Royal Jelly's Strong Selective Cytotoxicity Against Lung Malignant Cells and Macromolecular Alterations in Cells Observed by FTIR Spectroscopy


Citar

Texto integral

Resumo

Introduction/Objective:Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health. Royal jelly (RJ) is also being studied as a potential therapeutic agent for cancer and other chronic diseases. It is effective in reducing tumor growth and stimulating immunity.

Methods:In this study, we investigated the effects of royal jelly on cancerous A549 cells and healthy MRC-5 cells at various doses ranging from 1.25 to 10 mg/mL. Royal jelly's anti-proliferative effect was evaluated by MTT and SRB assay for 48 h. The induction of necrosis and apoptosis was assessed by flow cytometry as well. The relative amounts of major molecules in Royal jelly were determined by FTIR spectroscopy to identify key functional groups and molecular structures. In addition, this technique was used for the first time to detect changes in the macromolecular composition of lung cells treated with royal jelly. Thus, it provided insights into the relative abundance of proteins, lipids, and carbohydrates, which could correlate with their bioactive properties.

Results:The antiproliferative effect of Royal jelly was found to be selective on A549 cells in a dose-dependent manner with an IC50 of 9.26 mg/mL, with no cytotoxic effects on normal MRC-5 cells. Moreover, Royal jelly induced predominantly necrotic cell death in A549 cells, %39.10 at 4 mg/ml and %57.88 at 10 mg/ml concentrations. However, the necrosis rate in MRC-5 cells was quite low, at 9.16% and 20.44% at the same doses. Royal jelly showed dose-dependent selective cytotoxicity toward A549 cells, whereas it exhibited no apparent cytotoxicity in MRC-5 cells. In order to identify the biomolecular changes induced by royal jelly, we used two unsupervised chemometric pattern recognition algorithms (PCA and HCA) on the preprocessed sample FTIR spectra to determine the effects of royal jelly on cell biochemistry. According to PCA and HCA results, RJ treatments especially affected biomolecules in A549 cells. The total spectral band variances in the PCA loading spectra were calculated for understanding biomolecular alterations. These plots revealed profound changes in the lipid, protein, and nucleic acid content of RJ-applied lung cells, primarily identifying RJ and H2O2 treated groups for A549 cells.

Conclusion:Ultimately, the selective cytotoxicity of royal jelly toward A549 cancerous cells suggests that royal jelly may be a promising therapeutic agent for identifying innovative lung cancer treatment strategies. Additionally, understanding the molecular alterations induced by royal jelly could guide the development of novel cancer treatments that exploit its bioactive properties. This could lead to more effective and safer therapies.

Sobre autores

ferhunde Aysin

Department of Biology, Faculty of Science, Atatürk University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxid. Med. Cell. Longev., 2018, 2018(1), 7074209. doi: 10.1155/2018/7074209 PMID: 29854089
  2. Wytrychowski, M.; Chenavas, S.; Daniele, G.; Casabianca, H.; Batteau, M.; Guibert, S.; Brion, B. Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding. J. Food Compos. Anal., 2013, 29(2), 126-133. doi: 10.1016/j.jfca.2012.12.002
  3. Buttstedt, A.; Mureşan, C.I.; Lilie, H.; Hause, G.; Ihling, C.H.; Schulze, S.H.; Pietzsch, M.; Moritz, R.F.A. How honeybees defy gravity with royal jelly to raise queens. Curr. Biol., 2018, 28(7), 1095-1100.e3. doi: 10.1016/j.cub.2018.02.022 PMID: 29551410
  4. Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol., 2017, 8, 412. doi: 10.3389/fphar.2017.00412 PMID: 28701955
  5. Collazo, N.; Carpena, M.; Nuñez-Estevez, B.; Otero, P.; Simal-Gandara, J.; Prieto, M.A. Health promoting properties of bee royal jelly: Food of the queens. Nutrients, 2021, 13(2), 543. doi: 10.3390/nu13020543 PMID: 33562330
  6. Ibrahim, A.A.E.M. Immunomodulatory effects of royal jelly on aorta CD3, CD68 and eNOS expression in hypercholesterolaemic rats. J. Basic Appl. Zool., 2014, 67(4), 140-148. doi: 10.1016/j.jobaz.2014.08.006
  7. López-Gutiérrez, N.; Aguilera-Luiz, M.M.; Romero-González, R.; Vidal, J.L.M.; Frenich, G. A. Fast analysis of polyphenols in royal jelly products using automated TurboFlow™-liquid chromatography–Orbitrap high resolution mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 973, 17-28. doi: 10.1016/j.jchromb.2014.09.038 PMID: 25464090
  8. Filipič, B.; Gradišnik, L.; Rihar, K.; Šooš, E.; Pereyra, A.; Potokar, J. The influence of royal jelly and human interferon-alpha (HuIFN-αN3) on proliferation, glutathione level and lipid peroxidation in human colorectal adenocarcinoma cells in vitro. Arh. Hig. Rada Toksikol., 2015, 66(4)
  9. Chen, Y.F.; Wang, K.; Zhang, Y.Z.; Zheng, Y.F.; Hu, F.L. In vitro anti-inflammatory effects of three fatty acids from royal jelly. Mediators Inflamm., 2016, 2016(1), 3583684. PMID: 27847405
  10. Fratini, F.; Cilia, G.; Mancini, S.; Felicioli, A. Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol. Res., 2016, 192, 130-141. doi: 10.1016/j.micres.2016.06.007 PMID: 27664731
  11. Chiu, H.F.; Chen, B.K.; Lu, Y.Y.; Han, Y.C.; Shen, Y.C.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.K. Hypocholesterolemic efficacy of royal jelly in healthy mild hypercholesterolemic adults. Pharm. Biol., 2017, 55(1), 497-502. doi: 10.1080/13880209.2016.1253110 PMID: 27937077
  12. Almeer, R.S.; AlBasher, G.I.; Alarifi, S.; Alkahtani, S.; Ali, D. A Moneim, A.E. Royal jelly attenuates cadmium-induced nephrotoxicity in male mice. Sci. Rep., 2019, 9(1), 5825. doi: 10.1038/s41598-019-42368-7 PMID: 30967588
  13. Pan, Y.; Xu, J.; Jin, P.; Yang, Q.; Zhu, K.; You, M.; Hu, F.; Chen, M. Royal jelly ameliorates behavioral deficits, cholinergic system deficiency, and autonomic nervous dysfunction in ovariectomized cholesterol-fed rabbits. Molecules, 2019, 24(6), 1149. doi: 10.3390/molecules24061149 PMID: 30909491
  14. Mokaya, H.O.; Njeru, L.K.; Lattorff, H.M.G. African honeybee royal jelly: Phytochemical contents, free radical scavenging activity, and physicochemical properties. Food Biosci., 2020, 37, 100733. doi: 10.1016/j.fbio.2020.100733
  15. You, M.M.; Liu, Y.C.; Chen, Y.F.; Pan, Y.M.; Miao, Z.N.; Shi, Y.Z.; Si, J.J.; Chen, M.L.; Hu, F.L. Royal jelly attenuates nonalcoholic fatty liver disease by inhibiting oxidative stress and regulating the expression of circadian genes in ovariectomized rats. J. Food Biochem., 2020, 44(3), e13138. doi: 10.1111/jfbc.13138 PMID: 31894585
  16. Yoshida, M.; Hayashi, K.; Watadani, R.; Okano, Y.; Tanimura, K.; Kotoh, J.; Sasaki, D.; Matsumoto, K.; Maeda, A. Royal jelly improves hyperglycemia in obese/diabetic KK-Ay mice. J. Vet. Med. Sci., 2017, 79(2), 299-307. doi: 10.1292/jvms.16-0458 PMID: 27890887
  17. Ghanbari, E.; Khazaei, M.R.; Khazaei, M.; Nejati, V. Royal jelly promotes ovarian follicles growth and increases steroid hormones in immature rats. Int. J. Fertil. Steril., 2018, 11(4), 263-269. PMID: 29043701
  18. Yoon, B.K.; Chin, J.; Kim, J.W.; Shin, M.H.; Ahn, S.; Lee, D.Y.; Seo, S.W.; Na, D.L. Menopausal hormone therapy and mild cognitive impairment: A randomized, placebo-controlled trial. Menopause, 2018, 25(8), 870-876. doi: 10.1097/GME.0000000000001140 PMID: 29846283
  19. Sharif, S.N.; Darsareh, F. Effect of royal jelly on menopausal symptoms: A randomized placebo-controlled clinical trial. Complement. Ther. Clin. Pract., 2019, 37, 47-50. doi: 10.1016/j.ctcp.2019.08.006 PMID: 31470366
  20. You, M.; Pan, Y.; Liu, Y.; Chen, Y.; Wu, Y.; Si, J.; Wang, K.; Hu, F. Royal jelly alleviates cognitive deficits and β-amyloid accumulation in APP/PS1 mouse model via activation of the cAMP/PKA/CREB/BDNF pathway and inhibition of neuronal apoptosis. Front. Aging Neurosci., 2019, 10, 428. doi: 10.3389/fnagi.2018.00428 PMID: 30687079
  21. Ahmad, S.; Campos, M.G.; Fratini, F.; Altaye, S.Z.; Li, J. New insights into the biological and pharmaceutical properties of royal jelly. Int. J. Mol. Sci., 2020, 21(2), 382. doi: 10.3390/ijms21020382 PMID: 31936187
  22. Shirakawa, T.; Miyawaki, A.; Matsubara, T.; Okumura, N.; Okamoto, H.; Nakai, N.; Rojasawasthien, T.; Morikawa, K.; Inoue, A.; Goto, A.; Washio, A.; Tsujisawa, T.; Kawamoto, T.; Kokabu, S. Daily oral administration of protease-treated royal jelly protects against denervation-induced skeletal muscle atrophy. Nutrients, 2020, 12(10), 3089. doi: 10.3390/nu12103089 PMID: 33050588
  23. Tsuchiya, Y.; Hayashi, M.; Nagamatsu, K.; Ono, T.; Kamakura, M.; Iwata, T.; Nakashima, T. The key royal jelly component 10-hydroxy-2-decenoic acid protects against bone loss by inhibiting NF-κB signaling downstream of FFAR4. J. Biol. Chem., 2020, 295(34), 12224-12232. doi: 10.1074/jbc.RA120.013821 PMID: 32647011
  24. Lin, Y.; Shao, Q.; Zhang, M.; Lu, C.; Fleming, J.; Su, S. Royal jelly-derived proteins enhance proliferation and migration of human epidermal keratinocytes in an in vitro scratch wound model. BMC Complement. Altern. Med., 2019, 19(1), 175. doi: 10.1186/s12906-019-2592-7 PMID: 31299973
  25. Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee products in dermatology and skin care. Molecules, 2020, 25(3), 556. doi: 10.3390/molecules25030556 PMID: 32012913
  26. Siavash, M.; Shokri, S.; Haghighi, S.; Mohammadi, M.; Shahtalebi, M.A.; Farajzadehgan, Z. The efficacy of topical Royal Jelly on diabetic foot ulcers healing: A case series. J. Res. Med. Sci., 2011, 16(7), 904-909. PMID: 22279458
  27. Virgiliou, C.; Kanelis, D.; Pina, A.; Gika, H.; Tananaki, C.; Zotou, A.; Theodoridis, G. A targeted approach for studying the effect of sugar bee feeding on the metabolic profile of Royal Jelly. J. Chromatogr. A, 2020, 1616, 460783. doi: 10.1016/j.chroma.2019.460783 PMID: 31952813
  28. Balkanska, R.; Mladenova, E.; Karadjova, I. Quantification of selected trace and mineral elements in royal jelly from Bulgaria by ICP-OES and etaas. J. Apic. Sci., 2017, 61(2), 223.
  29. Kamyab, S.; Gharachorloo, M.; Honarvar, M.; Ghavami, M. Quantitative analysis of bioactive compounds present in Iranian royal jelly. J. Apic. Res., 2020, 59(1), 42-52. doi: 10.1080/00218839.2019.1673964
  30. Bílikova, K.; Huang, S.C.; Lin, I.P.; Šimuth, J.; Peng, C.C. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides, 2015, 68, 190-196. doi: 10.1016/j.peptides.2015.03.001 PMID: 25784287
  31. Altuntas, S.; Cinar, A.; Altuntas, V.X. Modelling of Listeria monocytogenes growth and survival in presence of royal jelly, a promising anti-biofilm agent. J. Food Nutr. Res., 2020, 59(1)
  32. Xu, X.; Gao, Y. Isolation and characterization of proteins and lipids from honeybee (Apis mellifera L.) queen larvae and royal jelly. Food Res. Int., 2013, 54(1), 330-337. doi: 10.1016/j.foodres.2013.07.030
  33. Guo, H.; Kouzuma, Y.; Yonekura, M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem., 2009, 113(1), 238-245. doi: 10.1016/j.foodchem.2008.06.081
  34. Liu, Y.; Liu, J.; Zhen, L.I.; Cao, Z.; Bai, H.; Yu, A.N.; Fang, X.; Yang, Q.; Hui, L.I.; Na, L.I. Inhibitory effect of royal jelly acid on proliferation of human colon cancer SW620 cells and its network pharmacological analysis. J. Jilin Univ., 2024, 50(1), 150-160.
  35. Karadeniz, A.; Simsek, N.; Karakus, E.; Yildirim, S.; Kara, A.; Can, I.; Kisa, F.; Emre, H.; Turkeli, M. Royal jelly modulates oxidative stress and apoptosis in liver and kidneys of rats treated with cisplatin. Oxid. Med. Cell. Longev., 2011, 2011, 1-10. doi: 10.1155/2011/981793 PMID: 21904651
  36. Osama, H.; Abdullah, A.; Gamal, B.; Emad, D.; Sayed, D.; Hussein, E.; Mahfouz, E.; Tharwat, J.; Sayed, S.; Medhat, S.; Bahaa, T.; Abdelrahim, M.E.A. Effect of honey and Royal Jelly against cisplatin-induced nephrotoxicity in patients with cancer. J. Am. Coll. Nutr., 2017, 36(5), 342-346. doi: 10.1080/07315724.2017.1292157 PMID: 28548561
  37. Alnomasy, S.F.; Al Shehri, Z.S. Anti-cancer and cell toxicity effects of royal jelly and its cellular mechanisms against human hepatoma cells. Pharmacogn. Mag., 2022, 18(79), 635-640.
  38. Hasan, A.E.Z.; Andrianto, D.; Nurfadhilah, K. Anticancer activity of royal jelly Apis mellifera against WiDr cell line and Hela cell line. Agrikultura Cri, 2021, 2(1), 24-35.
  39. Gismondi, A.; Trionfera, E.; Canuti, L.; Di Marco, G.; Canini, A. Royal jelly lipophilic fraction induces antiproliferative effects on SH-SY5Y human neuroblastoma cells. Oncol. Rep., 2017, 38(3), 1833-1844. doi: 10.3892/or.2017.5851 PMID: 28737831
  40. Ma, Y.; Wang, H.; Hu, X.; Zou, H.; Xu, T.; Wang, Z.; Ju, X.; He, R. Inhibitory effects of royal jelly and its functional components on the proliferation of MKN-28 gastric cancer cells. J. Agric. Food Chem., 2024, 72(38), 20918-20929. doi: 10.1021/acs.jafc.4c03367 PMID: 39262347
  41. Jovanović, M.M.; Šeklić, D.S.; Rakobradović, J.D.; Planojević, N.S.; Vuković, N.L.; Vukić, M.D.; Marković, S.D. Royal jelly and trans-10-hydroxy-2-decenoic acid inhibit migration and invasion of colorectal carcinoma cells. Food Technol. Biotechnol., 2022, 60(2), 213-224. doi: 10.17113/ftb.60.02.22.7495 PMID: 35910272
  42. Miyata, Y.; Sakai, H. Anti-cancer and protective effects of royal jelly on therapy-induced toxicities in malignancies. Int. J. Mol. Sci., 2018, 19(10), 3270. doi: 10.3390/ijms19103270 PMID: 30347885
  43. Albalawi, A.E.; Althobaiti, N.A.; Alrdahe, S.S.; Alhasani, R.H.; Alaryani, F.S. BinMowyna, M.N. Antitumor activity of royal jelly and its cellular mechanisms against Ehrlich solid tumor in mice. BioMed Res. Int., 2022, 2022(1), 7233997. PMID: 35528154
  44. Kumar, R.; Thakur, A.; Kumar, S.; Hajam, Y.A. Royal jelly a promising therapeutic intervention and functional food supplement: A systematic review. Heliyon, 2024, 10(17), e37138. doi: 10.1016/j.heliyon.2024.e37138 PMID: 39296128
  45. Shakib, K.M.; Hosseini, S.M.; Kazemi, S. In vitro and in vivo antioxidant and anticancer potentials of royal jelly for dimethylhydrazine-induced colorectal cancer in wistar rats. Oxid. Med. Cell. Longev., 2022, 2022(1), 1-11. doi: 10.1155/2022/9506026 PMID: 35910834
  46. Oršolić, N.; Jazvinšćak Jembrek, M. Royal jelly: Biological action and health benefits. Int. J. Mol. Sci., 2024, 25(11), 6023. doi: 10.3390/ijms25116023 PMID: 38892209
  47. Alsharif, F.H.; Mazanec, S.R. The use of complementary and alternative medicine among women with breast cancer in Saudi Arabia. Appl. Nurs. Res., 2019, 48, 75-80. doi: 10.1016/j.apnr.2019.05.019 PMID: 31266612
  48. Abandansari, R.M.; Parsian, H.; Kazerouni, F.; Porbagher, R.; Zabihi, E.; Rahimipour, A. Effect of simultaneous treatment with royal jelly and doxorubicin on the survival of the prostate cancer cell line (PC3): An in vitro study. Int. J. Cancer Manag., 2018, 11(4), 13780.
  49. Santos, F.; Magalhaes, S.; Henriques, M.C.; Fardilha, M.; Nunes, A. Spectroscopic features of cancer cells: FTIR spectroscopy as a tool for early diagnosis. Curr. Metabolomics, 2018, 6(2), 103-111. doi: 10.2174/2213235X06666180521084551
  50. Blagosklonny, M.V. Selective protection of normal cells from chemotherapy, while killing drug-resistant cancer cells. Oncotarget, 2023, 14(1), 193-206. doi: 10.18632/oncotarget.28382 PMID: 36913303
  51. Nakaya, M.; Onda, H.; Sasaki, K.; Yukiyoshi, A.; Tachibana, H.; Yamada, K. Effect of royal jelly on bisphenol A-induced proliferation of human breast cancer cells. Biosci. Biotechnol. Biochem., 2007, 71(1), 253-255. doi: 10.1271/bbb.60453 PMID: 17213647
  52. Salama, S.; Shou, Q.; Abd El-Wahed, A.A.; Elias, N.; Xiao, J.; Swillam, A.; Umair, M.; Guo, Z.; Daglia, M.; Wang, K.; Khalifa, S.A.M.; El-Seedi, H.R. Royal Jelly: Beneficial properties and synergistic effects with chemotherapeutic drugs with particular emphasis in anticancer strategies. Nutrients, 2022, 14(19), 4166. doi: 10.3390/nu14194166 PMID: 36235818
  53. Botezan, S.; Baci, G.M.; Bagameri, L.; Pașca, C.; Dezmirean, D.S. Current status of the bioactive properties of royal jelly: A comprehensive review with a focus on its anticancer, anti-inflammatory, and antioxidant effects. Molecules, 2023, 28(3), 1510. doi: 10.3390/molecules28031510 PMID: 36771175
  54. Lin, X.M.; Liu, S.B.; Luo, Y.H.; Xu, W.T.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.B.; Li, Y.N.; Lu, B.X.; Jin, C.H. 10-HDA induces ROS-mediated apoptosis in A549 human lung cancer cells by regulating the MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways. BioMed Res. Int., 2020, 2020(1), 1-15. doi: 10.1155/2020/3042636 PMID: 33376719
  55. Jiang, C.; Liu, X.; Li, C.; Qian, H.; Chen, D.; Lai, C.; Shen, L. Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line. J. Zhejiang Univ. Sci. B, 2018, 19(12), 960-972. doi: 10.1631/jzus.B1800257 PMID: 30507079
  56. Kamiya, T.; Watanabe, M.; Hara, H.; Mitsugi, Y.; Yamaguchi, E.; Itoh, A.; Adachi, T. Induction of human-lung-cancer-A549-cell apoptosis by 4-hydroperoxy-2-decenoic acid ethyl ester through intracellular ROS accumulation and the induction of proapoptotic CHOP expression. J. Agric. Food Chem., 2018, 66(41), 10741-10747. doi: 10.1021/acs.jafc.8b04424 PMID: 30296076
  57. Abu-Serie, M.M.; Habashy, N.H. Major royal jelly proteins elicited suppression of SARS-CoV-2 entry and replication with halting lung injury. Int. J. Biol. Macromol., 2023, 228, 715-731. doi: 10.1016/j.ijbiomac.2022.12.251 PMID: 36584778
  58. Susilowati, H.; Murakami, K.; Yumoto, H.; Amoh, T.; Hirao, K.; Hirota, K.; Matsuo, T.; Miyake, Y. Royal jelly inhibits Pseudomonas aeruginosa adherence and reduces excessive inflammatory responses in human epithelial cells. BioMed Res. Int., 2017, 2017(1), 3191752. PMID: 29075644
  59. Cihan, Y.B.; Ozturk, A.; Gokalp, S.S. Protective role of royal jelly against radiation-induced oxidative stress in rats. Int. J. Hematol. Oncol., 2013, 23(2), 79-87. doi: 10.4999/uhod.11016
  60. Khani-Eshratabadi, M.; Talebpuor, A.; Bagherzadeh, A.; Mehranfar, P.; Khanmiri, J.M.; Ghorbani, M.; Abtahi-Eivary, S.H. Potential anti-apoptotic impacts and telomerase activity of royal jelly on different tissues of rats. Arch. Med. Lab. Sci., 2022, 8(1), 1-8.
  61. Aslan, A.; Gok, O.; Beyaz, S.; Can, M.I.; Parlak, G.; Gundogdu, R.; Ozercan, I.H.; Baspinar, S. Royal jelly regulates the caspase, Bax and COX-2, TNF-α protein pathways in the fluoride exposed lung damage in rats. Tissue Cell, 2022, 76, 101754. doi: 10.1016/j.tice.2022.101754 PMID: 35158127
  62. Tasdogan, A.M.; Kilic, E.T.; Pancar, Z.; Ozdal, M. A folk remedy: Royal jelly improves lung capacity in smokers. Prog. Nutr., 2020, 22(1), 297-303.
  63. Cebi, N.; Bozkurt, F.; Yilmaz, M.T.; Sagdic, O. An evaluation of FTIR spectroscopy for prediction of royal jelly content in hive products. J. Apic. Res., 2020, 59(2), 146-155. doi: 10.1080/00218839.2019.1707009
  64. Pucci, B.; Kasten, M.; Giordano, A. Cell cycle and apoptosis. Neoplasia, 2000, 2(4), 291-299. doi: 10.1038/sj.neo.7900101 PMID: 11005563
  65. Bonnier, F.; Byrne, H.J. Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems. Analyst (Lond.), 2012, 137(2), 322-332. doi: 10.1039/C1AN15821J PMID: 22114757
  66. Severcan, F.; Gorgulu, G.; Gorgulu, S.T.; Guray, T. Rapid monitoring of diabetes-induced lipid peroxidation by Fourier transform infrared spectroscopy: Evidence from rat liver microsomal membranes. Anal. Biochem., 2005, 339(1), 36-40. doi: 10.1016/j.ab.2005.01.011 PMID: 15766707
  67. Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019(1), 1-13. doi: 10.1155/2019/5080843 PMID: 31737171
  68. Simsek Ozek, N. Exploring the in vitro potential of royal jelly against glioblastoma and neuroblastoma: Impact on cell proliferation, apoptosis, cell cycle, and the biomolecular content. Analyst (Lond.), 2024, 149(6), 1872-1884. doi: 10.1039/D3AN01840G PMID: 38349213

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2025