Evaluation of Novel Diaza Cage Compounds as MRP Modulators in Cancer Cells


Cite item

Full Text

Abstract

Aim:Novel MRP modulators are needed to combat MRP-mediated multidrug resistance (MDR) in cancer cells. Background: Anticancer drug resistance is the main problem in cancer therapy. Causative multidrug efflux pumps are attractive target structures for the development of inhibitors of their activity.

Objective:We synthesized novel cage dimeric 1,4-dihydropyridines to evaluate them as MRP modulators in cancer cells targeting MRP1, MRP2, and MRP4.

Methods:Cage compounds were synthesized by solution dimerization of monomeric 1,4-dihydropyridines and a final functionalization reaction. The MRP modulation was determined in cellular efflux assays by the use of the flow cytometry technique as well as cellular fluorescent measurements with each fluorescent substrate of the efflux pumps.

Results:Difluoro phenyl and methoxy or dimethoxy benzyl substitutions were most favourable for the MRP1 and MRP2 inhibition, whereas monofluor phenyl and dimethoxy benzyl substitutions were most favourable for the MRP4 inhibition.

Conclusion:Effective inhibitors were identified that were demonstrated to restore the respective cancer cell line sensitivity for the anticancer drug as a proof-of-concept that encourages further preclinical studies.

About the authors

Henry Döring

Institute of Pharmacy, Martin Luther University Halle-Wittenberg

Email: info@benthamscience.net

David Kreutzer

Institute of Pharmacy, Martin Luther University Halle-Wittenberg

Email: info@benthamscience.net

Jannis von Veh

Institute of Pharmacy, Martin Luther University Halle-Wittenberg

Email: info@benthamscience.net

Christoph Ritter

Institute of Pharmacy, University of Greifswald

Email: info@benthamscience.net

Andreas Hilgeroth

Institute of Pharmacy, Martin Luther University Halle-Wittenberg

Author for correspondence.
Email: info@benthamscience.net

References

  1. Cancer. 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  2. Yan, L.; Rosen, N.; Arteaga, C. Targeted cancer therapies. Chin. J. Cancer, 2011, 30(1), 1-4. doi: 10.5732/cjc.010.10553 PMID: 21192839
  3. Sarkar, N.; Singh, A.; Kumar, P.; Kaushik, M. Protein kinases: Role of their dysregulation in carcinogenesis, identification and inhibition. Drug Res. (Stuttg.), 2023, 73(4), 189-199. doi: 10.1055/a-1989-1856 PMID: 36822216
  4. Li, J.; Gong, C.; Zhou, H.; Liu, J.; Xia, X.; Ha, W.; Jiang, Y.; Liu, Q.; Xiong, H. Kinase inhibitors and kinase-targeted cancer therapies: recent advances and future perspectives. Int. J. Mol. Sci., 2024, 25(10), 5489. doi: 10.3390/ijms25105489 PMID: 38791529
  5. Protein kinase inhibitors. 2024. Available from: https://brimr.org/protein-kinase-inhibitors/
  6. Singha, M.; Pu, L.; Srivastava, G.; Ni, X.; Stanfield, B.A.; Uche, I.K.; Rider, P.J.F.; Kousoulas, K.G.; Ramanujam, J.; Brylinski, M. Unlocking the potential of kinase targets in cancer: Insights from canceromicsnet, an ai-driven approach to drug response prediction in cancer. Cancers (Basel), 2023, 15(16), 4050. doi: 10.3390/cancers15164050 PMID: 37627077
  7. Kannaiyan, R.; Mahadevan, D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer Ther., 2018, 18(12), 1249-1270. doi: 10.1080/14737140.2018.1527688 PMID: 30259761
  8. Zahavi, D.; Weiner, L. Monoclonal antibodies in cancer therapy. Antibodies (Basel), 2020, 9(3), 34. doi: 10.3390/antib9030034 PMID: 32698317
  9. Hernandez, I.; Bott, S.W.; Patel, A.S.; Wolf, C.G.; Hospodar, A.R.; Sampathkumar, S.; Shrank, W.H. Pricing of monoclonal antibody therapies: Higher if used for cancer? Am. J. Manag. Care, 2018, 24(2), 109-112. PMID: 29461857
  10. Lin, Y.F.; Liu, J.J.; Chang, Y.J.; Yu, C.S.; Yi, W.; Lane, H.Y.; Lu, C.H. Predicting anticancer drug resistance mediated by mutations. Pharmaceuticals (Basel), 2022, 15(2), 136. doi: 10.3390/ph15020136 PMID: 35215249
  11. Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules, 2022, 27(3), 616. doi: 10.3390/molecules27030616 PMID: 35163878
  12. Duan, C.; Yu, M.; Xu, J.; Li, B.Y.; Zhao, Y.; Kankala, R.K. Overcoming cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother., 2023, 162, 114643. doi: 10.1016/j.biopha.2023.114643 PMID: 37031496
  13. Krchniakova, M.; Skoda, J.; Neradil, J.; Chlapek, P.; Veselska, R. Repurposing tyrosine kinase inhibitors to overcome multidrug resistance in cancer: a focus on transporters and lysosomal sequestration. Int. J. Mol. Sci., 2020, 21(9), 3157. doi: 10.3390/ijms21093157 PMID: 32365759
  14. Wu, C.P.; Hsieh, C.H.; Wu, Y.S. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol. Pharm., 2011, 8(6), 1996-2011. doi: 10.1021/mp200261n PMID: 21770407
  15. Ughachukwu, P.O.; Unekwe, P.C. Efflux pump-mediated resistance in chemotherapy. Ann. Med. Health Sci. Res., 2012, 2(2), 191-198. doi: 10.4103/2141-9248.105671 PMID: 23439914
  16. Hilgeroth, A.; Hemmer, M.; Coburger, C. The impact of the induction of multidrug resistance transporters in therapies by used drugs: recent studies. Mini Rev. Med. Chem., 2012, 12(11), 1127-1134. doi: 10.2174/138955712802762130 PMID: 22512559
  17. Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Chen, Z.S. Multidrug Resistance Proteins (MRPs) and cancer therapy. AAPS J., 2015, 17(4), 802-812. doi: 10.1208/s12248-015-9757-1 PMID: 25840885
  18. Yamada, A.; Ishikawa, T.; Ota, I.; Kimura, M.; Shimizu, D.; Tanabe, M.; Chishima, T.; Sasaki, T.; Ichikawa, Y.; Morita, S.; Yoshiura, K.; Takabe, K.; Endo, I. High expression of ATP-binding cassette transporter ABCC1 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast Cancer Res. Treat., 2013, 137(3), 773-782. doi: 10.1007/s10549-012-2398-5 PMID: 23288347
  19. Young, L.C.; Campling, B.G.; Cole, S.P.; Deeley, R.G.; Gerlach, J.H. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin. Cancer Res., 2001, 7(6), 1798-1804. PMID: 11410522
  20. Hlavata, I.; Mohelnikova-Duchonova, B.; Vaclavikova, R.; Liska, V.; Pitule, P.; Novak, P.; Bruha, J.; Vycital, O.; Holubec, L.; Treska, V.; Vodicka, P.; Soucek, P. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis, 2012, 27(2), 187-196. doi: 10.1093/mutage/ger075 PMID: 22294766
  21. Driscoll, L.O´.; Walsh, N.; Larkin, A.; Ballot, J.; Ooi, W.S.; Gullo, G.; Connor, R.O´.; Clynes, M.; Crown, J.; Kennedy, S. MDR1/P-glycoprotein and MRP-1 drug efflux pumps in pancreatic carcinoma. Anticancer Res., 2007, 27(4B), 2115-2120.
  22. Walsh, N.; Larkin, A.; Kennedy, S.; Connolly, L.; Ballot, J.; Ooi, W.; Gullo, G.; Crown, J.; Clynes, M.; O’Driscoll, L. Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma. BMC Urol., 2009, 9(1), 6. doi: 10.1186/1471-2490-9-6 PMID: 19552816
  23. Li, Y.F.; Ji, H.H.; Zhang, Z.L.; Zhang, T.T.; Gan, W.; Zhang, S.F. Targeting MRP4 expression by anti-androgen treatment reverses MRP4-mediated docetaxel resistance in castration-resistant prostate cancer. Oncol. Lett., 2017, 14(2), 1748-1756. doi: 10.3892/ol.2017.6357 PMID: 28789405
  24. Savaraj, N.; Wu, C.; Wangpaichitr, M.; Kuo, M.; Lampidis, T.; Robles, C.; Furst, A.; Feun, L. Overexpression of mutated MRP4 in cisplatin resistant small cell lung cancer cell line: Collateral sensitivity to azidothymidine. Int. J. Oncol., 2003, 23(1), 173-179. doi: 10.3892/ijo.23.1.173 PMID: 12792791
  25. Zhang, Y.H.; Wu, Q.; Xiao, X.Y.; Li, D.W.; Wang, X.P. Silencing MRP4 by small interfering RNA reverses acquired DDP resistance of gastric cancer cell. Cancer Lett., 2010, 291(1), 76-82. doi: 10.1016/j.canlet.2009.10.003 PMID: 19883972
  26. Oprea-Lager, D.E.; Bijnsdorp, I.V.; Van Moorselaar, R.J.; Van den Eertwegh, A.J.; Hoekstra, O.S.; Geldof, A.A. ABCC4 Decreases docetaxel and not cabazitaxel efficacy in prostate cancer cells in vitro. Anticancer Res., 2013, 33(2), 387-391. PMID: 23393328
  27. Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464. doi: 10.1038/s41568-018-0005-8 PMID: 29643473
  28. Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58. doi: 10.1038/nrc706 PMID: 11902585
  29. Rottenberg, S.; Jaspers, J.E.; Kersbergen, A.; van der Burg, E.; Nygren, A.O.H.; Zander, S.A.L.; Derksen, P.W.B.; de Bruin, M.; Zevenhoven, J.; Lau, A.; Boulter, R.; Cranston, A.; O’Connor, M.J.; Martin, N.M.B.; Borst, P.; Jonkers, J. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA, 2008, 105(44), 17079-17084. doi: 10.1073/pnas.0806092105 PMID: 18971340
  30. Pajic, M.; Iyer, J.K.; Kersbergen, A.; Van der Burg, E.; Nygren, A.O.H.; Jonkers, J.; Borst, P.; Rottenberg, S. Moderate increase in Mdr1a/1b expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer. Cancer Res., 2009, 69(16), 6396-6404. doi: 10.1158/0008-5472.CAN-09-0041 PMID: 19654309
  31. Yu, X.; Weng, Z.; Zhao, Z.; Xu, J.; Qi, Z.; Liu, J. Assembly of protein cages for drug delivery. Pharmaceutics, 2022, 14(12), 2609. doi: 10.3390/pharmaceutics14122609 PMID: 36559102
  32. Tapia, L.; Alfonso, I.; Solà, J. Molecular cages for biological applications. Org. Biomol. Chem., 2021, 19(44), 9527-9540. doi: 10.1039/D1OB01737C PMID: 34668919
  33. Ellis-Davies, G.C.R. Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat. Methods, 2007, 4(8), 619-628. doi: 10.1038/nmeth1072 PMID: 17664946
  34. Kreutzer, D.; Döring, H.; Werner, P.; Ritter, C.A.; Hilgeroth, A. Novel symmetrical cage compounds as inhibitors of the symmetrical mrp4-efflux pump for anticancer therapy. Int. J. Mol. Sci., 2021, 22, 5098. doi: 10.3390/ijms22105098 PMID: 34065900
  35. Poźniak, B.; Pawlak, A.; Obmińska-Mrukowicz, B. Flow cytometric assessment of P-glycoprotein and multidrug resistance-associated protein activity and expression in canine lymphoma. In vivo, 2015, 29(1), 149-153. PMID: 25600546
  36. Eva, A.; Robbins, K.C.; Andersen, P.R.; Srinivasan, A.; Tronick, S.R.; Reddy, E.P.; Ellmore, N.W.; Galen, A.T.; Lautenberger, J.A.; Papas, T.S.; Westin, E.H.; Wong-Staal, F.; Gallo, R.C.; Aaronson, S.A. Cellular genes analogous to retroviral onc genes are transcribed in human tumour cells. Nature, 1982, 295(5845), 116-119. doi: 10.1038/295116a0 PMID: 6173755
  37. Rius, M.; Nies, A.T.; Hummel-Eisenbeis, J.; Jedlitschky, G.; Keppler, D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology, 2003, 38(2), 374-384. doi: 10.1053/jhep.2003.50331
  38. Kim, H.S.; Min, Y.D.; Choi, C.H. Double-edged sword of chemosensitizer: Increase of multidrug resistance protein (MRP) in leukemic cells by an MRP inhibitor probenecid. Biochem. Biophys. Res. Commun., 2001, 283(1), 64-71. doi: 10.1006/bbrc.2001.4746 PMID: 11322768
  39. Gollapudi, S.; Kim, C.H.; Tran, B.N.; Sangha, S.; Gupta, S. Probenecid reverses multidrug resistance in multidrug resistance-associated protein-overexpressing HL60/AR and H69/AR cells but not in P-glycoprotein-overexpressing HL60/Tax and P388/ADR cells. Cancer Chemother. Pharmacol., 1997, 40(2), 150-158. doi: 10.1007/s002800050640 PMID: 9182837
  40. Isomura, S.; Anzai, M.; Kobayashi, C.; Okuno, Y.; Miyamoto, K.; Uchiyama, M.; Sato, Y. Chennat‐type synthesis of 1,4‐dihydropyridine derivatives in water: Role of a hydrogen‐bonding network. ChemistrySelect, 2020, 5(6), 2075-2077. doi: 10.1002/slct.201904144
  41. Dean, S.W.; Lane, M.; Ruddock, S.P.; Martin, C.N.; Kirkland, D.J.; Loprieno, N. Development of assays for the detection of photomutagenity of chemicals during exposure to UV light. Mutagenesis, 1991, 6, 335-341. doi: 10.1093/mutage/6.5.335 PMID: 1795636
  42. Wang, C.; Lu, Z. Intermolecular 2 + 2 cycloaddition of 1,4-dihydropyridines with olefins via energy transfer. Org. Lett., 2017, 19(21), 5888-5891. doi: 10.1021/acs.orglett.7b02881 PMID: 29048912
  43. Hollenstein, K.; Dawson, R.J.P.; Locher, K.P. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol., 2007, 17(4), 412-418. doi: 10.1016/j.sbi.2007.07.003 PMID: 17723295
  44. Haimeur, A.; Conseil, G.; Deeley, R.; Cole, S. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: Biology, substrate specificity and regulation. Curr. Drug Metab., 2004, 5(1), 21-53. doi: 10.2174/1389200043489199 PMID: 14965249
  45. Chen, Z.S.; Lee, K.; Kruh, G.D. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem., 2001, 276(36), 33747-33754. doi: 10.1074/jbc.M104833200 PMID: 11447229
  46. Van Aubel, R.A.M.H.; Smeets, P.H.E.; Peters, J.G.P.; Bindels, R.J.M.; Russel, F.G.M. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: Putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol., 2002, 13(3), 595-603. doi: 10.1681/ASN.V133595 PMID: 11856762

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers