Anti-metastasis Effects and Mechanism of Action of Curcumin Analog (2E,6E)-2,6-bis(2,3-dimethoxybenzylidene) Cyclohexanone (DMCH) on the SW620 Colorectal Cancer Cell Line


Цитировать

Полный текст

Аннотация

Background:Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths. Curcumin has been reported to have suppressive effects in CRC and to address the physiological limitations of curcumin, a chemically synthesized curcuminoid analog, known as (2E,6E)-2,6-Bis (2,3-Dimethoxy benzylidine) cyclohexanone (DMCH), was developed and the anti-metastatic and anti-angiogenic properties of DMCH in colorectal cell line, SW620 were examined.

Methods:The anti-metastatic effects of DMCH were examined in the SW620 cell line by scratch assay, migration, and invasion assay, while for anti-angiogenesis properties of the cells, the mouse aortic ring assay and Human Umbilical Vein Endothelial Cells (HUVEC) assay were conducted. The mechanism of action was determined by microarray-based gene expression and protein analyses.

Results:The wound healing assay demonstrated that wound closure was decreased from 63.63 ± 1.44% at IC25 treatment to 4.54 ± 0.62% at IC50 treatment. Significant (p < 0.05) reductions in the percentage of migrated and invaded cells were also observed in SW620, with values of 36.39 ± 3.86% and 44.81 ± 3.54%, respectively. Mouse aortic ring assays demonstrated a significant reduction in the formation of tubes and microvessels. Microarray and protein profiler results revealed that DMCH treatment has modulated several metastases, angiogenesisrelated transcripts, and proteins like Epidermal Growth Factor Receptor (EGFR), TIMP-1 (TIMP Metallopeptidase Inhibitor 1) and Vascular Endothelial Growth Factor (VEGF).

Conclusion:DMCH could be a potential anti-cancer agent due to its capability to impede metastasis and angiogenesis activities of the SW620 colorectal cancer cell line in vitro via regulating genes and protein in metastases and angiogenesis-related signalling pathways.

Об авторах

Nurul Rahim

Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM,

Email: info@benthamscience.net

Yazmin Hussin

Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM,

Email: info@benthamscience.net

Muhammad Aziz

Faculty of Dentistry, AIMST University

Email: info@benthamscience.net

Mas Masarudin

Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM

Email: info@benthamscience.net

Shafinaz Gani

Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM

Email: info@benthamscience.net

Muhammad Akhtar

Department of Chemistry, Ghazi University

Email: info@benthamscience.net

Nik Abd. Rahman

Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM,

Email: info@benthamscience.net

Noorjahan Alitheen

Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM,

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Wong, M.C.S.; Huang, J.; Lok, V.; Wang, J.; Fung, F.; Ding, H.; Zheng, Z.J. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location. Clin. Gastroenterol. Hepatol., 2021, 19(5), 955-966.e61. doi: 10.1016/j.cgh.2020.02.026 PMID: 32088300
  2. Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732. doi: 10.1038/s41575-019-0189-8 PMID: 31455888
  3. Schliemann, D.; Paramasivam, D.; Dahlui, M.; Cardwell, C.R.; Somasundaram, S.; Ibrahim Tamin, N.S.B.; Donnelly, C.; Su, T.T.; Donnelly, M. Change in public awareness of colorectal cancer symptoms following the be cancer alert campaign in the multi-ethnic population of Malaysia. BMC Cancer, 2020, 20(1), 252. doi: 10.1186/s12885-020-06742-3 PMID: 32213173
  4. National strategic plan for colorectal cancer 2021-2025 2021. Available from: https://www.moh.gov.my/moh/resources/Penerbitan/Rujukan/NCD/Kanser/National_Strategic_Plan_for_Colorectal_ Cancer_(NSPCRC)_2021-2025.pdf
  5. Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut, 2023, 72(2), 338-344. doi: 10.1136/gutjnl-2022-327736 PMID: 36604116
  6. Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174. doi: 10.1016/j.tranon.2021.101174 PMID: 34243011
  7. Luan, Y.; Li, X.; Luan, Y.; Zhao, R.; Li, Y.; Liu, L.; Hao, Y.; Oleg Vladimir, B.; Jia, L. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis. Mol. Ther. Nucleic Acids, 2020, 19, 790-803. doi: 10.1016/j.omtn.2019.12.009 PMID: 31955010
  8. Österlund, P.; Ruotsalainen, T.; Peuhkuri, K.; Korpela, R.; Ollus, A.; Ikonen, M.; Joensuu, H.; Elomaa, I. Lactose intolerance associated with adjuvant 5-fluorouracil-based chemotherapy for colorectal cancer. Clin. Gastroenterol. Hepatol., 2004, 2(8), 696-703. doi: 10.1016/S1542-3565(04)00293-9 PMID: 15290663
  9. Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem., 2009, 17(6), 2623-2631. doi: 10.1016/j.bmc.2008.10.044 PMID: 19243951
  10. Adams, B.K.; Ferstl, E.M.; Davis, M.C.; Herold, M.; Kurtkaya, S.; Camalier, R.F.; Hollingshead, M.G.; Kaur, G.; Sausville, E.A.; Rickles, F.R.; Snyder, J.P.; Liotta, D.C.; Shoji, M. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem., 2004, 12(14), 3871-3883. doi: 10.1016/j.bmc.2004.05.006 PMID: 15210154
  11. Liczbiński, P.; Michałowicz, J.; Bukowska, B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytother. Res., 2020, 34(8), 1992-2005. doi: 10.1002/ptr.6663 PMID: 32141677
  12. He, Q.; Liu, C.; Wang, X.; Rong, K.; Zhu, M.; Duan, L.; Zheng, P.; Mi, Y. Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking. Front. Pharmacol., 2023, 14, 1102581. doi: 10.3389/fphar.2023.1102581 PMID: 36874006
  13. Warsi, W.; Sardjiman, S.; Riyanto, S. Synthesis and antioxidant activity of curcumin analogues. J. Chem. Pharm. Res., 2018, 10, 1-9. doi: 10.1080/10286020.2016.1235562
  14. Zamrus, S.N.H.; Akhtar, M.N.; Yeap, S.K.; Quah, C.K.; Loh, W.S.; Alitheen, N.B.; Zareen, S.; Tajuddin, S.N.; Hussin, Y.; Shah, S.A.A. Design, synthesis and cytotoxic effects of curcuminoids on HeLa, K562, MCF-7 and MDA-MB-231 cancer cell lines. Chem. Cent. J., 2018, 12(1), 31. doi: 10.1186/s13065-018-0398-1 PMID: 29556774
  15. Hussin, Y.; Aziz, M.; Che Rahim, N.; Yeap, S.; Mohamad, N.; Masarudin, M.; Nordin, N.; Abd Rahman, N.; Yong, C.; Akhtar, M.; Zamrus, S.; Alitheen, N. DK1 induces apoptosis via mitochondria-dependent signaling pathway in human colon carcinoma cell lines in vitro. Int. J. Mol. Sci., 2018, 19(4), 1151. doi: 10.3390/ijms19041151 PMID: 29641445
  16. Aziz, M.N.M.; Rahim, N.F.C.; Hussin, Y.; Yeap, S.K.; Masarudin, M.J.; Mohamad, N.E.; Akhtar, M.N.; Osman, M.A.; Cheah, Y.K.; Alitheen, N.B. Anti-metastatic and anti-angiogenic effects of curcumin analog DK1 on human osteosarcoma cells in vitro. Pharmaceuticals (Basel), 2021, 14(6), 532. doi: 10.3390/ph14060532 PMID: 34204873
  17. Robinson, T.P.; Hubbard, R.B., IV; Ehlers, T.J.; Arbiser, J.L.; Goldsmith, D.J.; Bowen, J.P. Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg. Med. Chem., 2005, 13(12), 4007-4013. doi: 10.1016/j.bmc.2005.03.054 PMID: 15911313
  18. Faião-Flores, F.; Suarez, J.A.Q.; Maria-Engler, S.S.; Soto-Cerrato, V.; Pérez-Tomás, R.; Maria, D.A. The curcumin analog DM-1 induces apoptotic cell death in melanoma. Tumour Biol., 2013, 34(2), 1119-1129. doi: 10.1007/s13277-013-0653-y PMID: 23359272
  19. Rahim, N.F.C.; Hussin, Y.; Aziz, M.N.M.; Mohamad, N.E.; Yeap, S.K.; Masarudin, M.J.; Abdullah, R.; Akhtar, M.N.; Alitheen, N.B. Cytotoxicity and apoptosis effects of curcumin analogue (2E,6E)-2,6-Bis(2,3-Dimethoxybenzylidine) Cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro. Molecules, 2021, 26(5), 1261. doi: 10.3390/molecules26051261 PMID: 33652694
  20. Nordin, N.; Yeap, S.K.; Rahman, H.S.; Zamberi, N.R.; Abu, N.; Mohamad, N.E.; How, C.W.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci. Rep., 2019, 9(1), 1614. doi: 10.1038/s41598-018-38214-x PMID: 30733560
  21. Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 2021, 11(1), 5-13. doi: 10.1007/s13659-020-00293-7 PMID: 33389713
  22. Otun, S.; Achilonu, I.; Odero-Marah, V. Unveiling the potential of Muscadine grape Skin extract as an innovative therapeutic intervention in cancer treatment. J. Funct. Foods, 2024, 116, 106146. doi: 10.1016/j.jff.2024.106146 PMID: 38817632
  23. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803. doi: 10.1021/acs.jnatprod.9b01285 PMID: 32162523
  24. Teijaro, C.N.; Adhikari, A.; Shen, B. Challenges and opportunities for natural product discovery, production, and engineering in native producers versus heterologous hosts. J. Ind. Microbiol. Biotechnol., 2019, 46(3-4), 433-444. doi: 10.1007/s10295-018-2094-5 PMID: 30426283
  25. Lautié, E.; Russo, O.; Ducrot, P.; Boutin, J.A. Unraveling plant natural chemical diversity for drug discovery purposes. Front. Pharmacol., 2020, 11, 397. doi: 10.3389/fphar.2020.00397 PMID: 32317969
  26. Evidente, A. Advances on anticancer fungal metabolites: Sources, chemical and biological activities in the last decade (2012–2023). Nat. Prod. Bioprospect., 2024, 14(1), 31. doi: 10.1007/s13659-024-00452-0 PMID: 38743184
  27. Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget, 2017, 8(39), 66680-66698. doi: 10.18632/oncotarget.19164 PMID: 29029547
  28. Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033. doi: 10.3390/ijms20051033 PMID: 30818786
  29. Anthwal, A.; Thakur, B.K.; Rawat, M.S.M.; Rawat, D.S.; Tyagi, A.K.; Aggarwal, B.B. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation. BioMed Res. Int., 2014, 2014, 1-10. doi: 10.1155/2014/524161 PMID: 25157362
  30. Aravind, S.R.; Krishnan, L.K. Curcumin-albumin conjugates as an effective anti-cancer agent with immunomodulatory properties. Int. Immunopharmacol., 2016, 34, 78-85. doi: 10.1016/j.intimp.2016.02.010 PMID: 26927614
  31. Joshi, P.; Verma, K.; Kumar, D.; Dwivedi, J.; Sharma, S. Mechanism insights of curcumin and its analogues in cancer: An update. Phytother. Res., 2023, 37(12), 5435-5463. doi: 10.1002/ptr.7983 PMID: 37649266
  32. Kabir, M.T.; Rahman, M.H.; Akter, R.; Behl, T.; Kaushik, D.; Mittal, V.; Pandey, P.; Akhtar, M.F.; Saleem, A.; Albadrani, G.M.; Kamel, M.; Khalifa, S.A.M.; El-Seedi, H.R.; Abdel-Daim, M.M. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules, 2021, 11(3), 392. doi: 10.3390/biom11030392 PMID: 33800000
  33. Kunnumakkara, A.B.; Bordoloi, D.; Harsha, C.; Banik, K.; Gupta, S.C.; Aggarwal, B.B. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin. Sci. (Lond.), 2017, 131(15), 1781-1799. doi: 10.1042/CS20160935 PMID: 28679846
  34. Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer, 2018, 18(2), 128-134. doi: 10.1038/nrc.2017.118 PMID: 29326430
  35. Ganesh, K.; Massagué, J. Targeting metastatic cancer. Nat. Med., 2021, 27(1), 34-44. doi: 10.1038/s41591-020-01195-4
  36. Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging biological principles of metastasis. Cell, 2017, 168(4), 670-691. doi: 10.1016/j.cell.2016.11.037 PMID: 28187288
  37. Tasdogan, A.; Ubellacker, J.M.; Morrison, S.J. Redox regulation in cancer cells during metastasis. Cancer Discov., 2021, 11(11), 2682-2692. doi: 10.1158/2159-8290.CD-21-0558 PMID: 34649956
  38. Karimian, H.; Mohan, S.; Moghadamtousi, S.; Fadaeinasab, M.; Razavi, M.; Arya, A.; Kamalidehghan, B.; Ali, H.; Noordin, M. Tanacetum polycephalum (L.) Schultz-Bip. induces mitochondrial-mediated apoptosis and inhibits migration and invasion in MCF7 cells. Molecules, 2014, 19(7), 9478-9501. doi: 10.3390/molecules19079478 PMID: 24995928
  39. Meiyanto, E.; Husnaa, U.; Kastian, R.F.; Putri, H.; Larasati, Y.A.; Khumaira, A.; Pamungkas, D.D.P.; Jenie, R.I.; Kawaichi, M.; Lestari, B.; Yokoyama, T.; Kato, J. The target differences of anti-tumorigenesis potential of curcumin and its analogues against HER-2 positive and triple-negative breast cancer cells. Adv. Pharm. Bull., 2020, 11(1), 188-196. doi: 10.34172/apb.2021.020 PMID: 33747866
  40. Shaw, P.; Dwivedi, S.K.D.; Bhattacharya, R.; Mukherjee, P.; Rao, G. VEGF signaling: Role in angiogenesis and beyond. Biochim. Biophys. Acta Rev. Cancer, 2024, 1879(2), 189079. doi: 10.1016/j.bbcan.2024.189079 PMID: 38280470
  41. Yoo, S.Y.; Kwon, S.M. Angiogenesis and its therapeutic opportunities. Mediators Inflamm., 2013, 2013, 1-11. doi: 10.1155/2013/127170 PMID: 23983401
  42. Guo, C.; Wang, L.; Jiang, B.; Shi, D. Bromophenol curcumin analog BCA-5 exerts an antiangiogenic effect through the HIF-1α/VEGF/Akt signaling pathway in human umbilical vein endothelial cells. Anticancer Drugs, 2018, 29(10), 965-974. doi: 10.1097/CAD.0000000000000671 PMID: 30335638
  43. Wei, Q.; Zhang, Y. Flavonoids with anti-angiogenesis function in cancer. Molecules, 2024, 29(7), 1570. doi: 10.3390/molecules29071570 PMID: 38611849
  44. Zhang, H.H.; Zhang, Y.; Cheng, Y.N.; Gong, F.L.; Cao, Z.Q.; Yu, L.G.; Guo, X.L. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol. Carcinog., 2018, 57(1), 44-56. doi: 10.1002/mc.22718 PMID: 28833603
  45. Fakhri, S.; Moradi, S.Z.; Faraji, F.; Kooshki, L.; Webber, K.; Bishayee, A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: A comprehensive and critical review. Cancer Metastasis Rev., 2024, 43(1), 501-574. doi: 10.1007/s10555-023-10136-9 PMID: 37792223
  46. Eslami, S.S.; Jafari, D.; Ghotaslou, A.; Amoupour, M.; Asri Kojabad, A.; Jafari, R.; Mousazadeh, N.; Tarighi, P.; Sadeghizadeh, M. Combined treatment of dendrosomal-curcumin and daunorubicin synergistically inhibit cell proliferation, migration and induce apoptosis in A549 lung cancer cells. Adv. Pharm. Bull., 2022, 13(3), 539-550. doi: 10.34172/apb.2023.050 PMID: 37646049
  47. Kamato, D.; Burch, M.L.; Piva, T.J.; Rezaei, H.B.; Rostam, M.A.; Xu, S.; Zheng, W.; Little, P.J.; Osman, N. Transforming growth factor-β signalling: Role and consequences of Smad linker region phosphorylation. Cell. Signal., 2013, 25(10), 2017-2024. doi: 10.1016/j.cellsig.2013.06.001 PMID: 23770288
  48. Shi, Y.; Massagué, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6), 685-700. doi: 10.1016/S0092-8674(03)00432-X PMID: 12809600
  49. Pang, M-F.; Georgoudaki, A-M.; Lambut, L.; Johansson, J.; Tabor, V.; Hagikura, K.; Jin, Y.; Jansson, M.; Alexander, J.S.; Nelson, C.M.; Jakobsson, L.; Betsholtz, C.; Sund, M.; Karlsson, M.C.I.; Fuxe, J. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene, 2016, 35(6), 748-760. doi: 10.1038/onc.2015.133 PMID: 25961925
  50. Li, Y.S.; Ni, S.Y.; Meng, Y.; Shi, X.L.; Zhao, X.W.; Luo, H.H.; Li, X. Angiotensin II facilitates fibrogenic effect of TGF-β1 through enhancing the down-regulation of BAMBI caused by LPS: A new pro-fibrotic mechanism of angiotensin II. PLoS One, 2013, 8(10), e76289. doi: 10.1371/journal.pone.0076289 PMID: 24155898
  51. Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
  52. Cheng, W.L.; Feng, P.H.; Lee, K.Y.; Chen, K.Y.; Sun, W.L.; Van Hiep, N.; Luo, C.S.; Wu, S.M. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci., 2021, 22(23), 12828. doi: 10.3390/ijms222312828 PMID: 34884633
  53. London, M.; Gallo, E. Epidermal growth factor receptor (EGFR) involvement in epithelial‐derived cancers and its current antibody‐based immunotherapies. Cell Biol. Int., 2020, 44(6), 1267-1282. doi: 10.1002/cbin.11340 PMID: 32162758
  54. Chen, A.; Xu, J.; Johnson, A.C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene, 2006, 25(2), 278-287. doi: 10.1038/sj.onc.1209019 PMID: 16170359
  55. Kallingal, A.; Thankachan, S.; Venkatesh, T.; Kabbekodu, S.P.; Suresh, P.S. Role of miR-15b/16–2 cluster network in endometrial cancer: An in silico pathway and prognostic analysis. Meta Gene, 2022, 31, 101018. doi: 10.1016/j.mgene.2022.101018
  56. Daulat, A.M.; Wagner, M.S.; Walton, A.; Baudelet, E.; Audebert, S.; Camoin, L.; Borg, J.P. The tumor suppressor SCRIB is a negative modulator of the Wnt/β‐Catenin signaling pathway. Proteomics, 2019, 19(21-22), 1800487. doi: 10.1002/pmic.201800487 PMID: 31513346
  57. Xu, H.; Yan, X.; Zhu, H.; Kang, Y.; Luo, W.; Zhao, J.; Zhou, K.; Liu, X.; Ye, L.; Zhou, Q.; Li, S.; Zhao, M.; Wang, L.; Zhu, B.; Liu, W.; Li, J.; Jiang, X.; Ren, C. TBL1X and Flot2 form a positive feedback loop to promote metastasis in nasopharyngeal carcinoma. Int. J. Biol. Sci., 2022, 18(3), 1134-1149. doi: 10.7150/ijbs.68091 PMID: 35173544
  58. Ramadoss, S.; Li, J.; Ding, X.; Al Hezaimi, K.; Wang, C.Y. Transducin β-like protein 1 recruits nuclear factor κB to the target gene promoter for transcriptional activation. Mol. Cell. Biol., 2011, 31(5), 924-934. doi: 10.1128/MCB.00576-10 PMID: 21189284
  59. Webb, A.H.; Gao, B.T.; Goldsmith, Z.K.; Irvine, A.S.; Saleh, N.; Lee, R.P.; Lendermon, J.B.; Bheemreddy, R.; Zhang, Q.; Brennan, R.C.; Johnson, D.; Steinle, J.J.; Wilson, M.W.; Morales-Tirado, V.M. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer, 2017, 17(1), 434. doi: 10.1186/s12885-017-3418-y PMID: 28633655
  60. Li, Z.; Jing, Q.; Wu, L.; Chen, J.; Huang, M.; Qin, Y. The prognostic and diagnostic value of tissue inhibitor of metalloproteinases gene family and potential function in gastric cancer. J. Cancer, 2021, 12(13), 4086-4098. doi: 10.7150/jca.57808
  61. Song, G.; Xu, S.; Zhang, H.; Wang, Y.; Xiao, C.; Jiang, T.; Wu, L.; Zhang, T.; Sun, X.; Zhong, L.; Zhou, C.; Wang, Z.; Peng, Z.; Chen, J.; Wang, X. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J. Exp. Clin. Cancer Res., 2016, 35(1), 148. doi: 10.1186/s13046-016-0427-7 PMID: 27644693
  62. Holten-Andersen, M.N.; Hansen, U.; Brünner, N.; Nielsen, H.J.; Illemann, M.; Nielsen, B.S. Localization of tissue inhibitor of metalloproteinases 1 (TIMP-1) in human colorectal adenoma and adenocarcinoma. Int. J. Cancer, 2005, 113(2), 198. doi: 10.1002/ijc.20566
  63. Herszényi, L. TIMP-1: A strong player in colorectal cancer. J. Gastrointestin. Liver Dis., 2014, 23(4), 365-366. doi: 10.15403/jgld.2014.1121.234.tmp1 PMID: 25531992
  64. Toraya, S.; Uehara, O.; Hiraki, D.; Harada, F.; Neopane, P.; Morikawa, T.; Takai, R.; Yoshida, K.; Matsuoka, H.; Kitaichi, N.; Chiba, I.; Abiko, Y. Curcumin inhibits the expression of proinflammatory mediators and MMP-9 in gingival epithelial cells stimulated for a prolonged period with lipopolysaccharides derived from Porphyromonas gingivalis. Odontology, 2020, 108(1), 16-24. doi: 10.1007/s10266-019-00432-8 PMID: 31087163
  65. Ong, C.P.; Lee, W.L.; Tang, Y.Q.; Yap, W.H. Honokiol: A review of its anticancer potential and mechanisms. Cancers (Basel), 2019, 12(1), 48. doi: 10.3390/cancers12010048 PMID: 31877856
  66. Ghalehbandi, S.; Yuzugulen, J.; Pranjol, M.Z.I.; Pourgholami, M.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur. J. Pharmacol., 2023, 949175586. doi: 10.1016/j.ejphar.2023.175586 PMID: 36906141
  67. Elebiyo, T.C.; Rotimi, D.; Evbuomwan, I.O.; Maimako, R.F.; Iyobhebhe, M.; Ojo, O.A.; Oluba, O.M.; Adeyemi, O.S. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat. Res. Commun, 2022, 32100620. doi: 10.1016/j.ctarc.2022.100620 PMID: 35964475
  68. Kang, Y.; Li, H.; Liu, Y.; Li, Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J. Cancer Res. Clin. Oncol., 2024, 150(5), 221. doi: 10.1007/s00432-024-05714-5 PMID: 38687357
  69. Aguiar, R.B.; Moraes, J.Z. Exploring the immunological mechanisms underlying the anti-vascular endothelial growth factor activity in tumors. Front. Immunol., 2019, 10, 1023. doi: 10.3389/fimmu.2019.01023 PMID: 31156623
  70. Pan, Z.; Zhuang, J.; Ji, C.; Cai, Z.; Liao, W.; Huang, Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol. Lett., 2018, 15(4), 4821-4826. doi: 10.3892/ol.2018.7988
  71. Da, W.; Zhang, J.; Zhang, R.; Zhu, J. Curcumin inhibits the lymphangiogenesis of gastric cancer cells by inhibiton of HMGB1/VEGF-D signaling. Int. J. Immunopathol. Pharmacol., 2019, 33, 2058738419861600. doi: 10.1177/2058738419861600 PMID: 31266378
  72. Li, X.; Fang, Q.; Tian, X.; Wang, X.; Ao, Q.; Hou, W.; Tong, H.; Fan, J.; Bai, S. Curcumin attenuates the development of thoracic aortic aneurysm by inhibiting VEGF expression and inflammation. Mol. Med. Rep., 2017, 16(4), 4455-4462. doi: 10.3892/mmr.2017.7169 PMID: 28791384
  73. Gligorijević, N.; Dobrijević, Z.; Šunderić, M.; Robajac, D.; Četić, D.; Penezić, A.; Miljuš, G.; Nedić, O. The insulin-like growth factor system and colorectal cancer. Life (Basel), 2022, 12(8), 1274. doi: 10.3390/life12081274 PMID: 36013453
  74. Huang, B.L.; Wei, L.F.; Lin, Y.W.; Huang, L.S.; Qu, Q.Q.; Li, X.H.; Chu, L.Y.; Xu, Y.W.; Wang, W.D.; Peng, Y.H.; Wu, F.C. Serum IGFBP-1 as a promising diagnostic and prognostic biomarker for colorectal cancer. Sci. Rep., 2024, 14(1), 1839. doi: 10.1038/s41598-024-52220-2 PMID: 38246959
  75. Yang, S.F.; Yeh, C.B.; Chou, Y.E.; Lee, H.L.; Liu, Y.F. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma. Sci. Rep., 2016, 6(1), 26605. doi: 10.1038/srep26605 PMID: 27221742
  76. Zhang, P.; Li, X.; He, Q.; Zhang, L.; Song, K.; Yang, X.; He, Q.; Wang, Y.; Hong, X.; Ma, J.; Liu, N. TRIM21–SERPINB5 aids GMPS repression to protect nasopharyngeal carcinoma cells from radiation-induced apoptosis. J. Biomed. Sci., 2020, 27(1), 30. doi: 10.1186/s12929-020-0625-7 PMID: 32005234
  77. Liu, B.X.; Xie, Y.; Zhang, J.; Zeng, S.; Li, J.; Tao, Q.; Yang, J.; Chen, Y.; Zeng, C. SERPINB5 promotes colorectal cancer invasion and migration by promoting EMT and angiogenesis via the TNF-α/NF-κB pathway. Int. Immunopharmacol., 2024, 131, 111759. doi: 10.1016/j.intimp.2024.111759 PMID: 38460302
  78. Goulet, B.; Kennette, W.; Ablack, A.; Postenka, C.O.; Hague, M.N.; Mymryk, J.S.; Tuck, A.B.; Giguère, V.; Chambers, A.F.; Lewis, J.D. Nuclear localization of maspin is essential for its inhibition of tumor growth and metastasis. Lab. Invest., 2011, 91(8), 1181-1187. doi: 10.1038/labinvest.2011.66 PMID: 21502940

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025