Origanum syriacum Induces Apoptosis in Lung Cancer Cells by Altering the Ratio of Bax/Bcl2


Citar

Texto integral

Resumo

Background:The lung cancer is the leading cause of death worldwide. Although methods such as surgery, chemotherapy, radiotherapy, and immunotherapy are used for treatment, these treatments are sometimes inadequate. In addition, the number of chemotherapeutic agents used is very limited, and it is very important to use new natural agents that can increase the effect of these methods used in treatment.

Objective:The present study was designed to determine the suppression of proliferation and induction of apoptosis activities and phenolic content of Origanum syriacum methanol extract (OsME) on lung cancer cells (A549).

Methods:For this purpose, the cell viability of A549 cells exposed to OsME was first determined. The morphological changes of the cell were observed by an inverted phase contrast microscope. Moreover, the percentage of apoptotic and necrotic cells was determined by FACS with AnnexinV/Propodium iodide staining. Additionally, proapoptotic Bax and antiapoptotic Bcl-2 mRNA levels were determined by Real-time PCR. Phenolic compounds of OsME were detected by LC-MS-MS.

Results:It was observed that the viability and proliferation of lung cancer cells decreased after the treatment of different concentrations of OsME. At a concentration of 200 mg/ml of OsME, most of the cell membrane structures were observed to disintegrate. Meanwhile, a 25 μg/ml concentration of OsME increased the Bax expression and percentage of late apoptotic cells. Vanillic acid and luteolin were identified as the main phenolic compounds of OsME.

Conclusion:OsME exhibited antiproliferation activity on A549 cells and induced apoptosis at low doses.

Sobre autores

Onder Yumrutas

Department of Medical Biology, Faculty of Medicine, Adıyaman University

Email: info@benthamscience.net

Pınar Yumrutas

Department of Respiratory Disease and Cancer Biology, Faculty of Medicine, Gaziantep University

Email: info@benthamscience.net

Mustafa Pehlivan

Department of Biology, Faculty of Science, Gaziantep University

Email: info@benthamscience.net

Murat Korkmaz

Department of Medical Biology, Faculty of Medicine, Gaziantep Islam Science and Technology University

Autor responsável pela correspondência
Email: info@benthamscience.net

Demet Kahraman

Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University

Email: info@benthamscience.net

Bibliografia

  1. Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: An epigenetic overview. Int. J. Mol. Sci., 2013, 14(10), 21087-21113. doi: 10.3390/ijms141021087 PMID: 24152442
  2. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
  3. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  4. Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin., 2024, 74(1), 12-49. doi: 10.3322/caac.21820 PMID: 38230766
  5. Cangır, A.K.; Yumuk, P.F.; Sak, S.D.; Akyürek, S.; Eralp, Y.; Yılmaz, Ü. Lung cancer in Turkey; Elsevier, 2022, pp. 1158-1170.
  6. Schabath, M.B.; Cote, M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomarkers Prev., 2019, 28(10), 1563-1579. doi: 10.1158/1055-9965.EPI-19-0221 PMID: 31575553
  7. Minna, J.D.; Roth, J.A.; Gazdar, A.F. Focus on lung cancer. Cancer Cell, 2002, 1(1), 49-52. doi: 10.1016/S1535-6108(02)00027-2 PMID: 12086887
  8. Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300. doi: 10.21037/tlcr.2016.06.07 PMID: 27413711
  9. Hoy, H.; Lynch, T.; Beck, M. Surgical treatment of lung cancer. Crit. Care Nursing Clin., 2019, 31(3), 303-313. PMID: 31351552
  10. Islam, K.M.; Anggondowati, T.; Deviany, P.E.; Ryan, J.E.; Fetrick, A.; Bagenda, D.; Copur, M.S.; Tolentino, A.; Vaziri, I.; McKean, H.A.; Dunder, S.; Gray, J.E.; Huang, C.; Ganti, A.K. Patient preferences of chemotherapy treatment options and tolerance of chemotherapy side effects in advanced stage lung cancer. BMC Cancer, 2019, 19(1), 835. doi: 10.1186/s12885-019-6054-x PMID: 31455252
  11. Kim, E.S. Chemotherapy resistance in lung cancer. Adv. Exp. Med. Biol., 2016, 893, 189-209. doi: 10.1007/978-3-319-24223-1_10
  12. Phenolic compounds that modulate multi drug resistance through inhibiting of P-glycoprotein encoded by gene ABCB1 Eurasian J Bio Chem Sci, 2022, 5(Ek sayı 1), 162-165.
  13. Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.N.; Varoni, E.M.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res., 2018, 32(8), 1425-1449. doi: 10.1002/ptr.6087 PMID: 29672977
  14. Sharifi-Rad, M.; B Yılmaz, Y.; Antika, G.; Salehi, B.; Tumer, T.B.; Kulandaisamy Venil, C.; Das, G.; Patra, J.K.; Karazhan, N.; Akram, M.; Iqbal, M.; Imran, M.; Sen, S.; Acharya, K.; Dey, A; Sharifi-Rad, J. Phytochemical constituents, biological activities, and health‐promoting effects of the genus Origanum. Phytother. Res., 2021, 35(1), 95-121. doi: 10.1002/ptr.6785 PMID: 32789910
  15. Marrelli, M.; Statti, G.A.; Conforti, F. Origanum spp.: An update of their chemical and biological profiles. Phytochem. Rev., 2018, 17(4), 873-888. doi: 10.1007/s11101-018-9566-0
  16. Emire, Z.; Yabalak, E. Can Origanum be a hope for cancer treatment? A review on the potential of Origanum species in preventing and treating cancers. Int. J. Environ. Health Res., 2023, 33(9), 894-910. doi: 10.1080/09603123.2022.2064437 PMID: 35414316
  17. Yarlılar, Ş.G.; Yabalak, E.; Yetkin, D.; Gizir, A.M.; Mazmancı, B. Anticancer potential of Origanum munzurense extract against MCF-7 breast cancer cell. Int. J. Environ. Health Res., 2023, 33(6), 600-608. doi: 10.1080/09603123.2022.2042495 PMID: 35188839
  18. Yumrutaş, Ö; Yumrutas, P; Pehlivan, M; Kahraman, D; Korkmaz, M; Doğan, M. Anticancer activity of Origanum vulgare on lung cancer: Antiproliferative, morphological, and apoptotic effects IJNPR, 2024, 15(3), 357-363.
  19. Benslama, A.; Daci, S.; Nabti, L.Z.; Bendif, H.; Harrar, A. Assessment of polyphenols contents, antibacterial and antioxidant activities of Origanum majorana extracts. Eur. J. Biol. Res., 2021, 11(4), 509-518.
  20. Elshafie, H.S.; Mancini, E.; Sakr, S.; De Martino, L.; Mattia, C.A.; De Feo, V.; Camele, I. Antifungal activity of some constituents of Origanum vulgare L. essential oil against postharvest disease of peach fruit. J. Med. Food, 2015, 18(8), 929-934. doi: 10.1089/jmf.2014.0167 PMID: 25599273
  21. Han, X.; Parker, T.L. Anti-inflammatory, tissue remodeling, immunomodulatory, and anticancer activities of oregano (Origanum vulgare) essential oil in a human skin disease model. Biochim. Open, 2017, 4, 73-77. doi: 10.1016/j.biopen.2017.02.005 PMID: 29450144
  22. Mesmar, J.; Abdallah, R.; Badran, A.; Maresca, M.; Baydoun, E. Origanum syriacum phytochemistry and pharmacological properties: A comprehensive review. Molecules, 2022, 27(13), 4272. doi: 10.3390/molecules27134272 PMID: 35807517
  23. Farhat, M.; Tóth, J.; Héthelyi, B.; Szarka, S.; Czigle, S. Analysis of the essential oil compounds of Origanum syriacum L. Eur. Pharm. J., 2012, 59(2), 6-14.
  24. AlKahlout, A.; Fardoun, M.; Mesmar, J.; Abdallah, R.; Badran, A.; Nasser, S.A.; Baydoun, S.; Kobeissy, F.; Shaito, A.; Iratni, R.; Muhammad, K.; Baydoun, E.; Eid, A.H. Origanum syriacum L. Attenuates the malignant phenotype of MDA-mb231 breast cancer cells. Front. Oncol., 2022, 12, 922196. doi: 10.3389/fonc.2022.922196 PMID: 35847867
  25. Mesmar, J.; Abdallah, R.; Hamade, K.; Baydoun, S.; Al-Thani, N.; Shaito, A.; Maresca, M.; Badran, A.; Baydoun, E. Ethanolic extract of Origanum syriacum L. leaves exhibits potent anti-breast cancer potential and robust antioxidant properties. Front. Pharmacol., 2022, 13, 994025. doi: 10.3389/fphar.2022.994025 PMID: 36299882
  26. Aldisi, S.S.; Jaganjac, M.; Eid, A.H.; Goktepe, I. Evaluation of apoptotic, antiproliferative, and antimigratory activity of Origanum syriacum against metastatic colon cancer cells. J. Herbs Spices Med. Plants, 2019, 25(3), 202-217. doi: 10.1080/10496475.2019.1587674
  27. Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A.; Ali, S.; Asrar, M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother., 2018, 103, 1643-1651. doi: 10.1016/j.biopha.2018.04.113 PMID: 29864953
  28. Yumrutas, O.; Bozgeyik, I. Anticancer activity of Inula graveolensby induction of ROS-independent apoptosis and suppression of IL6-IL8 in cervical cancer cells. Bol. Latinoam. Caribe Plantas Med. Aromat., 2023, 22(3), 314-325. doi: 10.37360/blacpma.23.22.3.23
  29. Cocelli, G.; Pehlivan, M.; Yumrutas, O.; Bonfante, R.; Parlar, A. Sideritis perfoliata inhibits cell proliferation, induces apoptosis and exhibits cellular antioxidant activity in cervical cancer cells. Bol. Latinoam. Caribe Plantas Med. Aromat., 2021, 20(4), 394-405. doi: 10.37360/blacpma.21.20.4.29
  30. Al-Kalaldeh, J.Z.; Abu-Dahab, R.; Afifi, F.U. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells. Nutr. Res., 2010, 30(4), 271-278. doi: 10.1016/j.nutres.2010.04.001 PMID: 20534330
  31. Esawy, S.H.; El-Hadidy, E.M.; Abdel-Salam, M. Antioxidant content and cytotoxicity of Origanum syriacum L. Adv. Food Sci., 2014, 36(2), 58-64.
  32. Letai, A. Apoptosis and cancer. Annu. Rev. Cancer Biol., 2017, 1(1), 275-294. doi: 10.1146/annurev-cancerbio-050216-121933
  33. Segawa, K.; Nagata, S. An apoptotic ‘eat me’ signal: Phosphatidylserine exposure. Trends Cell Biol., 2015, 25(11), 639-650. doi: 10.1016/j.tcb.2015.08.003 PMID: 26437594
  34. Krysko, D.V.; Vanden Berghe, T.; D’Herde, K.; Vandenabeele, P. Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods, 2008, 44(3), 205-221. doi: 10.1016/j.ymeth.2007.12.001 PMID: 18314051
  35. Zhou, H.; Liu, L.; Ma, X.; Wang, J.; Yang, J.; Zhou, X.; Yang, Y.; Liu, H. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol. Cell. Biochem., 2021, 476(2), 1233-1243. doi: 10.1007/s11010-020-03985-3 PMID: 33247805
  36. Velli, S.; Sundaram, J.; Murugan, M.; Balaraman, G.; Thiruvengadam, D. Protective effect of vanillic acid against benzo(a)pyrene induced lung cancer in Swiss albino mice. J. Biochem. Mol. Toxicol., 2019, 33(10), e22382. doi: 10.1002/jbt.22382 PMID: 31468657
  37. Mojibi, R.; Mehrzad, J.; Sharifzadeh, A.; Nikaein, D. Apoptotic effects of caffeic acid phenethyl ester and matricaria chamomilla essential oil on A549 non-small cell lung cancer cells. Iran. J. Vet. Med., 2022, 16(4)
  38. Vejselova, D.; Kutlu, H.M. Inhibitory effects of salicylic acid on A549 human lung adenocarcinoma cell viability. Turk. J. Biol., 2015, 39(1), 1-5. doi: 10.3906/biy-1401-7
  39. Chen, Q.; Liu, S.; Chen, J.; Zhang, Q.; Lin, S.; Chen, Z. Luteolin induces mitochondria-dependent apoptosis in human lung adenocarcinoma cell. Nat. Prod. Commun., 2012, 7(1), 29-32. doi: 10.1177/1934578X1200700111
  40. Wang, X.; Wang, D.; Zhao, Y. Effect and mechanism of resveratrol on the apoptosis of lung adenocarcinoma cell line A549. Cell Biochem. Biophys., 2015, 73(2), 527-531. doi: 10.1007/s12013-015-0696-3 PMID: 27352348
  41. Mukherjee, A.; Khuda-Bukhsh, A.R. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549. J. Pharmacopuncture, 2015, 18(1), 19-26. doi: 10.3831/KPI.2015.18.002 PMID: 25830055
  42. Min, J.; Shen, H.; Xi, W.; Wang, Q.; Yin, L.; Zhang, Y.; Yu, Y.; Yang, Q.; Wang, Z. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cell. Physiol. Biochem., 2018, 48(4), 1433-1442. doi: 10.1159/000492253 PMID: 30064123
  43. Kleczka, A.; Kubina, R.; Dzik, R.; Jasik, K.; Stojko, J.; Cholewa, K.; Kabała-Dzik, A. Caffeic acid phenethyl ester (CAPE) induced apoptosis in serous ovarian cancer OV7 cells by deregulation of BCL2/BAX genes. Molecules, 2020, 25(15), 3514. doi: 10.3390/molecules25153514 PMID: 32752091
  44. Venkidasamy, B.; Subramanian, U.; Almoallim, H.S.; Alharbi, S.A.; Lakshmikumar, R.R.C.; Thiruvengadam, M. Vanillic acid nanocomposite: Synthesis, characterization analysis, antimicrobial, and anticancer potentials. Molecules, 2024, 29(13), 3098. doi: 10.3390/molecules29133098 PMID: 38999050
  45. Park, J.; Cho, S.Y.; Kang, J.; Park, W.Y.; Lee, S.; Jung, Y.; Kang, M.W.; Kwak, H.J.; Um, J.Y. Vanillic acid improves comorbidity of cancer and obesity through stat3 regulation in high-fat-diet-induced obese and b16bl6 melanoma-injected mice. Biomolecules, 2020, 10(8), 1098. doi: 10.3390/biom10081098 PMID: 32722030
  46. Kim, K.M.; Song, J.J.; An, J.Y.; Kwon, Y.T.; Lee, Y.J. Pretreatment of acetylsalicylic acid promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by down-regulating BCL-2 gene expression. J. Biol. Chem., 2005, 280(49), 41047-41056. doi: 10.1074/jbc.M503713200 PMID: 16199534
  47. Xu, Q.B.; Chen, X.F.; Feng, J.; Miao, J.F.; Liu, J.; Liu, F.T.; Niu, B.X.; Cai, J.Y.; Huang, C.; Zhang, Y.; Ling, Y. Design, synthesis and biological evaluation of hybrids of β-carboline and salicylic acid as potential anticancer and apoptosis inducing agents. Sci. Rep., 2016, 6(1), 36238. doi: 10.1038/srep36238 PMID: 27824091
  48. Cai, X.; Ye, T.; Liu, C.; Lu, W.; Lu, M.; Zhang, J.; Wang, M.; Cao, P. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol. In Vitro, 2011, 25(7), 1385-1391. doi: 10.1016/j.tiv.2011.05.009 PMID: 21601631
  49. Meng, G.; Chai, K.; Li, X.; Zhu, Y.; Huang, W. Luteolin exerts pro-apoptotic effect and anti-migration effects on A549 lung adenocarcinoma cells through the activation of MEK/ERK signaling pathway. Chem. Biol. Interact., 2016, 257, 26-34. doi: 10.1016/j.cbi.2016.07.028 PMID: 27474067
  50. Alam, S.; Mohammad, T.; Padder, R.A.; Hassan, M.I.; Husain, M. Thymoquinone and quercetin induce enhanced apoptosis in non‐small cell lung cancer in combination through the Bax/Bcl2 cascade. J. Cell. Biochem., 2022, 123(2), 259-274. doi: 10.1002/jcb.30162 PMID: 34636440
  51. Kim, Y.A.; Lee, W.H.; Choi, T.H.; Rhee, S-H.; Park, K-Y.; Choi, Y.H. Involvement of p21WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int. J. Oncol., 2003, 23(4), 1143-1149. PMID: 12963997
  52. Ma, L.; Li, W.; Wang, R.; Nan, Y.; Wang, Q.; Liu, W.; Jin, F. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis. Int. J. Oncol., 2015, 47(4), 1460-1468. doi: 10.3892/ijo.2015.3124 PMID: 26314326
  53. Zhang, Y.X.; Yu, P.F.; Gao, Z.M.; Yuan, J.; Zhang, Z. Caffeic acid n-butyl ester-triggered necrosis-like cell death in lung cancer cell line A549 is prompted by ROS mediated alterations in mitochondrial membrane potential. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(7), 1665-1671. PMID: 28429338
  54. Klimaszewska-Wiśniewska, A.; Hałas-Wiśniewska, M.; Izdebska, M.; Gagat, M.; Grzanka, A.; Grzanka, D. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem., 2017, 119(2), 99-112. doi: 10.1016/j.acthis.2016.11.003 PMID: 27887793

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2025