Schisanhenol Inhibits the Proliferation of Hepatocellular Carcinoma Cells by Targeting Programmed Cell Death-ligand 1 via the STAT3 Pathways
- Авторы: Zhang Z.1, Zhong Y.1, Han X.1, Hu X.1, Wang Y.1, Huang L.1, Li S.1, Li Z.1, Wang C.1, Li H.1, Sun J.1, Zhuang W.2, Wang M.1, Chen J.1, Liu W.1, Liu C.1, Guo X.3, Yuan S.4, Wu J.5
-
Учреждения:
- Department of Pharmacology, College of Pharmacy, Beihua University
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University
- School of Pharmacy and Medicine, Tonghua Normal University
- Department of Pharmacy, Siping Central People's Hospital
- Department of Immunology, School of Basic Medicine, Beihua University
- Выпуск: Том 25, № 10 (2025)
- Страницы: 697-710
- Раздел: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694406
- DOI: https://doi.org/10.2174/0118715206349131241121091834
- ID: 694406
Цитировать
Полный текст
Аннотация
Background:Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which promotes tumor cell survival and cell proliferation and causes tumor cells to escape T-cell killing. Schisanhenol, a biphenyl cyclooctene lignin-like compound, was extracted and isolated from the plant named Schisandra rubriflora (Franch.).
Purpose:In this work, we studied the anticancer potential of schisanhenol and explored whether schisanhenol mediated its effect by inhibiting the expression of PD-L1 in vitro and in vivo.
Materials and Methods:In vitro, we performed western blot, immunofluorescence, immunoprecipitation, and colony formation assays to study the proteins, genes, and pathways related to the anti-tumour activity of schisanhenol. In vivo, we explored the antitumor activity of schisanhenol through orthotopic liver transplantation and subcutaneous transplantation tumor models of hepatocellular carcinoma (HCC) cells.
Results:We found that schisanhenol decreased the viability of HCC cells. It inhibited the expression of programmed cell death ligand-1 (PD-L1), which plays a pivotal role in tumorigenesis. Subsequently, schisanhenol suppressed the expression of PD-L1 by decreasing the activation of STAT3. Furthermore, we found that schisanhenol inhibited the activation of STAT3 via JAK/STAT3 (T705), Src/STAT3 (T705), and PI3K/AKT/mTOR/STAT3 (S727) pathways. Colony formation tests showed that schisanhenol suppressed cell proliferation by inhibiting PD-L1. Schisanhenol also enhanced cytotoxic T lymphocytes (CTL) activity and regained their ability to kill tumour cells in co-culture. Finally, in vivo observation confirmed the antitumor activity of schisanhenol.
Conclusion:Schisanhenol inhibits the proliferation of HCC cells by targeting PD-L1 via the STAT3 pathways. These findings prove that schisanhenol is a valuable candidate for HCC therapeutics and reveal previously unknown characteristics of schisanhenol.
Ключевые слова
Об авторах
Zhihong Zhang
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Yiwen Zhong
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Xu Han
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Xueyang Hu
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Yuhan Wang
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Lei Huang
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Siying Li
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Ziqing Li
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Chunmei Wang
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
He Li
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Jinghui Sun
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Wenyue Zhuang
Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University
Email: info@benthamscience.net
Mengyang Wang
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Jianguang Chen
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Wei Liu
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Chang Liu
Department of Pharmacology, College of Pharmacy, Beihua University
Email: info@benthamscience.net
Xin Guo
School of Pharmacy and Medicine, Tonghua Normal University
Email: info@benthamscience.net
Siyu Yuan
Department of Pharmacy, Siping Central People's Hospital
Email: info@benthamscience.net
Jiping Wu
Department of Immunology, School of Basic Medicine, Beihua University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30. doi: 10.3322/caac.21590 PMID: 31912902
- Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2(1), 16018. doi: 10.1038/nrdp.2016.18 PMID: 27158749
- Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462. doi: 10.1056/NEJMra1713263 PMID: 30970190
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H., III; Meyer, T.; Kang, Y.K.; Yeo, W.; Chopra, A.; Anderson, J.; dela Cruz, C.; Lang, L.; Neely, J.; Tang, H.; Dastani, H.B.; Melero, I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017, 389(10088), 2492-2502. doi: 10.1016/S0140-6736(17)31046-2 PMID: 28434648
- Kambhampati, S.; Bauer, K.E.; Bracci, P.M.; Keenan, B.P.; Behr, S.C.; Gordan, J.D.; Kelley, R.K. Nivolumab in patients with advanced hepatocellular carcinoma and Child‐Pugh class B cirrhosis: Safety and clinical outcomes in a retrospective case series. Cancer, 2019, 125(18), 3234-3241. doi: 10.1002/cncr.32206 PMID: 31154669
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034. doi: 10.1084/jem.192.7.1027 PMID: 11015443
- Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27(1), 111-122. doi: 10.1016/j.immuni.2007.05.016 PMID: 17629517
- Baumeister, S.H.; Freeman, G.J.; Dranoff, G.; Sharpe, A.H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol., 2016, 34(1), 539-573. doi: 10.1146/annurev-immunol-032414-112049 PMID: 26927206
- Qianzi, L; Min, X; Mengjie, Q; Junhan, Y; Qu, W; Yi, Z; Qingqing, L; Xueding, C; Lehe, Y; Haiyang, Z; Chengguang, Z; Xiaona, X.J.P. Solamargine improves the therapeutic efficacy of anti-PD-L1 in lung adenocarcinoma by inhibiting STAT1 activation. Phytomedicine, 2024, 128, 155538.
- Xiang, X.; Yu, P.C.; Long, D.; Liao, X.L.; Zhang, S.; You, X.M.; Zhong, J.H.; Li, L.Q. Prognostic value of PD -L1 expression in patients with primary solid tumors. Oncotarget, 2018, 9(4), 5058-5072. doi: 10.18632/oncotarget.23580 PMID: 29435162
- Xixi, Z.; Mengjie, L.; Chaofan, L.; Xiaoxiao, L.; Jiaqi, Z.; Hongbing, M.; Shuqun, Z.; Jingkun, QJII. High dose Vitamin C inhibits PD-L1 by ROS-pSTAT3 signal pathway and enhances T cell function in TNBC. Int. Immunopharmacol., 2024, 126, 111321.
- Clark, C.A.; Gupta, H.B.; Sareddy, G.; Pandeswara, S.; Lao, S.; Yuan, B.; Drerup, J.M.; Padron, A.; Conejo-Garcia, J.; Murthy, K.; Liu, Y.; Turk, M.J.; Thedieck, K.; Hurez, V.; Li, R.; Vadlamudi, R.; Curiel, T.J. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res., 2016, 76(23), 6964-6974. doi: 10.1158/0008-5472.CAN-16-0258 PMID: 27671674
- Song, J.; Wang, J.; Tian, S.; Li, H. Discovery of STAT3 inhibitors: Recent advances and future perspectives. Curr. Med. Chem., 2023, 30(16), 1824-1847. doi: 10.2174/0929867329666220819093117 PMID: 35986534
- El-Tanani, M.; Al Khatib, A.O.; Aladwan, S.M.; Abuelhana, A.; McCarron, P.A.; Tambuwala, M.M. Importance of STAT3 signalling in cancer, metastasis and therapeutic interventions. Cell. Signal., 2022, 92, 110275. doi: 10.1016/j.cellsig.2022.110275 PMID: 35122990
- Wang, Z.; Li, M.Y.; Zhang, Z.H.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, H.L.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jiang, C.G.; Ma, J.; Jin, X. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol. Res., 2020, 155, 104727. doi: 10.1016/j.phrs.2020.104727 PMID: 32113874
- Xiao, D.; Zeng, T.; Zhu, W.; Yu, Z.Z.; Huang, W.; Yi, H.; Lu, S.S.; Feng, J.; Feng, X.P.; Wu, D.; Wen, Q.; Zhou, J.H.; Yuan, L.; Zhuang, W.; Xiao, Z.Q. ANXA1 promotes tumor immune evasion by binding parp1 and upregulating Stat3-induced expression of PD-L1 in multiple cancers. Cancer Immunol. Res., 2023, 11(10), 1367-1383. doi: 10.1158/2326-6066.CIR-22-0896 PMID: 37566399
- Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; Ma, J.; Jin, X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine, 2020, 68, 153172. doi: 10.1016/j.phymed.2020.153172 PMID: 32004989
- Huang, G.; Yan, H.; Ye, S.; Tong, C.; Ying, Q.L. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells, 2014, 32(5), 1149-1160. doi: 10.1002/stem.1609 PMID: 24302476
- Koh, J.; Jang, J.Y.; Keam, B.; Kim, S.; Kim, M.Y.; Go, H.; Kim, T.M.; Kim, D.W.; Kim, C.W.; Jeon, Y.K.; Chung, D.H. EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1α and STAT3. OncoImmunology, 2016, 5(3), e1108514. doi: 10.1080/2162402X.2015.1108514 PMID: 27141364
- Jahangiri, A.; Dadmanesh, M.; Ghorban, K. STAT3 inhibition reduced PD‐L1 expression and enhanced antitumor immune responses. J. Cell. Physiol., 2020, 235(12), 9457-9463. doi: 10.1002/jcp.29750 PMID: 32401358
- Wang, W.Y.; Chen, J.G. Pharmacological effects and development research of Schisandra chinensis. BeihuaUniv. (Nature), 2007, 128-133.
- Kim, H.S.; Lee, J.H.; Park, H.S.; Lee, G.S.; Kim, H.W.; Ha, K.T.; Kim, B.J. Schizandra chinensis extracts induce apoptosis in human gastric cancer cells via JNK/p38 MAPK activation and the ROS-mediated/mitochondria-dependent pathway. Pharm. Biol., 2015, 53(2), 212-219. doi: 10.3109/13880209.2014.913297 PMID: 25243868
- Zhu, P.L.; Li, J.K.; Jiang, X.L.; Zhang, S.Q.; Zhang, Z.; Wang, Y.; Zhang, Z.; Chen, W.Q.; Yung, K.K.L. A traditional prescription comprising Astragali radix and Schisandra chinensis Fructus induces apoptosis and protective autophagy in hepatocellular carcinoma cells. J. Ethnopharmacol., 2023, 312, 116548. doi: 10.1016/j.jep.2023.116548 PMID: 37100264
- Olas, B. Cardioprotective potential of berries of Schisandra chinensis Turcz. (Baill.), their components and food products. Nutrients, 2023, 15(3), 592. doi: 10.3390/nu15030592 PMID: 36771299
- Chiu, T.H.; Ku, C.W.; Ho, T.J.; Tsai, K.L.; Yang, Y.D.; Ou, H.C.; Chen, H.I. Schisanhenol ameliorates OXLDL ‐caused endothelial dysfunction by inhibiting LOX ‐1 signaling. Environ. Toxicol., 2023, 38(7), 1589-1596. doi: 10.1002/tox.23788 PMID: 36999521
- Li, B.; Xiao, Q.; Zhao, H.; Zhang, J.; Yang, C.; Zou, Y.; Zhang, B.; Liu, J.; Sun, H.; Liu, H. Schisanhenol ameliorates non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism. Acta Pharm. Sin. B, 2024, 14(9), 3949-3963. doi: 10.1016/j.apsb.2024.05.014 PMID: 39309511
- Yang, H.; Li, L.; Jiao, Y.; Zhang, Y.; Wang, Y.; Zhu, K.; Sun, C. Thioredoxin-1 mediates neuroprotection of Schisanhenol against MPP+-induced apoptosis via suppression of ASK1-P38-NF-κB pathway in SH-SY5Y cells. Sci. Rep., 2021, 11(1), 21604. doi: 10.1038/s41598-021-01000-3 PMID: 34732784
- Zhang, Z.H.; Mi, C.; Wang, K.S.; Wang, Z.; Li, M.Y.; Zuo, H.X.; Xu, G.H.; Li, X.; Piao, L.X.; Ma, J.; Jin, X. Chelidonine inhibits TNF‐α‐induced inflammation by suppressing the NF‐κB pathways in HCT116 cells. Phytother. Res., 2018, 32(1), 65-75. doi: 10.1002/ptr.5948 PMID: 29044876
- Zhang, Z.; Li, M.; Tai, Y.; Xing, Y.; Zuo, H.; Jin, X.; Ma, J. ZNF70 regulates IL-1β secretion of macrophages to promote the proliferation of HCT116 cells via activation of NLRP3 inflammasome and STAT3 pathway in colitis-associated colorectal cancer. Cell. Signal., 2024, 114, 110979. doi: 10.1016/j.cellsig.2023.110979 PMID: 38000525
- Zhang, Y.F.; Zhang, Z.H.; Li, M.Y.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Zuo, H.X.; Jin, H.L.; Ma, J.; Jin, X. Britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by targeting PD-L1 via abrogation of the crosstalk between Myc and HIF-1α in cancer. Phytomedicine, 2021, 81, 153425. doi: 10.1016/j.phymed.2020.153425 PMID: 33310309
- Zhang, Z.H.; Wang, C.M.; Li, H.; Sun, J.H.; Zhang, C.Y.; Chen, J.G. Astragaloside IV inhibits proliferation and migration of lung cancer cells through JAK/STAT3 signaling pathway. BeihuaUniv.(Nature), 2022, 23, 775-779.
- Wen, S.; An, R.; Li, D.; Cao, J.; Li, Z.; Zhang, W.; Chen, R.; Li, Q.; Lai, X.; Sun, L.; Sun, S. Tea and Citrus maxima complex induces apoptosis of human liver cancer cells via PI3K/AKT/mTOR pathway in vitro. Chin. Herb. Med., 2022, 14(3), 449-458. doi: 10.1016/j.chmed.2021.09.015 PMID: 36118010
- Liu, X.; Xing, Y.; Li, M.; Zhang, Z.; Wang, J.; Ri, M.; Jin, C.; Xu, G.; Piao, L.; Jin, H.; Zuo, H.; Ma, J.; Jin, X. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-κB and Ras/Raf/MEK pathways. J. Ethnopharmacol., 2021, 273, 113989. doi: 10.1016/j.jep.2021.113989 PMID: 33677006
- Jin, Y.; Zuo, H.X.; Li, M.Y.; Zhang, Z.H.; Xing, Y.; Wang, J.Y.; Ma, J.; Li, G.; Piao, H.; Gu, P.; Jin, X. Anti-tumor effects of Carrimycin and Monomeric isovalerylspiramycin I on hepatocellular carcinoma in vitro and in vivo. Front. Pharmacol., 2021, 12, 774231. doi: 10.3389/fphar.2021.774231 PMID: 34899336
- Wang, Y.; Chen, Z.; Luo, J.; Zhang, J.; Sang, A.; Cheng, Z.; Li, X. Salidroside postconditioning attenuates ferroptosis-mediated lung ischemia-reperfusion injury by activating the Nrf2/SLC7A11 signaling axis. Int. Immunopharmacol., 2023, 115, 109731. doi: 10.1016/j.intimp.2023.109731 PMID: 36907990
- Wang, J.Y.; Jiang, M.W.; Li, M.Y.; Zhang, Z.H.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; Ma, J.; Jin, Y.; Zuo, H.X.; Jin, X. Formononetin represses cervical tumorigenesis by interfering with the activation of PD-L1 through MYC and STAT3 downregulation. J. Nutr. Biochem., 2022, 100, 108899. doi: 10.1016/j.jnutbio.2021.108899 PMID: 34748924
- Chen, J.; Jiang, C.C.; Jin, L.; Zhang, X.D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol., 2016, 27(3), 409-416. doi: 10.1093/annonc/mdv615 PMID: 26681673
- Xie, C.; Zhou, X.; Liang, C.; Li, X.; Ge, M.; Chen, Y.; Yin, J.; Zhu, J.; Zhong, C. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 266. doi: 10.1186/s13046-021-02069-4 PMID: 34429133
- Shen, M.; Xu, Z.; Xu, W.; Jiang, K.; Zhang, F.; Ding, Q.; Xu, Z.; Chen, Y. Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 149. doi: 10.1186/s13046-019-1161-8 PMID: 30961670
- Tong, L.; Li, J.; Li, Q.; Wang, X.; Medikonda, R.; Zhao, T.; Li, T.; Ma, H.; Yi, L.; Liu, P.; Xie, Y.; Choi, J.; Yu, S.; Lin, Y.; Dong, J.; Huang, Q.; Jin, X.; Lim, M.; Yang, X. ACT001 reduces the expression of PD-L1 by inhibiting the phosphorylation of STAT3 in glioblastoma. Theranostics, 2020, 10(13), 5943-5956. doi: 10.7150/thno.41498 PMID: 32483429
- Lee, J.H.; Kim, C.; Kim, S.H.; Sethi, G.; Ahn, K.S. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett., 2015, 360(2), 280-293. doi: 10.1016/j.canlet.2015.02.024 PMID: 25697480
- Proietti, C.; Salatino, M.; Rosemblit, C.; Carnevale, R.; Pecci, A.; Kornblihtt, A.R.; Molinolo, A.A.; Frahm, I.; Charreau, E.H.; Schillaci, R.; Elizalde, P.V. Progestins induce transcriptional activation of signal transducer and activator of transcription 3 (Stat3) via a Jak- and Src-dependent mechanism in breast cancer cells. Mol. Cell. Biol., 2005, 25(12), 4826-4840. doi: 10.1128/MCB.25.12.4826-4840.2005 PMID: 15923602
- Wei, J.; Ma, L.; Li, C.; Pierson, C.R.; Finlay, J.L.; Lin, J. Targeting upstream Kinases of STAT3 in human Medulloblastoma cells. Curr. Cancer Drug Targets, 2019, 19(7), 571-582. doi: 10.2174/1568009618666181016165604 PMID: 30332965
- Yokogami, K.; Wakisaka, S.; Avruch, J.; Reeves, S.A. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr. Biol., 2000, 10(1), 47-50. doi: 10.1016/S0960-9822(99)00268-7 PMID: 10660304
- Yang, A.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X. Erianin regulates programmed cell death ligand 1 expression and enhances cytotoxic T lymphocyte activity. J. Ethnopharmacol., 2021, 273, 113598. doi: 10.1016/j.jep.2020.113598 PMID: 33220359
- Wang, Y.; Zhang, C.; Yan, M.; Ma, X.; Song, L.; Wang, B.; Li, P.; Liu, P. PD‐L1 regulates tumor proliferation and T‐cell function in NF2‐associated meningiomas. CNS Neurosci. Ther., 2024, 30(6), e14784. doi: 10.1111/cns.14784 PMID: 38828669
- Madhi, H.; Lee, J.S.; Choi, Y.E.; Li, Y.; Kim, M.H.; Choi, Y.; Goh, S.H. FOXM1 inhibition enhances the therapeutic outcome of lung cancer immunotherapy by modulating PD‐L1 expression and cell proliferation. Adv. Sci. (Weinh.), 2022, 9(29), 2202702. doi: 10.1002/advs.202202702 PMID: 35975458
- Du, W.; Zhu, J.; Zeng, Y.; Liu, T.; Zhang, Y.; Cai, T.; Fu, Y.; Zhang, W.; Zhang, R.; Liu, Z.; Huang, J. KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ., 2021, 28(4), 1284-1300. doi: 10.1038/s41418-020-00651-5 PMID: 33139930
- Soltani, M.; Vosoughi, M.; Ganjalikhani-Hakemi, M.; Shapoorian, H.; Beshkar, P.; Eskandari, N.; Ghezelbash, B. PD-1/PD-L1 interaction regulates BCL2, KI67, BAX, and CASP3, altering proliferation, survival, and apoptosis in acute myeloid leukemia. Iran. J. Allergy Asthma Immunol., 2023, 22(5), 495-503. doi: 10.18502/ijaai.v22i5.13998 PMID: 38085150
- Juneja, V.R.; McGuire, K.A.; Manguso, R.T.; LaFleur, M.W.; Collins, N.; Haining, W.N.; Freeman, G.J.; Sharpe, A.H. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med., 2017, 214(4), 895-904. doi: 10.1084/jem.20160801 PMID: 28302645
- Liang, L.; Li, Y.; Jiao, Y.; Zhang, C.; Shao, M.; Jiang, H.; Wu, Z.; Chen, H.; Guo, J.; Jia, H.; Zhao, T. Maprotiline prompts an antitumour effect by inhibiting PD-L1 expression in mice with melanoma. Curr. Mol. Pharmacol., 2023, 17(1), e18761429259562. doi: 10.2174/0118761429259562230925055749 PMID: 37982288
- Huang, D.; Wang, X.; Qian, Y.; Wu, J.; Chen, B.; Zhang, D.; Dong, F.; Li, Y. MAX transcriptionally enhances PD-L1 to inhibit CD8+ T cell-mediated killing of lung adenocarcinoma cells. Cell. Immunol., 2023, 386, 104706. doi: 10.1016/j.cellimm.2023.104706 PMID: 36931054
- Kudo, M. Immune checkpoint inhibition in hepatocellular Carcinoma: Basics and ongoing clinical trials. Oncology, 2017, 92(Suppl. 1), 50-62. doi: 10.1159/000451016 PMID: 28147363
- Wen, W.; Zhang, Y.; Zhang, H.; Chen, Y. Clinical outcomes of PD-1/PD-L1 inhibitors in patients with advanced hepatocellular carcinoma: A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol., 2023, 149(3), 969-978. doi: 10.1007/s00432-022-04057-3 PMID: 35771261
- Voutsadakis, I.A. PD-1 inhibitors monotherapy in hepatocellular carcinoma: Meta-analysis and systematic review. Hepatobiliary Pancreat. Dis. Int., 2019, 18(6), 505-510. doi: 10.1016/j.hbpd.2019.09.007 PMID: 31551142
- Feun, L.G.; Li, Y.Y.; Wu, C.; Wangpaichitr, M.; Jones, P.D.; Richman, S.P.; Madrazo, B.; Kwon, D.; Garcia-Buitrago, M.; Martin, P.; Hosein, P.J.; Savaraj, N. Phase 2 study of pembrolizumab and circulating biomarkers to predict anticancer response in advanced, unresectable hepatocellular carcinoma. Cancer, 2019, 125(20), 3603-3614. doi: 10.1002/cncr.32339 PMID: 31251403
- Jiang, Y.; Chen, M.; Nie, H.; Yuan, Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum. Vaccin. Immunother., 2019, 15(5), 1111-1122. doi: 10.1080/21645515.2019.1571892 PMID: 30888929
- Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol., 2021, 18(6), 345-362. doi: 10.1038/s41571-021-00473-5 PMID: 33580222
- Geng, Q.; Jiao, P.; Jin, P.; Su, G.; Dong, J.; Yan, B. PD-1/PD-L1 inhibitors for immuno-oncology: From antibodies to small molecules. Curr. Pharm. Des., 2018, 23(39), 6033-6041. doi: 10.2174/1381612823666171004120152 PMID: 28982322
- Zhang, M.; Li, G.; Wang, Y.; Wang, Y.; Zhao, S.; Haihong, P.; Zhao, H.; Wang, Y. PD-L1 expression in lung cancer and its correlation with driver mutations: A meta-analysis. Sci. Rep., 2017, 7(1), 10255. doi: 10.1038/s41598-017-10925-7 PMID: 28860576
- Yang, J.; Hu, L. Immunomodulators targeting the PD‐1/PD‐L1 protein‐protein interaction: From antibodies to small molecules. Med. Res. Rev., 2019, 39(1), 265-301. doi: 10.1002/med.21530 PMID: 30215856
- Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233. doi: 10.1111/j.1476-5381.2009.00190.x PMID: 19459844
- Kothari, M.; Wanjari, A.; Acharya, S.; Karwa, V.; Chavhan, R.; Kumar, S.; Kadu, A.; Patil, R. A comprehensive review of monoclonal antibodies in modern medicine: Tracing the evolution of a revolutionary therapeutic approach. Cureus, 2024, 16(6), e61983. doi: 10.7759/cureus.61983 PMID: 38983999
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; Kohrt, H.E.K.; Horn, L.; Lawrence, D.P.; Rost, S.; Leabman, M.; Xiao, Y.; Mokatrin, A.; Koeppen, H.; Hegde, P.S.; Mellman, I.; Chen, D.S.; Hodi, F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014, 515(7528), 563-567. doi: 10.1038/nature14011 PMID: 25428504
- Chen, J.; Zhao, Y.; Wang, X.; Zang, L.; Yin, D.; Tan, S. Hyperoside inhibits RNF8-mediated nuclear translocation of β-catenin to repress PD-L1 expression and prostate cancer. Anticancer. Agents Med. Chem., 2024, 24(6), 464-476. doi: 10.2174/0118715206289246240110044931 PMID: 38305391
- Fankhauser, C.D.; Curioni-Fontecedro, A.; Allmann, V.; Beyer, J.; Tischler, V.; Sulser, T.; Moch, H.; Bode, P.K. Frequent PD-L1 expression in testicular germ cell tumors. Br. J. Cancer, 2015, 113(3), 411-413. doi: 10.1038/bjc.2015.244 PMID: 26171934
- Aggarwal, B.B.; Sethi, G.; Ahn, K.S.; Sandur, S.K.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Ichikawa, H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: Modern target but ancient solution. Ann. N. Y. Acad. Sci., 2006, 1091(1), 151-169. doi: 10.1196/annals.1378.063 PMID: 17341611
- Atsaves, V.; Tsesmetzis, N.; Chioureas, D.; Kis, L.; Leventaki, V.; Drakos, E.; Panaretakis, T.; Grander, D.; Medeiros, L.J.; Young, K.H.; Rassidakis, G.Z. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia, 2017, 31(7), 1633-1637. doi: 10.1038/leu.2017.103 PMID: 28344319
- Wang, X.; Crowe, P.J.; Goldstein, D.; Yang, J.L. STAT3 inhibition, a novel approach to enhancing targeted therapy in human cancers. Int. J. Oncol., 2012, 41(4), 1181-1191. doi: 10.3892/ijo.2012.1568 PMID: 22842992
- Lee, H.; Jeong, A.J.; Ye, S.K. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep., 2019, 52(7), 415-423. doi: 10.5483/BMBRep.2019.52.7.152 PMID: 31186087
- Decker, T.; Kovarik, P. Serine phosphorylation of STATs. Oncogene, 2000, 19(21), 2628-2637. doi: 10.1038/sj.onc.1203481 PMID: 10851062
- Ouédraogo, Z.G.; Müller-Barthélémy, M.; Kemeny, J.L.; Dedieu, V.; Biau, J.; Khalil, T.; Raoelfils, L.I.; Granzotto, A.; Pereira, B.; Beaudoin, C.; Guissou, I.P.; Berger, M.; Morel, L.; Chautard, E.; Verrelle, P. STAT3 Serine 727 Phosphorylation: A Relevant target to radiosensitize human glioblastoma. Brain Pathol., 2016, 26(1), 18-30. doi: 10.1111/bpa.12254 PMID: 25736961
- Cao, Y.; Zhang, L.; Kamimura, Y.; Ritprajak, P.; Hashiguchi, M.; Hirose, S.; Azuma, M. B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res., 2011, 71(4), 1235-1243. doi: 10.1158/0008-5472.CAN-10-2217 PMID: 21159661
- Yiping, L.; Miao, Y.; Jinsheng, Y.; Yankai, L.; Jianxin, G.; Zhen, J.; Jie, W.J.A.A.M.C. Sauchinone inhibits the proliferation and immune invasion capacity of colorectal cancer cells through the suppression of PD-L1 and MMP2/MM9 Anticancer Agents Med Chem, 2023, 23(12), 1406-1414.
- Jeong, H.; Koh, J.; Kim, S.; Song, S.G.; Lee, S.H.; Jeon, Y.; Lee, C.H.; Keam, B.; Lee, S.H.; Chung, D.H.; Jeon, Y.K. Epithelial−mesenchymal transition induced by tumor cell-intrinsic PD-L1 signaling predicts a poor response to immune checkpoint inhibitors in PD-L1-high lung cancer. Br. J. Cancer, 2024, 131(1), 23-36. doi: 10.1038/s41416-024-02698-4 PMID: 38729997
Дополнительные файлы
