Schisanhenol Inhibits the Proliferation of Hepatocellular Carcinoma Cells by Targeting Programmed Cell Death-ligand 1 via the STAT3 Pathways


Цитировать

Полный текст

Аннотация

Background:Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which promotes tumor cell survival and cell proliferation and causes tumor cells to escape T-cell killing. Schisanhenol, a biphenyl cyclooctene lignin-like compound, was extracted and isolated from the plant named Schisandra rubriflora (Franch.).

Purpose:In this work, we studied the anticancer potential of schisanhenol and explored whether schisanhenol mediated its effect by inhibiting the expression of PD-L1 in vitro and in vivo.

Materials and Methods:In vitro, we performed western blot, immunofluorescence, immunoprecipitation, and colony formation assays to study the proteins, genes, and pathways related to the anti-tumour activity of schisanhenol. In vivo, we explored the antitumor activity of schisanhenol through orthotopic liver transplantation and subcutaneous transplantation tumor models of hepatocellular carcinoma (HCC) cells.

Results:We found that schisanhenol decreased the viability of HCC cells. It inhibited the expression of programmed cell death ligand-1 (PD-L1), which plays a pivotal role in tumorigenesis. Subsequently, schisanhenol suppressed the expression of PD-L1 by decreasing the activation of STAT3. Furthermore, we found that schisanhenol inhibited the activation of STAT3 via JAK/STAT3 (T705), Src/STAT3 (T705), and PI3K/AKT/mTOR/STAT3 (S727) pathways. Colony formation tests showed that schisanhenol suppressed cell proliferation by inhibiting PD-L1. Schisanhenol also enhanced cytotoxic T lymphocytes (CTL) activity and regained their ability to kill tumour cells in co-culture. Finally, in vivo observation confirmed the antitumor activity of schisanhenol.

Conclusion:Schisanhenol inhibits the proliferation of HCC cells by targeting PD-L1 via the STAT3 pathways. These findings prove that schisanhenol is a valuable candidate for HCC therapeutics and reveal previously unknown characteristics of schisanhenol.

Об авторах

Zhihong Zhang

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Yiwen Zhong

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Xu Han

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Xueyang Hu

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Yuhan Wang

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Lei Huang

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Siying Li

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Ziqing Li

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Chunmei Wang

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

He Li

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Jinghui Sun

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Wenyue Zhuang

Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University

Email: info@benthamscience.net

Mengyang Wang

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Jianguang Chen

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Wei Liu

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Chang Liu

Department of Pharmacology, College of Pharmacy, Beihua University

Email: info@benthamscience.net

Xin Guo

School of Pharmacy and Medicine, Tonghua Normal University

Email: info@benthamscience.net

Siyu Yuan

Department of Pharmacy, Siping Central People's Hospital

Email: info@benthamscience.net

Jiping Wu

Department of Immunology, School of Basic Medicine, Beihua University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30. doi: 10.3322/caac.21590 PMID: 31912902
  2. Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2(1), 16018. doi: 10.1038/nrdp.2016.18 PMID: 27158749
  3. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462. doi: 10.1056/NEJMra1713263 PMID: 30970190
  4. El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H., III; Meyer, T.; Kang, Y.K.; Yeo, W.; Chopra, A.; Anderson, J.; dela Cruz, C.; Lang, L.; Neely, J.; Tang, H.; Dastani, H.B.; Melero, I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017, 389(10088), 2492-2502. doi: 10.1016/S0140-6736(17)31046-2 PMID: 28434648
  5. Kambhampati, S.; Bauer, K.E.; Bracci, P.M.; Keenan, B.P.; Behr, S.C.; Gordan, J.D.; Kelley, R.K. Nivolumab in patients with advanced hepatocellular carcinoma and Child‐Pugh class B cirrhosis: Safety and clinical outcomes in a retrospective case series. Cancer, 2019, 125(18), 3234-3241. doi: 10.1002/cncr.32206 PMID: 31154669
  6. Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034. doi: 10.1084/jem.192.7.1027 PMID: 11015443
  7. Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27(1), 111-122. doi: 10.1016/j.immuni.2007.05.016 PMID: 17629517
  8. Baumeister, S.H.; Freeman, G.J.; Dranoff, G.; Sharpe, A.H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol., 2016, 34(1), 539-573. doi: 10.1146/annurev-immunol-032414-112049 PMID: 26927206
  9. Qianzi, L; Min, X; Mengjie, Q; Junhan, Y; Qu, W; Yi, Z; Qingqing, L; Xueding, C; Lehe, Y; Haiyang, Z; Chengguang, Z; Xiaona, X.J.P. Solamargine improves the therapeutic efficacy of anti-PD-L1 in lung adenocarcinoma by inhibiting STAT1 activation. Phytomedicine, 2024, 128, 155538.
  10. Xiang, X.; Yu, P.C.; Long, D.; Liao, X.L.; Zhang, S.; You, X.M.; Zhong, J.H.; Li, L.Q. Prognostic value of PD -L1 expression in patients with primary solid tumors. Oncotarget, 2018, 9(4), 5058-5072. doi: 10.18632/oncotarget.23580 PMID: 29435162
  11. Xixi, Z.; Mengjie, L.; Chaofan, L.; Xiaoxiao, L.; Jiaqi, Z.; Hongbing, M.; Shuqun, Z.; Jingkun, QJII. High dose Vitamin C inhibits PD-L1 by ROS-pSTAT3 signal pathway and enhances T cell function in TNBC. Int. Immunopharmacol., 2024, 126, 111321.
  12. Clark, C.A.; Gupta, H.B.; Sareddy, G.; Pandeswara, S.; Lao, S.; Yuan, B.; Drerup, J.M.; Padron, A.; Conejo-Garcia, J.; Murthy, K.; Liu, Y.; Turk, M.J.; Thedieck, K.; Hurez, V.; Li, R.; Vadlamudi, R.; Curiel, T.J. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res., 2016, 76(23), 6964-6974. doi: 10.1158/0008-5472.CAN-16-0258 PMID: 27671674
  13. Song, J.; Wang, J.; Tian, S.; Li, H. Discovery of STAT3 inhibitors: Recent advances and future perspectives. Curr. Med. Chem., 2023, 30(16), 1824-1847. doi: 10.2174/0929867329666220819093117 PMID: 35986534
  14. El-Tanani, M.; Al Khatib, A.O.; Aladwan, S.M.; Abuelhana, A.; McCarron, P.A.; Tambuwala, M.M. Importance of STAT3 signalling in cancer, metastasis and therapeutic interventions. Cell. Signal., 2022, 92, 110275. doi: 10.1016/j.cellsig.2022.110275 PMID: 35122990
  15. Wang, Z.; Li, M.Y.; Zhang, Z.H.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, H.L.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jiang, C.G.; Ma, J.; Jin, X. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol. Res., 2020, 155, 104727. doi: 10.1016/j.phrs.2020.104727 PMID: 32113874
  16. Xiao, D.; Zeng, T.; Zhu, W.; Yu, Z.Z.; Huang, W.; Yi, H.; Lu, S.S.; Feng, J.; Feng, X.P.; Wu, D.; Wen, Q.; Zhou, J.H.; Yuan, L.; Zhuang, W.; Xiao, Z.Q. ANXA1 promotes tumor immune evasion by binding parp1 and upregulating Stat3-induced expression of PD-L1 in multiple cancers. Cancer Immunol. Res., 2023, 11(10), 1367-1383. doi: 10.1158/2326-6066.CIR-22-0896 PMID: 37566399
  17. Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; Ma, J.; Jin, X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine, 2020, 68, 153172. doi: 10.1016/j.phymed.2020.153172 PMID: 32004989
  18. Huang, G.; Yan, H.; Ye, S.; Tong, C.; Ying, Q.L. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells, 2014, 32(5), 1149-1160. doi: 10.1002/stem.1609 PMID: 24302476
  19. Koh, J.; Jang, J.Y.; Keam, B.; Kim, S.; Kim, M.Y.; Go, H.; Kim, T.M.; Kim, D.W.; Kim, C.W.; Jeon, Y.K.; Chung, D.H. EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1α and STAT3. OncoImmunology, 2016, 5(3), e1108514. doi: 10.1080/2162402X.2015.1108514 PMID: 27141364
  20. Jahangiri, A.; Dadmanesh, M.; Ghorban, K. STAT3 inhibition reduced PD‐L1 expression and enhanced antitumor immune responses. J. Cell. Physiol., 2020, 235(12), 9457-9463. doi: 10.1002/jcp.29750 PMID: 32401358
  21. Wang, W.Y.; Chen, J.G. Pharmacological effects and development research of Schisandra chinensis. BeihuaUniv. (Nature), 2007, 128-133.
  22. Kim, H.S.; Lee, J.H.; Park, H.S.; Lee, G.S.; Kim, H.W.; Ha, K.T.; Kim, B.J. Schizandra chinensis extracts induce apoptosis in human gastric cancer cells via JNK/p38 MAPK activation and the ROS-mediated/mitochondria-dependent pathway. Pharm. Biol., 2015, 53(2), 212-219. doi: 10.3109/13880209.2014.913297 PMID: 25243868
  23. Zhu, P.L.; Li, J.K.; Jiang, X.L.; Zhang, S.Q.; Zhang, Z.; Wang, Y.; Zhang, Z.; Chen, W.Q.; Yung, K.K.L. A traditional prescription comprising Astragali radix and Schisandra chinensis Fructus induces apoptosis and protective autophagy in hepatocellular carcinoma cells. J. Ethnopharmacol., 2023, 312, 116548. doi: 10.1016/j.jep.2023.116548 PMID: 37100264
  24. Olas, B. Cardioprotective potential of berries of Schisandra chinensis Turcz. (Baill.), their components and food products. Nutrients, 2023, 15(3), 592. doi: 10.3390/nu15030592 PMID: 36771299
  25. Chiu, T.H.; Ku, C.W.; Ho, T.J.; Tsai, K.L.; Yang, Y.D.; Ou, H.C.; Chen, H.I. Schisanhenol ameliorates OXLDL ‐caused endothelial dysfunction by inhibiting LOX ‐1 signaling. Environ. Toxicol., 2023, 38(7), 1589-1596. doi: 10.1002/tox.23788 PMID: 36999521
  26. Li, B.; Xiao, Q.; Zhao, H.; Zhang, J.; Yang, C.; Zou, Y.; Zhang, B.; Liu, J.; Sun, H.; Liu, H. Schisanhenol ameliorates non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism. Acta Pharm. Sin. B, 2024, 14(9), 3949-3963. doi: 10.1016/j.apsb.2024.05.014 PMID: 39309511
  27. Yang, H.; Li, L.; Jiao, Y.; Zhang, Y.; Wang, Y.; Zhu, K.; Sun, C. Thioredoxin-1 mediates neuroprotection of Schisanhenol against MPP+-induced apoptosis via suppression of ASK1-P38-NF-κB pathway in SH-SY5Y cells. Sci. Rep., 2021, 11(1), 21604. doi: 10.1038/s41598-021-01000-3 PMID: 34732784
  28. Zhang, Z.H.; Mi, C.; Wang, K.S.; Wang, Z.; Li, M.Y.; Zuo, H.X.; Xu, G.H.; Li, X.; Piao, L.X.; Ma, J.; Jin, X. Chelidonine inhibits TNF‐α‐induced inflammation by suppressing the NF‐κB pathways in HCT116 cells. Phytother. Res., 2018, 32(1), 65-75. doi: 10.1002/ptr.5948 PMID: 29044876
  29. Zhang, Z.; Li, M.; Tai, Y.; Xing, Y.; Zuo, H.; Jin, X.; Ma, J. ZNF70 regulates IL-1β secretion of macrophages to promote the proliferation of HCT116 cells via activation of NLRP3 inflammasome and STAT3 pathway in colitis-associated colorectal cancer. Cell. Signal., 2024, 114, 110979. doi: 10.1016/j.cellsig.2023.110979 PMID: 38000525
  30. Zhang, Y.F.; Zhang, Z.H.; Li, M.Y.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Zuo, H.X.; Jin, H.L.; Ma, J.; Jin, X. Britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by targeting PD-L1 via abrogation of the crosstalk between Myc and HIF-1α in cancer. Phytomedicine, 2021, 81, 153425. doi: 10.1016/j.phymed.2020.153425 PMID: 33310309
  31. Zhang, Z.H.; Wang, C.M.; Li, H.; Sun, J.H.; Zhang, C.Y.; Chen, J.G. Astragaloside IV inhibits proliferation and migration of lung cancer cells through JAK/STAT3 signaling pathway. BeihuaUniv.(Nature), 2022, 23, 775-779.
  32. Wen, S.; An, R.; Li, D.; Cao, J.; Li, Z.; Zhang, W.; Chen, R.; Li, Q.; Lai, X.; Sun, L.; Sun, S. Tea and Citrus maxima complex induces apoptosis of human liver cancer cells via PI3K/AKT/mTOR pathway in vitro. Chin. Herb. Med., 2022, 14(3), 449-458. doi: 10.1016/j.chmed.2021.09.015 PMID: 36118010
  33. Liu, X.; Xing, Y.; Li, M.; Zhang, Z.; Wang, J.; Ri, M.; Jin, C.; Xu, G.; Piao, L.; Jin, H.; Zuo, H.; Ma, J.; Jin, X. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-κB and Ras/Raf/MEK pathways. J. Ethnopharmacol., 2021, 273, 113989. doi: 10.1016/j.jep.2021.113989 PMID: 33677006
  34. Jin, Y.; Zuo, H.X.; Li, M.Y.; Zhang, Z.H.; Xing, Y.; Wang, J.Y.; Ma, J.; Li, G.; Piao, H.; Gu, P.; Jin, X. Anti-tumor effects of Carrimycin and Monomeric isovalerylspiramycin I on hepatocellular carcinoma in vitro and in vivo. Front. Pharmacol., 2021, 12, 774231. doi: 10.3389/fphar.2021.774231 PMID: 34899336
  35. Wang, Y.; Chen, Z.; Luo, J.; Zhang, J.; Sang, A.; Cheng, Z.; Li, X. Salidroside postconditioning attenuates ferroptosis-mediated lung ischemia-reperfusion injury by activating the Nrf2/SLC7A11 signaling axis. Int. Immunopharmacol., 2023, 115, 109731. doi: 10.1016/j.intimp.2023.109731 PMID: 36907990
  36. Wang, J.Y.; Jiang, M.W.; Li, M.Y.; Zhang, Z.H.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; Ma, J.; Jin, Y.; Zuo, H.X.; Jin, X. Formononetin represses cervical tumorigenesis by interfering with the activation of PD-L1 through MYC and STAT3 downregulation. J. Nutr. Biochem., 2022, 100, 108899. doi: 10.1016/j.jnutbio.2021.108899 PMID: 34748924
  37. Chen, J.; Jiang, C.C.; Jin, L.; Zhang, X.D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol., 2016, 27(3), 409-416. doi: 10.1093/annonc/mdv615 PMID: 26681673
  38. Xie, C.; Zhou, X.; Liang, C.; Li, X.; Ge, M.; Chen, Y.; Yin, J.; Zhu, J.; Zhong, C. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 266. doi: 10.1186/s13046-021-02069-4 PMID: 34429133
  39. Shen, M.; Xu, Z.; Xu, W.; Jiang, K.; Zhang, F.; Ding, Q.; Xu, Z.; Chen, Y. Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 149. doi: 10.1186/s13046-019-1161-8 PMID: 30961670
  40. Tong, L.; Li, J.; Li, Q.; Wang, X.; Medikonda, R.; Zhao, T.; Li, T.; Ma, H.; Yi, L.; Liu, P.; Xie, Y.; Choi, J.; Yu, S.; Lin, Y.; Dong, J.; Huang, Q.; Jin, X.; Lim, M.; Yang, X. ACT001 reduces the expression of PD-L1 by inhibiting the phosphorylation of STAT3 in glioblastoma. Theranostics, 2020, 10(13), 5943-5956. doi: 10.7150/thno.41498 PMID: 32483429
  41. Lee, J.H.; Kim, C.; Kim, S.H.; Sethi, G.; Ahn, K.S. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett., 2015, 360(2), 280-293. doi: 10.1016/j.canlet.2015.02.024 PMID: 25697480
  42. Proietti, C.; Salatino, M.; Rosemblit, C.; Carnevale, R.; Pecci, A.; Kornblihtt, A.R.; Molinolo, A.A.; Frahm, I.; Charreau, E.H.; Schillaci, R.; Elizalde, P.V. Progestins induce transcriptional activation of signal transducer and activator of transcription 3 (Stat3) via a Jak- and Src-dependent mechanism in breast cancer cells. Mol. Cell. Biol., 2005, 25(12), 4826-4840. doi: 10.1128/MCB.25.12.4826-4840.2005 PMID: 15923602
  43. Wei, J.; Ma, L.; Li, C.; Pierson, C.R.; Finlay, J.L.; Lin, J. Targeting upstream Kinases of STAT3 in human Medulloblastoma cells. Curr. Cancer Drug Targets, 2019, 19(7), 571-582. doi: 10.2174/1568009618666181016165604 PMID: 30332965
  44. Yokogami, K.; Wakisaka, S.; Avruch, J.; Reeves, S.A. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr. Biol., 2000, 10(1), 47-50. doi: 10.1016/S0960-9822(99)00268-7 PMID: 10660304
  45. Yang, A.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X. Erianin regulates programmed cell death ligand 1 expression and enhances cytotoxic T lymphocyte activity. J. Ethnopharmacol., 2021, 273, 113598. doi: 10.1016/j.jep.2020.113598 PMID: 33220359
  46. Wang, Y.; Zhang, C.; Yan, M.; Ma, X.; Song, L.; Wang, B.; Li, P.; Liu, P. PD‐L1 regulates tumor proliferation and T‐cell function in NF2‐associated meningiomas. CNS Neurosci. Ther., 2024, 30(6), e14784. doi: 10.1111/cns.14784 PMID: 38828669
  47. Madhi, H.; Lee, J.S.; Choi, Y.E.; Li, Y.; Kim, M.H.; Choi, Y.; Goh, S.H. FOXM1 inhibition enhances the therapeutic outcome of lung cancer immunotherapy by modulating PD‐L1 expression and cell proliferation. Adv. Sci. (Weinh.), 2022, 9(29), 2202702. doi: 10.1002/advs.202202702 PMID: 35975458
  48. Du, W.; Zhu, J.; Zeng, Y.; Liu, T.; Zhang, Y.; Cai, T.; Fu, Y.; Zhang, W.; Zhang, R.; Liu, Z.; Huang, J. KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ., 2021, 28(4), 1284-1300. doi: 10.1038/s41418-020-00651-5 PMID: 33139930
  49. Soltani, M.; Vosoughi, M.; Ganjalikhani-Hakemi, M.; Shapoorian, H.; Beshkar, P.; Eskandari, N.; Ghezelbash, B. PD-1/PD-L1 interaction regulates BCL2, KI67, BAX, and CASP3, altering proliferation, survival, and apoptosis in acute myeloid leukemia. Iran. J. Allergy Asthma Immunol., 2023, 22(5), 495-503. doi: 10.18502/ijaai.v22i5.13998 PMID: 38085150
  50. Juneja, V.R.; McGuire, K.A.; Manguso, R.T.; LaFleur, M.W.; Collins, N.; Haining, W.N.; Freeman, G.J.; Sharpe, A.H. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med., 2017, 214(4), 895-904. doi: 10.1084/jem.20160801 PMID: 28302645
  51. Liang, L.; Li, Y.; Jiao, Y.; Zhang, C.; Shao, M.; Jiang, H.; Wu, Z.; Chen, H.; Guo, J.; Jia, H.; Zhao, T. Maprotiline prompts an antitumour effect by inhibiting PD-L1 expression in mice with melanoma. Curr. Mol. Pharmacol., 2023, 17(1), e18761429259562. doi: 10.2174/0118761429259562230925055749 PMID: 37982288
  52. Huang, D.; Wang, X.; Qian, Y.; Wu, J.; Chen, B.; Zhang, D.; Dong, F.; Li, Y. MAX transcriptionally enhances PD-L1 to inhibit CD8+ T cell-mediated killing of lung adenocarcinoma cells. Cell. Immunol., 2023, 386, 104706. doi: 10.1016/j.cellimm.2023.104706 PMID: 36931054
  53. Kudo, M. Immune checkpoint inhibition in hepatocellular Carcinoma: Basics and ongoing clinical trials. Oncology, 2017, 92(Suppl. 1), 50-62. doi: 10.1159/000451016 PMID: 28147363
  54. Wen, W.; Zhang, Y.; Zhang, H.; Chen, Y. Clinical outcomes of PD-1/PD-L1 inhibitors in patients with advanced hepatocellular carcinoma: A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol., 2023, 149(3), 969-978. doi: 10.1007/s00432-022-04057-3 PMID: 35771261
  55. Voutsadakis, I.A. PD-1 inhibitors monotherapy in hepatocellular carcinoma: Meta-analysis and systematic review. Hepatobiliary Pancreat. Dis. Int., 2019, 18(6), 505-510. doi: 10.1016/j.hbpd.2019.09.007 PMID: 31551142
  56. Feun, L.G.; Li, Y.Y.; Wu, C.; Wangpaichitr, M.; Jones, P.D.; Richman, S.P.; Madrazo, B.; Kwon, D.; Garcia-Buitrago, M.; Martin, P.; Hosein, P.J.; Savaraj, N. Phase 2 study of pembrolizumab and circulating biomarkers to predict anticancer response in advanced, unresectable hepatocellular carcinoma. Cancer, 2019, 125(20), 3603-3614. doi: 10.1002/cncr.32339 PMID: 31251403
  57. Jiang, Y.; Chen, M.; Nie, H.; Yuan, Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum. Vaccin. Immunother., 2019, 15(5), 1111-1122. doi: 10.1080/21645515.2019.1571892 PMID: 30888929
  58. Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol., 2021, 18(6), 345-362. doi: 10.1038/s41571-021-00473-5 PMID: 33580222
  59. Geng, Q.; Jiao, P.; Jin, P.; Su, G.; Dong, J.; Yan, B. PD-1/PD-L1 inhibitors for immuno-oncology: From antibodies to small molecules. Curr. Pharm. Des., 2018, 23(39), 6033-6041. doi: 10.2174/1381612823666171004120152 PMID: 28982322
  60. Zhang, M.; Li, G.; Wang, Y.; Wang, Y.; Zhao, S.; Haihong, P.; Zhao, H.; Wang, Y. PD-L1 expression in lung cancer and its correlation with driver mutations: A meta-analysis. Sci. Rep., 2017, 7(1), 10255. doi: 10.1038/s41598-017-10925-7 PMID: 28860576
  61. Yang, J.; Hu, L. Immunomodulators targeting the PD‐1/PD‐L1 protein‐protein interaction: From antibodies to small molecules. Med. Res. Rev., 2019, 39(1), 265-301. doi: 10.1002/med.21530 PMID: 30215856
  62. Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233. doi: 10.1111/j.1476-5381.2009.00190.x PMID: 19459844
  63. Kothari, M.; Wanjari, A.; Acharya, S.; Karwa, V.; Chavhan, R.; Kumar, S.; Kadu, A.; Patil, R. A comprehensive review of monoclonal antibodies in modern medicine: Tracing the evolution of a revolutionary therapeutic approach. Cureus, 2024, 16(6), e61983. doi: 10.7759/cureus.61983 PMID: 38983999
  64. Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; Kohrt, H.E.K.; Horn, L.; Lawrence, D.P.; Rost, S.; Leabman, M.; Xiao, Y.; Mokatrin, A.; Koeppen, H.; Hegde, P.S.; Mellman, I.; Chen, D.S.; Hodi, F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014, 515(7528), 563-567. doi: 10.1038/nature14011 PMID: 25428504
  65. Chen, J.; Zhao, Y.; Wang, X.; Zang, L.; Yin, D.; Tan, S. Hyperoside inhibits RNF8-mediated nuclear translocation of β-catenin to repress PD-L1 expression and prostate cancer. Anticancer. Agents Med. Chem., 2024, 24(6), 464-476. doi: 10.2174/0118715206289246240110044931 PMID: 38305391
  66. Fankhauser, C.D.; Curioni-Fontecedro, A.; Allmann, V.; Beyer, J.; Tischler, V.; Sulser, T.; Moch, H.; Bode, P.K. Frequent PD-L1 expression in testicular germ cell tumors. Br. J. Cancer, 2015, 113(3), 411-413. doi: 10.1038/bjc.2015.244 PMID: 26171934
  67. Aggarwal, B.B.; Sethi, G.; Ahn, K.S.; Sandur, S.K.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Ichikawa, H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: Modern target but ancient solution. Ann. N. Y. Acad. Sci., 2006, 1091(1), 151-169. doi: 10.1196/annals.1378.063 PMID: 17341611
  68. Atsaves, V.; Tsesmetzis, N.; Chioureas, D.; Kis, L.; Leventaki, V.; Drakos, E.; Panaretakis, T.; Grander, D.; Medeiros, L.J.; Young, K.H.; Rassidakis, G.Z. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia, 2017, 31(7), 1633-1637. doi: 10.1038/leu.2017.103 PMID: 28344319
  69. Wang, X.; Crowe, P.J.; Goldstein, D.; Yang, J.L. STAT3 inhibition, a novel approach to enhancing targeted therapy in human cancers. Int. J. Oncol., 2012, 41(4), 1181-1191. doi: 10.3892/ijo.2012.1568 PMID: 22842992
  70. Lee, H.; Jeong, A.J.; Ye, S.K. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep., 2019, 52(7), 415-423. doi: 10.5483/BMBRep.2019.52.7.152 PMID: 31186087
  71. Decker, T.; Kovarik, P. Serine phosphorylation of STATs. Oncogene, 2000, 19(21), 2628-2637. doi: 10.1038/sj.onc.1203481 PMID: 10851062
  72. Ouédraogo, Z.G.; Müller-Barthélémy, M.; Kemeny, J.L.; Dedieu, V.; Biau, J.; Khalil, T.; Raoelfils, L.I.; Granzotto, A.; Pereira, B.; Beaudoin, C.; Guissou, I.P.; Berger, M.; Morel, L.; Chautard, E.; Verrelle, P. STAT3 Serine 727 Phosphorylation: A Relevant target to radiosensitize human glioblastoma. Brain Pathol., 2016, 26(1), 18-30. doi: 10.1111/bpa.12254 PMID: 25736961
  73. Cao, Y.; Zhang, L.; Kamimura, Y.; Ritprajak, P.; Hashiguchi, M.; Hirose, S.; Azuma, M. B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res., 2011, 71(4), 1235-1243. doi: 10.1158/0008-5472.CAN-10-2217 PMID: 21159661
  74. Yiping, L.; Miao, Y.; Jinsheng, Y.; Yankai, L.; Jianxin, G.; Zhen, J.; Jie, W.J.A.A.M.C. Sauchinone inhibits the proliferation and immune invasion capacity of colorectal cancer cells through the suppression of PD-L1 and MMP2/MM9 Anticancer Agents Med Chem, 2023, 23(12), 1406-1414.
  75. Jeong, H.; Koh, J.; Kim, S.; Song, S.G.; Lee, S.H.; Jeon, Y.; Lee, C.H.; Keam, B.; Lee, S.H.; Chung, D.H.; Jeon, Y.K. Epithelial−mesenchymal transition induced by tumor cell-intrinsic PD-L1 signaling predicts a poor response to immune checkpoint inhibitors in PD-L1-high lung cancer. Br. J. Cancer, 2024, 131(1), 23-36. doi: 10.1038/s41416-024-02698-4 PMID: 38729997

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025