin, J.; Reinmuth, N.; Conte, P.; Kowalski, D.; Cho, B.C.; Patel, J.D.; Horn, L.; Griesinger, F.; Han, J.Y.; Kim, Y.C.; Chang, G.C.; Tsai, C.L.; Yang, J.C.H.; Chen, Y.M.; Smit, E.F.; van der Wekken, A.J.; Kato, T.; Juraeva, D.; Stroh, C.; Bruns, R.; Straub, J.; Johne, A.; Scheele, J.; Heymach, J.V.; Le, X. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N. Engl. J. Med., 2020, 383(10), 931-943. doi: 10.1056/NEJMoa2004407 PMID: 32469185
  31. Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; Smit, E.F.; Souquet, P.J.; Vansteenkiste, J.; Hochmair, M.; Felip, E.; Nishio, M.; Thomas, M.; Ohashi, K.; Toyozawa, R.; Overbeck, T.R.; de Marinis, F.; Kim, T.M.; Laack, E.; Robeva, A.; Le Mouhaer, S.; Waldron-Lynch, M.; Sankaran, B.; Balbin, O.A.; Cui, X.; Giovannini, M.; Akimov, M.; Heist, R.S. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N. Engl. J. Med., 2020, 383(10), 944-957. doi: 10.1056/NEJMoa2002787 PMID: 32877583
  32. Horn, L.; Wang, Z.; Wu, G.; Poddubskaya, E.; Mok, T.; Reck, M.; Wakelee, H.; Chiappori, A.A.; Lee, D.H.; Breder, V.; Orlov, S.; Cicin, I.; Cheng, Y.; Liu, Y.; Fan, Y.; Whisenant, J.G.; Zhou, Y.; Oertel, V.; Harrow, K.; Liang, C.; Mao, L.; Selvaggi, G.; Wu, Y.L. Ensartinib vs crizotinib for patients with anaplastic lymphoma kinase-positive non-small cell lung cancer: A randomized clinical trial. JAMA Oncol., 2021, 7(11), 1617-1625. doi: 10.1001/jamaoncol.2021.3523 PMID: 34473194
  33. Wang, Y.; Yuan, X.; Xiong, J.; Hao, Z.; Peng, X.; Chen, W.; Cui, L.; Li, H.; Wang, X.; He, X.; Yang, M.; Liang, C.; Ma, Y.; Ding, L.; Mao, L. Pharmacology and clinical evaluation of ensartinib hydrochloride capsule. Zhongguo Fei Ai Za Zhi, 2020, 23(8), 719-729. doi: 10.3779/j.issn.1009-3419.2020.102.34 PMID: 32838492
  34. Markham, A. Savolitinib: First approval. Drugs, 2021, 81(14), 1665-1670. doi: 10.1007/s40265-021-01584-0 PMID: 34455538
  35. Hartmaier, R.J.; Markovets, A.A.; Ahn, M.J.; Sequist, L.V.; Han, J.Y.; Cho, B.C.; Yu, H.A.; Kim, S.W.; Yang, J.C.H.; Lee, J.S.; Su, W.C.; Kowalski, D.M.; Orlov, S.; Ren, S.; Frewer, P.; Ou, X.; Cross, D.A.E.; Kurian, N.; Cantarini, M.; Jänne, P.A. Osimertinib + Savolitinib to overcome acquired MET-mediated resistance in epidermal growth factor receptor-mutated, MET-amplified non-small cell lung cancer: TATTON. Cancer Discov., 2023, 13(1), 98-113. doi: 10.1158/2159-8290.CD-22-0586 PMID: 36264123
  36. Yu, Y.; Zhou, J.; Li, X.; Goto, K.; Min, X.; Nishino, K.; Cui, J.; Wu, L.; Sakakibara, J.; Shu, Y.; Dong, X.; Li, L.; Yoneshima, Y.; Zhou, C.; Li, X.; Zhang, Y.; Huang, D.; Zang, A.; Zhang, W.; Wang, X.; Zhang, L.; Bai, C.; Fang, J.; Cao, L.; Zhao, Y.; Yu, Y.; Shi, M.; Zhong, D.; Li, F.; Li, M.; Wu, Q.; Zhou, J.; Sun, M.; Lu, S. Gumarontinib in patients with non-small-cell lung cancer harbouring MET exon 14 skipping mutations: A multicentre, single-arm, open-label, phase 1b/2 trial. EClinic. Med., 2023, 59, 101952. doi: 10.1016/j.eclinm.2023.101952 PMID: 37096188
  37. Bao, Z.; Li, S.; Wang, L.; Zhang, B.; Zhang, P.; Shi, H.; Qiu, X.; Jiang, T. PTPRZ1-METFUsion GENe (ZM-FUGEN) trial: Study protocol for a multicentric, randomized, open-label phase II/III trial. Chin. Neurosurg. J., 2023, 9(1), 21. doi: 10.1186/s41016-023-00329-0 PMID: 37443050
  38. Cui, J.J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P.P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R.S.; Edwards, M.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem., 2011, 54(18), 6342-6363. doi: 10.1021/jm2007613 PMID: 21812414
  39. Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308. doi: 10.1158/1535-7163.MCT-11-0264 PMID: 21926191
  40. Hong, D.S.; Rosen, P.; Lockhart, A.C.; Fu, S.; Janku, F.; Kurzrock, R.; Khan, R.; Amore, B.; Caudillo, I.; Deng, H.; Hwang, Y.C.; Loberg, R.; Ngarmchamnanrith, G.; Beaupre, D.M.; Lee, P. A first-in-human study of AMG 208, an oral MET inhibitor, in adult patients with advanced solid tumors. Oncotarget, 2015, 6(21), 18693-18706. doi: 10.18632/oncotarget.4472 PMID: 26155941
  41. Kudo, M.; Morimoto, M.; Moriguchi, M.; Izumi, N.; Takayama, T.; Yoshiji, H.; Hino, K.; Oikawa, T.; Chiba, T.; Motomura, K.; Kato, J.; Yasuchika, K.; Ido, A.; Sato, T.; Nakashima, D.; Ueshima, K.; Ikeda, M.; Okusaka, T.; Tamura, K.; Furuse, J. A randomized, double‐blind, placebo‐controlled, phase 3 study of tivantinib in Japanese patients with MET‐high hepatocellular carcinoma. Cancer Sci., 2020, 111(10), 3759-3769. doi: 10.1111/cas.14582 PMID: 32716114
  42. Yau, T.C.C.; Lencioni, R.; Sukeepaisarnjaroen, W.; Chao, Y.; Yen, C.J.; Lausoontornsiri, W.; Chen, P.J.; Sanpajit, T.; Camp, A.; Cox, D.S.; Gagnon, R.C.; Liu, Y.; Raffensperger, K.E.; Kulkarni, D.A.; Kallender, H.; Ottesen, L.H.; Poon, R.T.P.; Bottaro, D.P. A Phase I/II multicenter study of single-agent foretinib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin. Cancer Res., 2017, 23(10), 2405-2413. doi: 10.1158/1078-0432.CCR-16-1789 PMID: 27821605
  43. Chia, S.K.; Ellard, S.L.; Mates, M.; Welch, S.; Mihalcioiu, C.; Miller, W.H., Jr; Gelmon, K.; Lohrisch, C.; Kumar, V.; Taylor, S.; Hagerman, L.; Goodwin, R.; Wang, T.; Sakashita, S.; Tsao, M.S.; Eisenhauer, E.; Bradbury, P. A phase-I study of lapatinib in combination with foretinib, a c-MET, AXL and vascular endothelial growth factor receptor inhibitor, in human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Breast Cancer Res., 2017, 19(1), 54. doi: 10.1186/s13058-017-0836-3 PMID: 28464908
  44. Cui, Q.; Cai, C.Y.; Gao, H.L.; Ren, L.; Ji, N.; Gupta, P.; Yang, Y.; Shukla, S.; Ambudkar, S.V.; Yang, D.H.; Chen, Z.S. Glesatinib, a c-Met/SMO dual inhibitor, antagonizes P-glycoprotein mediated multidrug resistance in cancer cells. Front. Oncol., 2019, 9(9), 313. doi: 10.3389/fonc.2019.00313 PMID: 31106148
  45. Zillhardt, M.; Park, S.M.; Romero, I.L.; Sawada, K.; Montag, A.; Krausz, T.; Yamada, S.D.; Peter, M.E.; Lengyel, E. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis. Clin. Cancer Res., 2011, 17(12), 4042-4051. doi: 10.1158/1078-0432.CCR-10-3387 PMID: 21551255
  46. He, A.R.; Cohen, R.B.; Denlinger, C.S.; Sama, A.; Birnbaum, A.; Hwang, J.; Sato, T.; Lewis, N.; Mynderse, M.; Niland, M.; Giles, J.; Wallin, J.; Moser, B.; Zhang, W.; Walgren, R.; Plimack, E.R. First-in-human phase I study of merestinib, an oral multikinase inhibitor, in patients with advanced cancer. Oncologist, 2019, 24(9), e930-e942. doi: 10.1634/theoncologist.2018-0411 PMID: 30833489
  47. Molife, L.R.; Dean, E.J.; Blanco-Codesido, M.; Krebs, M.G.; Brunetto, A.T.; Greystoke, A.P.; Daniele, G.; Lee, L.; Kuznetsov, G.; Myint, K.T.; Wood, K.; de las Heras, B.; Ranson, M.R. A phase I, dose-escalation study of the multitargeted receptor tyrosine kinase inhibitor, golvatinib, in patients with advanced solid tumors. Clin. Cancer Res., 2014, 20(24), 6284-6294. doi: 10.1158/1078-0432.CCR-14-0409 PMID: 25278451
  48. Van Cutsem, E.; Karaszewska, B.; Kang, Y.K.; Chung, H.C.; Shankaran, V.; Siena, S.; Go, N.F.; Yang, H.; Schupp, M.; Cunningham, D. A multicenter phase II study of AMG 337 in patients with MET-amplified gastric/gastroesophageal junction/esophageal adenocarcinoma and other MET-amplified solid tumors. Clin. Cancer Res., 2019, 25(8), 2414-2423. doi: 10.1158/1078-0432.CCR-18-1337 PMID: 30366938
  49. Zaky, M.Y.; Liu, X.; Wang, T.; Wang, S.; Liu, F.; Wang, D.; Wu, Y.; Zhang, Y.; Guo, D.; Sun, Q.; Li, Q.; Zhang, J.; Zhang, Y.; Dong, W.; Liu, Z.; Liu, S.; Liu, H. Dynasore potentiates c-Met inhibitors against hepatocellular carcinoma through destabilizing c-Met. Arch. Biochem. Biophys., 2020, 680(680), 108239. doi: 10.1016/j.abb.2019.108239 PMID: 31881189
  50. Virzì, A.R.; Gentile, A.; Benvenuti, S.; Comoglio, P.M. Reviving oncogenic addiction to MET bypassed by BRAF (G469A) mutation. Proc. Natl. Acad. Sci. USA, 2018, 115(40), 10058-10063. doi: 10.1073/pnas.1721147115 PMID: 30224486
  51. Xiang, Q.; Zhen, Z.; Deng, D.Y.B.; Wang, J.; Chen, Y.; Li, J.; Zhang, Y.; Wang, F.; Chen, N.; Chen, H.; Chen, Y. Tivantinib induces G2/M arrest and apoptosis by disrupting tubulin polymerization in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2015, 34(1), 118. doi: 10.1186/s13046-015-0238-2 PMID: 26458953
  52. D’Amico, L.; Belisario, D.; Migliardi, G.; Grange, C.; Bussolati, B.; D’Amelio, P.; Perera, T.; Dalmasso, E.; Carbonare, L.D.; Godio, L.; Comoglio, P.; Trusolino, L.; Ferracini, R.; Roato, I. C-met inhibition blocks bone metastasis development induced by renal cancer stem cells. Oncotarget, 2016, 7(29), 45525-45537. doi: 10.18632/oncotarget.9997 PMID: 27322553
  53. Lolkema, M.P.; Bohets, H.H.; Arkenau, H.T.; Lampo, A.; Barale, E.; de Jonge, M.J.A.; van Doorn, L.; Hellemans, P.; de Bono, J.S.; Eskens, F.A.L.M. The c-Met tyrosine kinase inhibitor JNJ-38877605 causes renal toxicity through species-specific insoluble metabolite formation. Clin. Cancer Res., 2015, 21(10), 2297-2304. doi: 10.1158/1078-0432.CCR-14-3258 PMID: 25745036
  54. Sennino, B.; Ishiguro-Oonuma, T.; Schriver, B.J.; Christensen, J.G.; McDonald, D.M. Inhibition of c-Met reduces lymphatic metastasis in RIP-Tag2 transgenic mice. Cancer Res., 2013, 73(12), 3692-3703. doi: 10.1158/0008-5472.CAN-12-2160 PMID: 23576559
  55. Cheng, H.S.; Marvalim, C.; Zhu, P.; Law, C.L.D.; Low, Z.Y.J.; Chong, Y.K.; Ang, B.T.; Tang, C.; Tan, N.S. Kinomic profile in patient-derived glioma cells during hypoxia reveals c-MET-PI3K dependency for adaptation. Theranostics, 2021, 11(11), 5127-5142. doi: 10.7150/thno.54741 PMID: 33859738
  56. Felix, F.B.; Dias, J.; Vago, J.P.; Martins, D.G.; Beltrami, V.A.; Fernandes, D.O.; Menezes dos Santos, A.C.P.; Queiroz-Junior, C.M.; de Sousa, L.P.; Amaral, F.A.; Soriani, F.M.; Teixeira, M.M.; Pinho, V. Blocking the HGF-MET pathway induces resolution of neutrophilic inflammation by promoting neutrophil apoptosis and efferocytosis. Pharmacol. Res., 2023, 188, 106640. doi: 10.1016/j.phrs.2022.106640 PMID: 36627004
  57. Zillhardt, M.; Christensen, J.G.; Lengyel, E. An orally available small-molecule inhibitor of c-Met, PF-2341066, reduces tumor burden and metastasis in a preclinical model of ovarian cancer metastasis. Neoplasia, 2010, 12(1), 1-10. doi: 10.1593/neo.09948 PMID: 20072648
  58. Timofeevski, S.L.; McTigue, M.A.; Ryan, K.; Cui, J.; Zou, H.Y.; Zhu, J.X.; Chau, F.; Alton, G.; Karlicek, S.; Christensen, J.G.; Murray, B.W. Enzymatic characterization of c-Met receptor tyrosine kinase oncogenic mutants and kinetic studies with aminopyridine and triazolopyrazine inhibitors. Biochemistry, 2009, 48(23), 5339-5349. doi: 10.1021/bi900438w PMID: 19459657
  59. Heigener, D.F.; Reck, M. Crizotinib. Recent Results Cancer Res., 2014, 201, 197-205. doi: 10.1007/978-3-642-54490-3_11 PMID: 24756793
  60. Solomon, B. Refining the toxicity profile of crizotinib. J. Thorac. Oncol., 2014, 9(11), 1596-1597. doi: 10.1097/JTO.0000000000000375 PMID: 25436794
  61. Yashiro, M.; Nishii, T.; Hasegawa, T.; Matsuzaki, T.; Morisaki, T.; Fukuoka, T.; Hirakawa, K. A c-Met inhibitor increases the chemosensitivity of cancer stem cells to the irinotecan in gastric carcinoma. Br. J. Cancer, 2013, 109(10), 2619-2628. doi: 10.1038/bjc.2013.638 PMID: 24129235
  62. Auliac, J.B.; Pérol, M.; Planchard, D.; Monnet, I.; Wislez, M.; Doubre, H.; Guisier, F.; Pichon, E.; Greillier, L.; Mastroianni, B.; Decroisette, C.; Schott, R.; Le Moulec, S.; Arrondeau, J.; Cortot, A.B.; Gerinière, L.; Renault, A.; Daniel, C.; Falchero, L.; Chouaid, C. Real-life efficacy of osimertinib in pretreated patients with advanced non-small cell lung cancer harboring EGFR T790M mutation. Lung Cancer, 2019, 127, 96-102. doi: 10.1016/j.lungcan.2018.11.037 PMID: 30642559
  63. Shah, M.A.; Wainberg, Z.A.; Catenacci, D.V.T.; Hochster, H.S.; Ford, J.; Kunz, P.; Lee, F.C.; Kallender, H.; Cecchi, F.; Rabe, D.C.; Keer, H.; Martin, A.M.; Liu, Y.; Gagnon, R.; Bonate, P.; Liu, L.; Gilmer, T.; Bottaro, D.P. Correction: Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), c-Met/VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS One, 2022, 17(10), e0276211. doi: 10.1371/journal.pone.0276211 PMID: 36215283
  64. Akaberi, M.; Sahebkar, A.; Emami, S.A. Turmeric and curcumin: From traditional to modern medicine. Adv. Exp. Med. Biol., 2021, 1291, 15-39. doi: 10.1007/978-3-030-56153-6_2 PMID: 34331682
  65. Ming, T.; Tao, Q.; Tang, S.; Zhao, H.; Yang, H.; Liu, M.; Ren, S.; Xu, H. Curcumin: An epigenetic regulator and its application in cancer. Biomed. Pharmacother., 2022, 156, 113956. doi: 10.1016/j.biopha.2022.113956 PMID: 36411666
  66. Ohnishi, Y.; Sakamoto, T.; Zhengguang, L.; Yasui, H.; Hamada, H.; Kubo, H.; Nakajima, M. Curcumin inhibits epithelial‑mesenchymal transition in oral cancer cells via c‑Met blockade. Oncol. Lett., 2020, 19(6), 4177-4182. doi: 10.3892/ol.2020.11523 PMID: 32391111
  67. Hu, H.J.; Lin, X.L.; Liu, M.H.; Fan, X.J.; Zou, W.W. Curcumin mediates reversion of HGF-induced epithelial-mesenchymal transition via inhibition of c-Met expression in DU145 cells. Oncol. Lett., 2016, 11(2), 1499-1505. doi: 10.3892/ol.2015.4063 PMID: 26893768
  68. Jiao, D.; Wang, J.; Lu, W.; Tang, X.; Chen, J.; Mou, H.; Chen, Q. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol. Ther. Oncolytics, 2016, 3(3), 16018. doi: 10.1038/mto.2016.18 PMID: 27525306
  69. Chen, X.; Tian, F.; Lun, P.; Feng, Y. Curcumin inhibits HGF-induced EMT by regulating c-Met-dependent PI3K/Akt/mTOR signaling pathways in meningioma. Evid. Based Complement. Alternat. Med., 2021, 2021(6), 1-10. doi: 10.1155/2021/5574555 PMID: 34408780
  70. Yamauchi, Y.; Izumi, Y.; Yamamoto, J.; Nomori, H. Coadministration of erlotinib and curcumin augmentatively reduces cell viability in lung cancer cells. Phytother. Res., 2014, 28(5), 728-735. doi: 10.1002/ptr.5056 PMID: 23943298
  71. Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The role of quercetin in plants. Plant Physiol. Biochem., 2021, 166, 10-19. doi: 10.1016/j.plaphy.2021.05.023 PMID: 34087741
  72. Cao, H.H.; Tse, A.K.W.; Kwan, H.Y.; Yu, H.; Cheng, C.Y.; Su, T.; Fong, W.F.; Yu, Z.L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem. Pharmacol., 2014, 87(3), 424-434. doi: 10.1016/j.bcp.2013.11.008 PMID: 24275163
  73. Cao, H.H.; Cheng, C.Y.; Su, T.; Fu, X.Q.; Guo, H.; Li, T.; Tse, A.K.W.; Kwan, H.Y.; Yu, H.; Yu, Z.L. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Mol. Cancer, 2015, 14(1), 103. doi: 10.1186/s12943-015-0367-4 PMID: 25971889
  74. Song, Y.; Ding, Q.; Hao, Y.; Cui, B.; Ding, C.; Gao, F. Pharmacological effects of shikonin and its potential in skin repair: A review. Molecules, 2023, 28(24), 7950. doi: 10.3390/molecules28247950 PMID: 38138440
  75. Hsieh, Y.S.; Liao, C.H.; Chen, W.S.; Pai, J.T.; Weng, M.S. Shikonin inhibited migration and invasion of human lung cancer cells via suppression of c-Met-mediated epithelial-to-mesenchymal transition. J. Cell. Biochem., 2017, 118(12), 4639-4651. doi: 10.1002/jcb.26128 PMID: 28485480
  76. Wadhwa, K.; Pahwa, R.; Kumar, M.; Kumar, S.; Sharma, P.C.; Singh, G.; Verma, R.; Mittal, V.; Singh, I.; Kaushik, D.; Jeandet, P. Mechanistic insights into the pharmacological significance of silymarin. Molecules, 2022, 27(16), 5327. doi: 10.3390/molecules27165327 PMID: 36014565
  77. Yassin, N.Y.S.; AbouZid, S.F.; El-Kalaawy, A.M.; Ali, T.M.; Almehmadi, M.M.; Ahmed, O.M. Silybum marianum total extract, silymarin and silibinin abate hepatocarcinogenesis and hepatocellular carcinoma growth via modulation of the HGF/c-Met, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. Biomed. Pharmacother., 2022, 145, 112409. doi: 10.1016/j.biopha.2021.112409 PMID: 34781148
  78. Yu, J.; Zhang, L.; Peng, J.; Ward, R.; Hao, P.; Wang, J.; Zhang, N.; Yang, Y.; Guo, X.; Xiang, C.; An, S.; Xu, T.R. Dictamnine, a novel c-Met inhibitor, suppresses the proliferation of lung cancer cells by downregulating the PI3K/AKT/mTOR and MAPK signaling pathways. Biochem. Pharmacol., 2022, 195, 114864. doi: 10.1016/j.bcp.2021.114864 PMID: 34861243
  79. Koh, Y.W.; Choi, E.C.; Kang, S.U.; Hwang, H.S.; Lee, M.H.; Pyun, J.; Park, R.; Lee, Y.; Kim, C.H. Green tea (−)-epigallocatechin-3-gallate inhibits HGF-induced progression in oral cavity cancer through suppression of HGF/c-Met. J. Nutr. Biochem., 2011, 22(11), 1074-1083. doi: 10.1016/j.jnutbio.2010.09.005 PMID: 21292466
  80. Duhon, D.; Bigelow, R.L.H.; Coleman, D.T.; Steffan, J.J.; Yu, C.; Langston, W.; Kevil, C.G.; Cardelli, J.A. The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells. Mol. Carcinog., 2010, 49(8), n/a. doi: 10.1002/mc.20649 PMID: 20623641
  81. Milligan, S.A.; Burke, P.; Coleman, D.T.; Bigelow, R.L.; Steffan, J.J.; Carroll, J.L.; Williams, B.J.; Cardelli, J.A. The green tea polyphenol EGCG potentiates the antiproliferative activity of c-Met and epidermal growth factor receptor inhibitors in non-small cell lung cancer cells. Clin. Cancer Res., 2009, 15(15), 4885-4894. doi: 10.1158/1078-0432.CCR-09-0109 PMID: 19638461
  82. Li, M.; Yu, X.; Li, W.; Liu, T.; Deng, G.; Liu, W.; Liu, H.; Gao, F. Deguelin suppresses angiogenesis in human hepatocellular carcinoma by targeting HGF-c-Met pathway. Oncotarget, 2018, 9(1), 152-166. doi: 10.18632/oncotarget.22077 PMID: 29416603
  83. García-Vilas, J.A.; Quesada, A.R.; Medina, M.A. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells. Sci. Rep., 2015, 5(1), 8021. doi: 10.1038/srep08021 PMID: 25620570
  84. Hu, C.T.; Cheng, C.C.; Wu, J.R.; Pan, S.M.; Wu, W.S. PKCε-mediated c-Met endosomal processing directs fluctuant c-Met-JNK-paxillin signaling for tumor progression of HepG2. Cell. Signal., 2015, 27(7), 1544-1555. doi: 10.1016/j.cellsig.2015.02.031 PMID: 25778903
  85. García-Vilas, J.A.; Pino-Ángeles, A.; Martínez-Poveda, B.; Quesada, A.R.; Medina, M.Á. The noni anthraquinone damnacanthal is a multi-kinase inhibitor with potent anti-angiogenic effects. Cancer Lett., 2017, 385(385), 1-11. doi: 10.1016/j.canlet.2016.10.037 PMID: 27816491
  86. Aliebrahimi, S.; Kouhsari, S.M.; Arab, S.S.; Shadboorestan, A.; Ostad, S.N. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed. Pharmacother., 2018, 106, 1527-1536. doi: 10.1016/j.biopha.2018.07.055 PMID: 30119228
  87. Sabarwal, A.; Chakraborty, S.; Mahanta, S.; Banerjee, S.; Balan, M.; Pal, S. A novel combination treatment with honokiol and rapamycin effectively restricts c-Met-induced growth of renal cancer cells, and also Inhibits the expression of tumor cell PD-L1 involved in immune escape. Cancers, 2020, 12(7), 1782. doi: 10.3390/cancers12071782 PMID: 32635337
  88. Lee, Y.J.; Lee, Y.J.; Im, J.H.; Won, S.Y.; Kim, Y.B.; Cho, M.K.; Nam, H.S.; Choi, Y.J.; Lee, S.H. Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells. Food Chem. Toxicol., 2013, 52, 61-68. doi: 10.1016/j.fct.2012.10.060 PMID: 23146690
  89. Wei, W.L.; Hou, J.J.; Wang, X.; Yu, Y.; Li, H.J.; Li, Z.W.; Feng, Z.J.; Qu, H.; Wu, W.Y.; Guo, D.A. Venenum bufonis: An overview of its traditional use, natural product chemistry, pharmacology, pharmacokinetics and toxicology. J. Ethnopharmacol., 2019, 237(237), 215-235. doi: 10.1016/j.jep.2019.03.042 PMID: 30905791
  90. He, R.; Ma, H.; Zhou, J.; Zhu, Z.; Lv, X.; Li, Q.; Wang, H.; Yan, Y.; Luo, N.; Di, L.; Wu, Q.; Duan, J. High resolution mass profile of bufadienolides and peptides combing with anti-tumor cell screening and multivariate analysis for the quality evaluation of Bufonis venenum. Molecules, 2019, 24(10), 1943. doi: 10.3390/molecules24101943 PMID: 31137582
  91. Jiang, Y.; Zhang, Y.; Luan, J.; Duan, H.; Zhang, F.; Yagasaki, K.; Zhang, G. Effects of bufalin on the proliferation of human lung cancer cells and its molecular mechanisms of action. Cytotechnology, 2010, 62(6), 573-583. doi: 10.1007/s10616-010-9310-0 PMID: 20963488
  92. Zhou, J.; Zhang, L.; Yan, J.; Hou, A.; Sui, W.; Sun, M. Curcumin induces ferroptosis in A549 CD133+ cells through the GSH-GPX4 and FSP1-CoQ10-NAPH pathways. Discov. Med., 2023, 35(176), 251-263. doi: 10.24976/Discov.Med.202335176.26 PMID: 37272092
  93. Chen, H.; Meng, Y.H.; Guo, D.A.; Liu, X.; Liu, J.H.; Hu, L.H. New cytotoxic 19-norbufadienolide and bufogargarizin isolated from Chan Su. Fitoterapia, 2015, 104, 1-6. doi: 10.1016/j.fitote.2015.05.011 PMID: 25987318
  94. Mohyeldin, M.M.; Busnena, B.A.; Akl, M.R.; Dragoi, A.M.; Cardelli, J.A.; El Sayed, K.A. Novel c-Met inhibitory olive secoiridoid semisynthetic analogs for the control of invasive breast cancer. Eur. J. Med. Chem., 2016, 118(118), 299-315. doi: 10.1016/j.ejmech.2016.04.043 PMID: 27258622
  95. Wang, L.; Wu, R.; Fu, W.; Lao, Y.; Zheng, C.; Tan, H.; Xu, H. Synthesis and biological evaluation of Oblongifolin C derivatives as c-Met inhibitors. Bioorg. Med. Chem., 2016, 24(18), 4120-4128. doi: 10.1016/j.bmc.2016.06.054 PMID: 27396929
  96. Hu, J.; Huang, H.; Che, Y.; Ding, C.; Zhang, L.; Wang, Y.; Hao, H.; Shen, H.; Cao, L. Qingchang huashi formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism homeostasis and goblet cell function. J. Ethnopharmacol., 2021, 266(266), 113394. doi: 10.1016/j.jep.2020.113394 PMID: 32941971
  97. Ju, L.X.; Chen, Z.; Ren, R.Z. Progress in research on the treatment of primary liver cancer with traditional Chinese medicine for activating blood to resolve stasis. J. Chin. Integr. Med., 2005, 3(6), 491-494. doi: 10.3736/jcim20050620 PMID: 16282066
  98. Chen, T.; Wang, Q.; Li, Y.; Huang, H.; Hu, W. Chinese herbal formula QHF inhibits liver cancer cell invasion and migration. Exp. Ther. Med., 2016, 11(6), 2413-2419. doi: 10.3892/etm.2016.3247 PMID: 27284329
  99. Yuan, S.; Gong, Y.; Chen, R.; Du, J.; Zhang, H.; Chen, T. Chinese herbal formula QHF inhibits hepatocellular carcinoma metastasis via HGF/c-Met signaling pathway. Biomed. Pharmacother., 2020, 132, 110867. doi: 10.1016/j.biopha.2020.110867 PMID: 33075668
  100. Chen, T.; Yuan, S.J.; Wang, J.; Hu, W. Mechanism of QHF-cisplatin against hepatocellular carcinoma in a mouse model. World J. Gastroenterol., 2015, 21(35), 10126-10136. doi: 10.3748/wjg.v21.i35.10126 PMID: 26401077
  101. Wang, Y.P.; Fu, X.Q.; Yin, C.L.; Chou, J.Y.; Liu, Y.X.; Bai, J.X.; Chen, Y.J.; Wu, Y.; Wu, J.Y.; Wang, X.Q.; Liu, B.; Yu, Z.L. A traditional Chinese medicine formula inhibits tumor growth in mice and regulates the miR-34b/c-Met/β-catenin pathway. J. Ethnopharmacol., 2020, 260(260), 113065. doi: 10.1016/j.jep.2020.113065 PMID: 32505839
  102. Mohan, C.D.; Shanmugam, M.K.; Gowda, S.G.S.; Chinnathambi, A.; Rangappa, K.S.; Sethi, G. c-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy. Phytomedicine, 2024, 128, 155379. doi: 10.1016/j.phymed.2024.155379 PMID: 38503157
  103. Leonetti, E.; Gesualdi, L.; C Scheri, K.; Dinicola, S.; Fattore, L.; Masiello, M.G.; Cucina, A.; Mancini, R.; Bizzarri, M.; Ricci, G.; Catizone, A. c-Src recruitment is involved in c-Met-mediated malignant behaviour of NT2D1 non-seminoma cells. Int. J. Mol. Sci., 2019, 20(2), 320. doi: 10.3390/ijms20020320 PMID: 30646583
  104. Kwon, M.; Jung, H.J. Hovenia dulcis suppresses the growth of Huh7-derived liver cancer stem cells by inducing necroptosis and apoptosis and blocking c-Met signaling. Cells, 2023, 13(1), 22. doi: 10.3390/cells13010022 PMID: 38201226
  105. Jabbarzadeh Kaboli, P.; Chen, H.F.; Babaeizad, A.; Roustai Geraylow, K.; Yamaguchi, H.; Hung, M.C. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett., 2024, 588(588), 216780. doi: 10.1016/j.canlet.2024.216780 PMID: 38462033
  106. Wang, B.; Liu, W.; Liu, C.; Du, K.; Guo, Z.; Zhang, G.; Huang, Z.; Lin, S.; Cen, B.; Tian, Y.; Yuan, Y.; Bu, J. Cancer-associated fibroblasts promote radioresistance of breast cancer cells via the HGF/c-Met signaling pathway. Int. J. Radiat. Oncol. Biol. Phys., 2023, 116(3), 640-654. doi: 10.1016/j.ijrobp.2022.12.029 PMID: 36586496
  107. Pothula, S.P.; Xu, Z.; Goldstein, D.; Pirola, R.C.; Wilson, J.S.; Apte, M.V. Targeting HGF/c-Met axis in pancreatic cancer. Int. J. Mol. Sci., 2020, 21(23), 9170. doi: 10.3390/ijms21239170 PMID: 33271944
  108. Tacar, S.Y.; Yilmaz, M.; Oz, B.; Tural, D. Crizotinib for c-MET –amplified advanced NSCLC: A single-center experience. Tumori, 2022, 108(3), 258-262. doi: 10.1177/03008916211009303 PMID: 33849345
  109. Hagege, A.; Saada-Bouzid, E.; Ambrosetti, D.; Rastoin, O.; Boyer, J.; He, X.; Rousset, J.; Montemagno, C.; Doyen, J.; Pedeutour, F.; Parola, J.; Bourget, I.; Luciano, F.; Bozec, A.; Cao, Y.; Pagès, G.; Dufies, M. Targeting of c-MET and AXL by cabozantinib is a potential therapeutic strategy for patients with head and neck cell carcinoma. Cell Rep. Med., 2022, 3(9), 100659. doi: 10.1016/j.xcrm.2022.100659 PMID: 36130479
  110. Grojean, M.; Schwarz, M.A.; Schwarz, J.R.; Hassan, S.; von Holzen, U.; Zhang, C.; Schwarz, R.E.; Awasthi, N. Targeted dual inhibition of c‐Met/VEGFR2 signalling by foretinib improves antitumour effects of nanoparticle paclitaxel in gastric cancer models. J. Cell. Mol. Med., 2021, 25(11), 4950-4961. doi: 10.1111/jcmm.16362 PMID: 33939252
  111. Wei, K.; Li, M.; Zöller, M.; Wang, M.; Mehrabi, A.; Hoffmann, K. Targeting c-MET by Tivantinib through synergistic activation of JNK/c-jun pathway in Cholangio carcinoma. Cell Death Dis., 2019, 10(3), 231. doi: 10.1038/s41419-019-1460-1 PMID: 30850583
  112. Iovino, F.; Diana, A.; Carlino, F.; Ferraraccio, F.; Antoniol, G.; Fisone, F.; Perrone, A.; Zito Marino, F.; Panarese, I.; Tathode, M.S.; Caraglia, M.; Gatta, G.; Ruggiero, R.; Parisi, S.; De Vita, F.; Ciardiello, F.; Docimo, L.; Orditura, M. Expression of c-Met in estrogen receptor positive and HER2 negative resected breast cancer correlated with a poor prognosis. J. Clin. Med., 2022, 11(23), 6987. doi: 10.3390/jcm11236987 PMID: 36498560
  113. Wang, Q.; Yang, S.; Wang, K.; Sun, S.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol., 2019, 12(1), 63. doi: 10.1186/s13045-019-0759-9 PMID: 31227004
  114. Camidge, D.R.; Barlesi, F.; Goldman, J.W.; Morgensztern, D.; Heist, R.; Vokes, E.; Spira, A.; Angevin, E.; Su, W.C.; Hong, D.S.; Strickler, J.H.; Motwani, M.; Dunbar, M.; Parikh, A.; Noon, E.; Blot, V.; Wu, J.; Kelly, K. Phase Ib study of telisotuzumab vedotin in combination with erlotinib in patients with c-Met protein-expressing non-small-cell lung cancer. J. Clin. Oncol., 2023, 41(5), 1105-1115. doi: 10.1200/JCO.22.00739 PMID: 36288547

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025