Royal Jelly's Strong Selective Cytotoxicity Against Lung Malignant Cells and Macromolecular Alterations in Cells Observed by FTIR Spectroscopy
- Autores: Aysin f.1
-
Afiliações:
- Department of Biology, Faculty of Science, Atatürk University
- Edição: Volume 25, Nº 11 (2025)
- Páginas: 750-764
- Seção: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694418
- DOI: https://doi.org/10.2174/0118715206355400241112084611
- ID: 694418
Citar
Texto integral
Resumo
Introduction/Objective:Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health. Royal jelly (RJ) is also being studied as a potential therapeutic agent for cancer and other chronic diseases. It is effective in reducing tumor growth and stimulating immunity.
Methods:In this study, we investigated the effects of royal jelly on cancerous A549 cells and healthy MRC-5 cells at various doses ranging from 1.25 to 10 mg/mL. Royal jelly's anti-proliferative effect was evaluated by MTT and SRB assay for 48 h. The induction of necrosis and apoptosis was assessed by flow cytometry as well. The relative amounts of major molecules in Royal jelly were determined by FTIR spectroscopy to identify key functional groups and molecular structures. In addition, this technique was used for the first time to detect changes in the macromolecular composition of lung cells treated with royal jelly. Thus, it provided insights into the relative abundance of proteins, lipids, and carbohydrates, which could correlate with their bioactive properties.
Results:The antiproliferative effect of Royal jelly was found to be selective on A549 cells in a dose-dependent manner with an IC50 of 9.26 mg/mL, with no cytotoxic effects on normal MRC-5 cells. Moreover, Royal jelly induced predominantly necrotic cell death in A549 cells, %39.10 at 4 mg/ml and %57.88 at 10 mg/ml concentrations. However, the necrosis rate in MRC-5 cells was quite low, at 9.16% and 20.44% at the same doses. Royal jelly showed dose-dependent selective cytotoxicity toward A549 cells, whereas it exhibited no apparent cytotoxicity in MRC-5 cells. In order to identify the biomolecular changes induced by royal jelly, we used two unsupervised chemometric pattern recognition algorithms (PCA and HCA) on the preprocessed sample FTIR spectra to determine the effects of royal jelly on cell biochemistry. According to PCA and HCA results, RJ treatments especially affected biomolecules in A549 cells. The total spectral band variances in the PCA loading spectra were calculated for understanding biomolecular alterations. These plots revealed profound changes in the lipid, protein, and nucleic acid content of RJ-applied lung cells, primarily identifying RJ and H2O2 treated groups for A549 cells.
Conclusion:Ultimately, the selective cytotoxicity of royal jelly toward A549 cancerous cells suggests that royal jelly may be a promising therapeutic agent for identifying innovative lung cancer treatment strategies. Additionally, understanding the molecular alterations induced by royal jelly could guide the development of novel cancer treatments that exploit its bioactive properties. This could lead to more effective and safer therapies.
Palavras-chave
Sobre autores
ferhunde Aysin
Department of Biology, Faculty of Science, Atatürk University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxid. Med. Cell. Longev., 2018, 2018(1), 7074209. doi: 10.1155/2018/7074209 PMID: 29854089
- Wytrychowski, M.; Chenavas, S.; Daniele, G.; Casabianca, H.; Batteau, M.; Guibert, S.; Brion, B. Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding. J. Food Compos. Anal., 2013, 29(2), 126-133. doi: 10.1016/j.jfca.2012.12.002
- Buttstedt, A.; Mureşan, C.I.; Lilie, H.; Hause, G.; Ihling, C.H.; Schulze, S.H.; Pietzsch, M.; Moritz, R.F.A. How honeybees defy gravity with royal jelly to raise queens. Curr. Biol., 2018, 28(7), 1095-1100.e3. doi: 10.1016/j.cub.2018.02.022 PMID: 29551410
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol., 2017, 8, 412. doi: 10.3389/fphar.2017.00412 PMID: 28701955
- Collazo, N.; Carpena, M.; Nuñez-Estevez, B.; Otero, P.; Simal-Gandara, J.; Prieto, M.A. Health promoting properties of bee royal jelly: Food of the queens. Nutrients, 2021, 13(2), 543. doi: 10.3390/nu13020543 PMID: 33562330
- Ibrahim, A.A.E.M. Immunomodulatory effects of royal jelly on aorta CD3, CD68 and eNOS expression in hypercholesterolaemic rats. J. Basic Appl. Zool., 2014, 67(4), 140-148. doi: 10.1016/j.jobaz.2014.08.006
- López-Gutiérrez, N.; Aguilera-Luiz, M.M.; Romero-González, R.; Vidal, J.L.M.; Frenich, G. A. Fast analysis of polyphenols in royal jelly products using automated TurboFlow™-liquid chromatography–Orbitrap high resolution mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 973, 17-28. doi: 10.1016/j.jchromb.2014.09.038 PMID: 25464090
- Filipič, B.; Gradišnik, L.; Rihar, K.; Šooš, E.; Pereyra, A.; Potokar, J. The influence of royal jelly and human interferon-alpha (HuIFN-αN3) on proliferation, glutathione level and lipid peroxidation in human colorectal adenocarcinoma cells in vitro. Arh. Hig. Rada Toksikol., 2015, 66(4)
- Chen, Y.F.; Wang, K.; Zhang, Y.Z.; Zheng, Y.F.; Hu, F.L. In vitro anti-inflammatory effects of three fatty acids from royal jelly. Mediators Inflamm., 2016, 2016(1), 3583684. PMID: 27847405
- Fratini, F.; Cilia, G.; Mancini, S.; Felicioli, A. Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol. Res., 2016, 192, 130-141. doi: 10.1016/j.micres.2016.06.007 PMID: 27664731
- Chiu, H.F.; Chen, B.K.; Lu, Y.Y.; Han, Y.C.; Shen, Y.C.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.K. Hypocholesterolemic efficacy of royal jelly in healthy mild hypercholesterolemic adults. Pharm. Biol., 2017, 55(1), 497-502. doi: 10.1080/13880209.2016.1253110 PMID: 27937077
- Almeer, R.S.; AlBasher, G.I.; Alarifi, S.; Alkahtani, S.; Ali, D. A Moneim, A.E. Royal jelly attenuates cadmium-induced nephrotoxicity in male mice. Sci. Rep., 2019, 9(1), 5825. doi: 10.1038/s41598-019-42368-7 PMID: 30967588
- Pan, Y.; Xu, J.; Jin, P.; Yang, Q.; Zhu, K.; You, M.; Hu, F.; Chen, M. Royal jelly ameliorates behavioral deficits, cholinergic system deficiency, and autonomic nervous dysfunction in ovariectomized cholesterol-fed rabbits. Molecules, 2019, 24(6), 1149. doi: 10.3390/molecules24061149 PMID: 30909491
- Mokaya, H.O.; Njeru, L.K.; Lattorff, H.M.G. African honeybee royal jelly: Phytochemical contents, free radical scavenging activity, and physicochemical properties. Food Biosci., 2020, 37, 100733. doi: 10.1016/j.fbio.2020.100733
- You, M.M.; Liu, Y.C.; Chen, Y.F.; Pan, Y.M.; Miao, Z.N.; Shi, Y.Z.; Si, J.J.; Chen, M.L.; Hu, F.L. Royal jelly attenuates nonalcoholic fatty liver disease by inhibiting oxidative stress and regulating the expression of circadian genes in ovariectomized rats. J. Food Biochem., 2020, 44(3), e13138. doi: 10.1111/jfbc.13138 PMID: 31894585
- Yoshida, M.; Hayashi, K.; Watadani, R.; Okano, Y.; Tanimura, K.; Kotoh, J.; Sasaki, D.; Matsumoto, K.; Maeda, A. Royal jelly improves hyperglycemia in obese/diabetic KK-Ay mice. J. Vet. Med. Sci., 2017, 79(2), 299-307. doi: 10.1292/jvms.16-0458 PMID: 27890887
- Ghanbari, E.; Khazaei, M.R.; Khazaei, M.; Nejati, V. Royal jelly promotes ovarian follicles growth and increases steroid hormones in immature rats. Int. J. Fertil. Steril., 2018, 11(4), 263-269. PMID: 29043701
- Yoon, B.K.; Chin, J.; Kim, J.W.; Shin, M.H.; Ahn, S.; Lee, D.Y.; Seo, S.W.; Na, D.L. Menopausal hormone therapy and mild cognitive impairment: A randomized, placebo-controlled trial. Menopause, 2018, 25(8), 870-876. doi: 10.1097/GME.0000000000001140 PMID: 29846283
- Sharif, S.N.; Darsareh, F. Effect of royal jelly on menopausal symptoms: A randomized placebo-controlled clinical trial. Complement. Ther. Clin. Pract., 2019, 37, 47-50. doi: 10.1016/j.ctcp.2019.08.006 PMID: 31470366
- You, M.; Pan, Y.; Liu, Y.; Chen, Y.; Wu, Y.; Si, J.; Wang, K.; Hu, F. Royal jelly alleviates cognitive deficits and β-amyloid accumulation in APP/PS1 mouse model via activation of the cAMP/PKA/CREB/BDNF pathway and inhibition of neuronal apoptosis. Front. Aging Neurosci., 2019, 10, 428. doi: 10.3389/fnagi.2018.00428 PMID: 30687079
- Ahmad, S.; Campos, M.G.; Fratini, F.; Altaye, S.Z.; Li, J. New insights into the biological and pharmaceutical properties of royal jelly. Int. J. Mol. Sci., 2020, 21(2), 382. doi: 10.3390/ijms21020382 PMID: 31936187
- Shirakawa, T.; Miyawaki, A.; Matsubara, T.; Okumura, N.; Okamoto, H.; Nakai, N.; Rojasawasthien, T.; Morikawa, K.; Inoue, A.; Goto, A.; Washio, A.; Tsujisawa, T.; Kawamoto, T.; Kokabu, S. Daily oral administration of protease-treated royal jelly protects against denervation-induced skeletal muscle atrophy. Nutrients, 2020, 12(10), 3089. doi: 10.3390/nu12103089 PMID: 33050588
- Tsuchiya, Y.; Hayashi, M.; Nagamatsu, K.; Ono, T.; Kamakura, M.; Iwata, T.; Nakashima, T. The key royal jelly component 10-hydroxy-2-decenoic acid protects against bone loss by inhibiting NF-κB signaling downstream of FFAR4. J. Biol. Chem., 2020, 295(34), 12224-12232. doi: 10.1074/jbc.RA120.013821 PMID: 32647011
- Lin, Y.; Shao, Q.; Zhang, M.; Lu, C.; Fleming, J.; Su, S. Royal jelly-derived proteins enhance proliferation and migration of human epidermal keratinocytes in an in vitro scratch wound model. BMC Complement. Altern. Med., 2019, 19(1), 175. doi: 10.1186/s12906-019-2592-7 PMID: 31299973
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee products in dermatology and skin care. Molecules, 2020, 25(3), 556. doi: 10.3390/molecules25030556 PMID: 32012913
- Siavash, M.; Shokri, S.; Haghighi, S.; Mohammadi, M.; Shahtalebi, M.A.; Farajzadehgan, Z. The efficacy of topical Royal Jelly on diabetic foot ulcers healing: A case series. J. Res. Med. Sci., 2011, 16(7), 904-909. PMID: 22279458
- Virgiliou, C.; Kanelis, D.; Pina, A.; Gika, H.; Tananaki, C.; Zotou, A.; Theodoridis, G. A targeted approach for studying the effect of sugar bee feeding on the metabolic profile of Royal Jelly. J. Chromatogr. A, 2020, 1616, 460783. doi: 10.1016/j.chroma.2019.460783 PMID: 31952813
- Balkanska, R.; Mladenova, E.; Karadjova, I. Quantification of selected trace and mineral elements in royal jelly from Bulgaria by ICP-OES and etaas. J. Apic. Sci., 2017, 61(2), 223.
- Kamyab, S.; Gharachorloo, M.; Honarvar, M.; Ghavami, M. Quantitative analysis of bioactive compounds present in Iranian royal jelly. J. Apic. Res., 2020, 59(1), 42-52. doi: 10.1080/00218839.2019.1673964
- Bílikova, K.; Huang, S.C.; Lin, I.P.; Šimuth, J.; Peng, C.C. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides, 2015, 68, 190-196. doi: 10.1016/j.peptides.2015.03.001 PMID: 25784287
- Altuntas, S.; Cinar, A.; Altuntas, V.X. Modelling of Listeria monocytogenes growth and survival in presence of royal jelly, a promising anti-biofilm agent. J. Food Nutr. Res., 2020, 59(1)
- Xu, X.; Gao, Y. Isolation and characterization of proteins and lipids from honeybee (Apis mellifera L.) queen larvae and royal jelly. Food Res. Int., 2013, 54(1), 330-337. doi: 10.1016/j.foodres.2013.07.030
- Guo, H.; Kouzuma, Y.; Yonekura, M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem., 2009, 113(1), 238-245. doi: 10.1016/j.foodchem.2008.06.081
- Liu, Y.; Liu, J.; Zhen, L.I.; Cao, Z.; Bai, H.; Yu, A.N.; Fang, X.; Yang, Q.; Hui, L.I.; Na, L.I. Inhibitory effect of royal jelly acid on proliferation of human colon cancer SW620 cells and its network pharmacological analysis. J. Jilin Univ., 2024, 50(1), 150-160.
- Karadeniz, A.; Simsek, N.; Karakus, E.; Yildirim, S.; Kara, A.; Can, I.; Kisa, F.; Emre, H.; Turkeli, M. Royal jelly modulates oxidative stress and apoptosis in liver and kidneys of rats treated with cisplatin. Oxid. Med. Cell. Longev., 2011, 2011, 1-10. doi: 10.1155/2011/981793 PMID: 21904651
- Osama, H.; Abdullah, A.; Gamal, B.; Emad, D.; Sayed, D.; Hussein, E.; Mahfouz, E.; Tharwat, J.; Sayed, S.; Medhat, S.; Bahaa, T.; Abdelrahim, M.E.A. Effect of honey and Royal Jelly against cisplatin-induced nephrotoxicity in patients with cancer. J. Am. Coll. Nutr., 2017, 36(5), 342-346. doi: 10.1080/07315724.2017.1292157 PMID: 28548561
- Alnomasy, S.F.; Al Shehri, Z.S. Anti-cancer and cell toxicity effects of royal jelly and its cellular mechanisms against human hepatoma cells. Pharmacogn. Mag., 2022, 18(79), 635-640.
- Hasan, A.E.Z.; Andrianto, D.; Nurfadhilah, K. Anticancer activity of royal jelly Apis mellifera against WiDr cell line and Hela cell line. Agrikultura Cri, 2021, 2(1), 24-35.
- Gismondi, A.; Trionfera, E.; Canuti, L.; Di Marco, G.; Canini, A. Royal jelly lipophilic fraction induces antiproliferative effects on SH-SY5Y human neuroblastoma cells. Oncol. Rep., 2017, 38(3), 1833-1844. doi: 10.3892/or.2017.5851 PMID: 28737831
- Ma, Y.; Wang, H.; Hu, X.; Zou, H.; Xu, T.; Wang, Z.; Ju, X.; He, R. Inhibitory effects of royal jelly and its functional components on the proliferation of MKN-28 gastric cancer cells. J. Agric. Food Chem., 2024, 72(38), 20918-20929. doi: 10.1021/acs.jafc.4c03367 PMID: 39262347
- Jovanović, M.M.; Šeklić, D.S.; Rakobradović, J.D.; Planojević, N.S.; Vuković, N.L.; Vukić, M.D.; Marković, S.D. Royal jelly and trans-10-hydroxy-2-decenoic acid inhibit migration and invasion of colorectal carcinoma cells. Food Technol. Biotechnol., 2022, 60(2), 213-224. doi: 10.17113/ftb.60.02.22.7495 PMID: 35910272
- Miyata, Y.; Sakai, H. Anti-cancer and protective effects of royal jelly on therapy-induced toxicities in malignancies. Int. J. Mol. Sci., 2018, 19(10), 3270. doi: 10.3390/ijms19103270 PMID: 30347885
- Albalawi, A.E.; Althobaiti, N.A.; Alrdahe, S.S.; Alhasani, R.H.; Alaryani, F.S. BinMowyna, M.N. Antitumor activity of royal jelly and its cellular mechanisms against Ehrlich solid tumor in mice. BioMed Res. Int., 2022, 2022(1), 7233997. PMID: 35528154
- Kumar, R.; Thakur, A.; Kumar, S.; Hajam, Y.A. Royal jelly a promising therapeutic intervention and functional food supplement: A systematic review. Heliyon, 2024, 10(17), e37138. doi: 10.1016/j.heliyon.2024.e37138 PMID: 39296128
- Shakib, K.M.; Hosseini, S.M.; Kazemi, S. In vitro and in vivo antioxidant and anticancer potentials of royal jelly for dimethylhydrazine-induced colorectal cancer in wistar rats. Oxid. Med. Cell. Longev., 2022, 2022(1), 1-11. doi: 10.1155/2022/9506026 PMID: 35910834
- Oršolić, N.; Jazvinšćak Jembrek, M. Royal jelly: Biological action and health benefits. Int. J. Mol. Sci., 2024, 25(11), 6023. doi: 10.3390/ijms25116023 PMID: 38892209
- Alsharif, F.H.; Mazanec, S.R. The use of complementary and alternative medicine among women with breast cancer in Saudi Arabia. Appl. Nurs. Res., 2019, 48, 75-80. doi: 10.1016/j.apnr.2019.05.019 PMID: 31266612
- Abandansari, R.M.; Parsian, H.; Kazerouni, F.; Porbagher, R.; Zabihi, E.; Rahimipour, A. Effect of simultaneous treatment with royal jelly and doxorubicin on the survival of the prostate cancer cell line (PC3): An in vitro study. Int. J. Cancer Manag., 2018, 11(4), 13780.
- Santos, F.; Magalhaes, S.; Henriques, M.C.; Fardilha, M.; Nunes, A. Spectroscopic features of cancer cells: FTIR spectroscopy as a tool for early diagnosis. Curr. Metabolomics, 2018, 6(2), 103-111. doi: 10.2174/2213235X06666180521084551
- Blagosklonny, M.V. Selective protection of normal cells from chemotherapy, while killing drug-resistant cancer cells. Oncotarget, 2023, 14(1), 193-206. doi: 10.18632/oncotarget.28382 PMID: 36913303
- Nakaya, M.; Onda, H.; Sasaki, K.; Yukiyoshi, A.; Tachibana, H.; Yamada, K. Effect of royal jelly on bisphenol A-induced proliferation of human breast cancer cells. Biosci. Biotechnol. Biochem., 2007, 71(1), 253-255. doi: 10.1271/bbb.60453 PMID: 17213647
- Salama, S.; Shou, Q.; Abd El-Wahed, A.A.; Elias, N.; Xiao, J.; Swillam, A.; Umair, M.; Guo, Z.; Daglia, M.; Wang, K.; Khalifa, S.A.M.; El-Seedi, H.R. Royal Jelly: Beneficial properties and synergistic effects with chemotherapeutic drugs with particular emphasis in anticancer strategies. Nutrients, 2022, 14(19), 4166. doi: 10.3390/nu14194166 PMID: 36235818
- Botezan, S.; Baci, G.M.; Bagameri, L.; Pașca, C.; Dezmirean, D.S. Current status of the bioactive properties of royal jelly: A comprehensive review with a focus on its anticancer, anti-inflammatory, and antioxidant effects. Molecules, 2023, 28(3), 1510. doi: 10.3390/molecules28031510 PMID: 36771175
- Lin, X.M.; Liu, S.B.; Luo, Y.H.; Xu, W.T.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.B.; Li, Y.N.; Lu, B.X.; Jin, C.H. 10-HDA induces ROS-mediated apoptosis in A549 human lung cancer cells by regulating the MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways. BioMed Res. Int., 2020, 2020(1), 1-15. doi: 10.1155/2020/3042636 PMID: 33376719
- Jiang, C.; Liu, X.; Li, C.; Qian, H.; Chen, D.; Lai, C.; Shen, L. Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line. J. Zhejiang Univ. Sci. B, 2018, 19(12), 960-972. doi: 10.1631/jzus.B1800257 PMID: 30507079
- Kamiya, T.; Watanabe, M.; Hara, H.; Mitsugi, Y.; Yamaguchi, E.; Itoh, A.; Adachi, T. Induction of human-lung-cancer-A549-cell apoptosis by 4-hydroperoxy-2-decenoic acid ethyl ester through intracellular ROS accumulation and the induction of proapoptotic CHOP expression. J. Agric. Food Chem., 2018, 66(41), 10741-10747. doi: 10.1021/acs.jafc.8b04424 PMID: 30296076
- Abu-Serie, M.M.; Habashy, N.H. Major royal jelly proteins elicited suppression of SARS-CoV-2 entry and replication with halting lung injury. Int. J. Biol. Macromol., 2023, 228, 715-731. doi: 10.1016/j.ijbiomac.2022.12.251 PMID: 36584778
- Susilowati, H.; Murakami, K.; Yumoto, H.; Amoh, T.; Hirao, K.; Hirota, K.; Matsuo, T.; Miyake, Y. Royal jelly inhibits Pseudomonas aeruginosa adherence and reduces excessive inflammatory responses in human epithelial cells. BioMed Res. Int., 2017, 2017(1), 3191752. PMID: 29075644
- Cihan, Y.B.; Ozturk, A.; Gokalp, S.S. Protective role of royal jelly against radiation-induced oxidative stress in rats. Int. J. Hematol. Oncol., 2013, 23(2), 79-87. doi: 10.4999/uhod.11016
- Khani-Eshratabadi, M.; Talebpuor, A.; Bagherzadeh, A.; Mehranfar, P.; Khanmiri, J.M.; Ghorbani, M.; Abtahi-Eivary, S.H. Potential anti-apoptotic impacts and telomerase activity of royal jelly on different tissues of rats. Arch. Med. Lab. Sci., 2022, 8(1), 1-8.
- Aslan, A.; Gok, O.; Beyaz, S.; Can, M.I.; Parlak, G.; Gundogdu, R.; Ozercan, I.H.; Baspinar, S. Royal jelly regulates the caspase, Bax and COX-2, TNF-α protein pathways in the fluoride exposed lung damage in rats. Tissue Cell, 2022, 76, 101754. doi: 10.1016/j.tice.2022.101754 PMID: 35158127
- Tasdogan, A.M.; Kilic, E.T.; Pancar, Z.; Ozdal, M. A folk remedy: Royal jelly improves lung capacity in smokers. Prog. Nutr., 2020, 22(1), 297-303.
- Cebi, N.; Bozkurt, F.; Yilmaz, M.T.; Sagdic, O. An evaluation of FTIR spectroscopy for prediction of royal jelly content in hive products. J. Apic. Res., 2020, 59(2), 146-155. doi: 10.1080/00218839.2019.1707009
- Pucci, B.; Kasten, M.; Giordano, A. Cell cycle and apoptosis. Neoplasia, 2000, 2(4), 291-299. doi: 10.1038/sj.neo.7900101 PMID: 11005563
- Bonnier, F.; Byrne, H.J. Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems. Analyst (Lond.), 2012, 137(2), 322-332. doi: 10.1039/C1AN15821J PMID: 22114757
- Severcan, F.; Gorgulu, G.; Gorgulu, S.T.; Guray, T. Rapid monitoring of diabetes-induced lipid peroxidation by Fourier transform infrared spectroscopy: Evidence from rat liver microsomal membranes. Anal. Biochem., 2005, 339(1), 36-40. doi: 10.1016/j.ab.2005.01.011 PMID: 15766707
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019(1), 1-13. doi: 10.1155/2019/5080843 PMID: 31737171
- Simsek Ozek, N. Exploring the in vitro potential of royal jelly against glioblastoma and neuroblastoma: Impact on cell proliferation, apoptosis, cell cycle, and the biomolecular content. Analyst (Lond.), 2024, 149(6), 1872-1884. doi: 10.1039/D3AN01840G PMID: 38349213
Arquivos suplementares
