Cytotoxic Effects of Lecaniodiscus Cupanioides (Planch.) Extract and Triterpenoids-derived Gold Nanoparticles On MCF-7 Breast Cancer Cell Lines

  • Авторлар: Magadani R.1, Ndinteh D.2, Roux S.3, Nangah L.4, Atangwho I.5, Uti D.6, Alum E.7, Egba S.8
  • Мекемелер:
    1. Department of Chemical Science, Faculty of Science, University of Johannesburg
    2. Department of Chemical Science, Faculty of Science,, University of Johannesburg
    3. Department of Physiology, Faculty of Science, Nelson Mandela University
    4. Department of Biochemistry, Faculty of Basic, University of Calabar
    5. Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar
    6. Department of Research and Publications, Kampala International University
    7. Department of Research Publications,, Kampala International University
    8. Department of Research Publications, Kampala International University
  • Шығарылым: Том 25, № 12 (2025)
  • Беттер: 841-850
  • Бөлім: Chemistry
  • URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694426
  • DOI: https://doi.org/10.2174/0118715206325529241004064307
  • ID: 694426

Дәйексөз келтіру

Толық мәтін

Аннотация

Background:The prevalent disease known as breast cancer has a significant impact on both men's and women's health and quality of life.

Aim:The aim of this study was to explore the potential roles of Lecaniodiscus cupanioides (planch.) extract and triterpenoid- derived gold nanoparticles (AuNPs) in cancer therapy, specifically targeting MCF-7 breast cancer cell lines.

Methods:Gold nanoparticles were synthesized utilizing triterpenoid (ZJ-AuNPs) and leaf extract from Lecaniodiscus cupanioides (LC-AuNPs). Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), High-resolution transmission electron microscopy (HRTEM), and UV-vis spectroscopy were employed to characterize the nanoparticles. Additionally, the MTT assay was used to assess the impact of AuNPs on cancer cell viability using MCF-7 breast cancer cell lines.

Results:Analysis of ZJ-AuNPs and LC-AuNPs revealed DLS zeta potentials of -31.8 and -35.8 mV, respectively, and a corresponding UV-vis absorption maxima at 540 and 550 nm. Also, the ZJ-AuNPs and LC-AuNPs had respective zeta-sizes that ranged from 25.84 to 35.98 nm and polydispersive index values between 0.2360 and 0.773. Furthermore, the presence of the chemical groups -OH and -NH was shown to be necessary for the green method of capping and reducing the gold nanoparticles. Nevertheless, a significant decrease in cell viability percentages was noted in the MTT experiment, accompanied by an increase in the quantity or concentration of the nanoparticles for both ZJ-AuNPs and LC-AuNPs.

Conclusion:Given the data obtained in this study, the biosynthesized ZJ-AuNPs and LC-AuNPs were shown to possess potent cytotoxic effects on breast cancer cells. Hence, they may be valuable tools in the development of new cancer chemotherapy drugs.

Авторлар туралы

Roshudufhadzwa Magadani

Department of Chemical Science, Faculty of Science, University of Johannesburg

Email: info@benthamscience.net

Derek Ndinteh

Department of Chemical Science, Faculty of Science,, University of Johannesburg

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Saartjie Roux

Department of Physiology, Faculty of Science, Nelson Mandela University

Email: info@benthamscience.net

Louisiane Nangah

Department of Biochemistry, Faculty of Basic, University of Calabar

Email: info@benthamscience.net

Item Atangwho

Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Daniel Uti

Department of Research and Publications, Kampala International University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Esther Alum

Department of Research Publications,, Kampala International University

Email: info@benthamscience.net

Simeon Egba

Department of Research Publications, Kampala International University

Email: info@benthamscience.net

Әдебиет тізімі

  1. Bertucci, F.; Finetti, P.; Birnbaum, D. Basal breast cancer: A complex and deadly molecular subtype. Curr. Mol. Med., 2012, 12(1), 96-110. doi: 10.2174/156652412798376134 PMID: 22082486
  2. Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the human development index (2008–2030): A population-based study. Lancet Oncol., 2012, 13(8), 790-801. doi: 10.1016/S1470-2045(12)70211-5 PMID: 22658655
  3. Arzanova, E.; Mayrovitz, H.N. The epidemiology of breast cancer. In: Breast Cancer; Exon Publications, 2022. doi: 10.36255/exon-publications-breast-cancer-epidemiology
  4. Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; Soerjomataram, I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 2022, 66, 15-23. doi: 10.1016/j.breast.2022.08.010 PMID: 36084384
  5. Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33. doi: 10.1186/s40659-017-0140-9 PMID: 28969709
  6. Mullaguri, S.C.; Mungamuri, S.K.; Puligundla, K.C.; Annamaneni, S.; Kancha, R.K. Breast Cancer. In: Biomed. Asp. Solid Can; Kancha, R.K., Ed.; Springer, 2024; pp. 15-27. doi: 10.1007/978-981-97-1802-3_2
  7. Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), 12320-12364. doi: 10.1002/anie.201403036 PMID: 25294565
  8. Puri, A.; Mohite, P.; Maitra, S.; Subramaniyan, V.; Kumarasamy, V.; Uti, D.E.; Sayed, A.A.; El-Demerdash, F.M.; Algahtani, M.; El-kott, A.F.; Shati, A.A.; Albaik, M.; Abdel-Daim, M.M.; Atangwho, I.J. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed. Pharmacother., 2024, 170, 116083. doi: 10.1016/j.biopha.2023.116083 PMID: 38163395
  9. Ojo, O.; Ndinteh, D.T. Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: A review. Phys. Sci. Rev., 2023, 8(4), 549-565. doi: 10.1515/psr-2020-0207
  10. Adesegun, S.A.; Coker, H.A.; Hamann, M.T. Anti-cancerous triterpenoid saponins from Lecaniodiscus cupanioides. J. Nat. Prod. (Gorakhpur), 2014, 7, 155-161. PMID: 27867280
  11. Alayande, K.A.; Ashafa, A.O.T. Evaluation of cytotoxic effects and antimicrobial activities of Lecaniodiscus cupanioides (Planch.) leaf extract. Trans. R. Soc. S. Afr., 2017, 72(1), 33-38. doi: 10.1080/0035919X.2016.1214851
  12. Albahri, G.; Badran, A.; Abdel Baki, Z.; Alame, M.; Hijazi, A.; Daou, A.; Baydoun, E. Potential anti-tumorigenic properties of diverse medicinal plants against the majority of common types of cancer. Pharmaceuticals (Basel), 2024, 17(5), 574. doi: 10.3390/ph17050574 PMID: 38794144
  13. Prasher, P.; Sharma, M.; Sharma, A.K.; Sharifi-Rad, J.; Calina, D.; Hano, C.; Cho, W.C. Key oncologic pathways inhibited by Erinacine A: A perspective for its development as an anticancer molecule. Biomed. Pharmacother., 2023, 160, 114332. doi: 10.1016/j.biopha.2023.114332 PMID: 36736282
  14. Almatroudi, A.; Allemailem, K.S.; Alwanian, W.M.; Alharbi, B.F.; Alrumaihi, F.; Khan, A.A.; Almatroodi, S.A.; Rahmani, A.H. Effects and mechanisms of kaempferol in the management of cancers through modulation of inflammation and signal transduction pathways. Int. J. Mol. Sci., 2023, 24(10), 8630. doi: 10.3390/ijms24108630 PMID: 37239974
  15. Nigam, M.; Mishra, A.P.; Deb, V.K.; Dimri, D.B.; Tiwari, V.; Bungau, S.G.; Bungau, A.F.; Radu, A.F. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed. Pharmacother., 2023, 164, 115015. doi: 10.1016/j.biopha.2023.115015 PMID: 37321055
  16. Basha, N.J. Small molecules as anti‐inflammatory agents: Molecular mechanisms and heterocycles as inhibitors of signaling pathways. ChemistrySelect, 2023, 8(9), e202204723. doi: 10.1002/slct.202204723
  17. Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology, 2021, 28(2), 250-272. doi: 10.3390/pathophysiology28020017 PMID: 35366261
  18. Ren, Y.; Kinghorn, A.D. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med., 2019, 85(11/12), 802-814. doi: 10.1055/a-0832-2383 PMID: 30658371
  19. Rodríguez-Hernández, D.; Demuner, A.J.; Barbosa, L.C.A.; Csuk, R.; Heller, L. Hederagenin as a triterpene template for the development of new antitumor compounds. Eur. J. Med. Chem., 2015, 105, 57-62. doi: 10.1016/j.ejmech.2015.10.006 PMID: 26476750
  20. Fakhri, S.; Abdian, S.; Moradi, S.Z.; Delgadillo, B.E.; Fimognari, C.; Bishayee, A. Marine compounds, mitochondria, and malignancy: A therapeutic nexus. Mar. Drugs, 2022, 20(10), 625. doi: 10.3390/md20100625 PMID: 36286449
  21. Hussain, A.; Bourguet-Kondracki, M.L.; Majeed, M.; Ibrahim, M.; Imran, M.; Yang, X.W.; Ahmed, I.; Altaf, A.A.; Khalil, A.A.; Rauf, A.; Wilairatana, P.; Hemeg, H.A.; Ullah, R.; Green, I.R.; Ali, I.; Shah, S.T.A.; Hussain, H. Marine life as a source for breast cancer treatment: A comprehensive review. Biomed. Pharmacother., 2023, 159, 114165. doi: 10.1016/j.biopha.2022.114165 PMID: 36634590
  22. Rai, T.; Kaushik, N.; Malviya, R.; Sharma, P.K. A review on marine source as anticancer agents. J. Asian Nat. Prod. Res., 2024, 26(4), 415-451. doi: 10.1080/10286020.2023.2249825 PMID: 37675579
  23. Greco, G.; Pellicioni, V.; Cruz-Chamorro, I.; Attisani, G.; Stefanelli, C.; Fimognari, C. Marine-derived compounds targeting topoisomerase ii in cancer cells: A review. Mar. Drugs, 2022, 20(11), 674. doi: 10.3390/md20110674 PMID: 36354997
  24. Nasrollahzadeh, M.; Sajjadi, M.; Soufi, G.J.; Iravani, S.; Varma, R.S. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials (Basel), 2020, 10(6), 1072. doi: 10.3390/nano10061072 PMID: 32486364
  25. Kumar, M.S.; Rajni, Y.; Prasad, S.T. Recent advances in nanotechnology. Int. J. Nanomater. Nanotechnol. Nanomed., 2023, 9, 15-23. doi: 10.17352/2455-3492.000053
  26. Баснукаев, И.Ш.; Исламов, А.А.; Мусостова, Д.Ш. Nanotechnologies and nanomaterials Technical sciences, 2021. Available from: https://gstou.ru/science/ggntu-works.php(accessed on 28-9-2024)
  27. Gidde, N.D.; Nitalikar, M.M.; Raut, I.D. Nanocomposites: A review on current status. Asian J. Pharm. Technol., 2021, 11, 231-237. doi: 10.52711/2231-5713.2021.00038
  28. Munir, O.; Arpita, R.; Rouf, A. B.; Fazilet, V. S.; Fernanda, M. Policarpo, T. Ed. Synthesis of bionanomaterials for biomedical applications. Elsevier, 2023, 1st Edition.
  29. Deepak, P.; Vadivel, A.; Kamaraj, C.; Govindasamy, B.; Aiswarya, D.; Perumal, P. Chemical and green synthesis of nanoparticles and their efficacy on cancer cells. In: Green Synthesis, Characterization and Applications of Nanoparticles Micro and Nano Technologies; Elsevier, 2019. doi: 10.1016/B978-0-08-102579-6.00016-2
  30. El-Saadony, M.T.; Saad, A.M.; Taha, T.F.; Najjar, A.A.; Zabermawi, N.M.; Nader, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.; Salama, A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J. Biol. Sci., 2021, 28(12), 6782-6794. doi: 10.1016/j.sjbs.2021.07.059 PMID: 34866977
  31. Siddiqi, K.S.; Husen, A. Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Res. Lett., 2016, 11(1), 98. doi: 10.1186/s11671-016-1311-2 PMID: 26909778
  32. Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 2008, 10(3), 507-517. doi: 10.1007/s11051-007-9275-x
  33. Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng., 2015, 2015, 1-9. doi: 10.1155/2015/682749
  34. Mishra, S.; Sahoo, S.; Kumar S, P.; Kumar, S.N. Recent advancements in the plant and microbial assisted green synthesis of nanomaterials. Mater. Today Proc., 2023, 2023, S2214785323050502. doi: 10.1016/j.matpr.2023.10.144
  35. Huston, M.; DeBella, M.; DiBella, M.; Gupta, A. Green synthesis of nanomaterials. Nanomaterials (Basel), 2021, 11(8), 2130. doi: 10.3390/nano11082130 PMID: 34443960
  36. Jeevanandam, J.; Kiew, S.F.; Boakye-Ansah, S.; Lau, S.Y.; Barhoum, A.; Danquah, M.K.; Rodrigues, J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 2022, 14(7), 2534-2571. doi: 10.1039/D1NR08144F PMID: 35133391
  37. Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol., 2023, 14, 1155622. doi: 10.3389/fmicb.2023.1155622 PMID: 37180257
  38. Salimi, M.; Mosca, S.; Gardner, B.; Palombo, F.; Matousek, P.; Stone, N. Nanoparticle-mediated photothermal therapy limitation in clinical applications regarding pain management. Nanomaterials (Basel), 2022, 12(6), 922. doi: 10.3390/nano12060922 PMID: 35335735
  39. Magadani, R. Biosynthesis and characterization of gold nanoparticle using phytochemical and investigating their cytotoxic effect against cancerous and non- cancerous cell lines. Master thesis, University of Johannesburg, 2021.
  40. Ramalingam, V.; Raja, S.; Sundaramahalingam, S.; Rajaram, R. Chemical fabrication of graphene oxide nanosheets attenuates biofilm formation of human clinical pathogens. Bioorg. Chem., 2019, 83, 326-335. doi: 10.1016/j.bioorg.2018.10.052 PMID: 30396117
  41. Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 2009, 5(18), 2067-2076. doi: 10.1002/smll.200900466 PMID: 19642089
  42. Bharadwaj, K.K.; Rabha, B.; Pati, S.; Sarkar, T.; Choudhury, B.K.; Barman, A.; Bhattacharjya, D.; Srivastava, A.; Baishya, D.; Edinur, H.A.; Abdul Kari, Z.; Mohd Noor, N.H. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules, 2021, 26(21), 6389. doi: 10.3390/molecules26216389 PMID: 34770796
  43. Nurudeen, Q.O.; Ajiboye, T.O. Aqueous root extract of Lecaniodiscus cupanioides restores the alterations in testicular parameters of sexually impaired male rats. Asian Pac. J. Reprod., 2012, 1(2), 120-124. doi: 10.1016/S2305-0500(13)60062-7
  44. Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci., 2011, 16(1), 980-996. doi: 10.2741/3730 PMID: 21196213
  45. Dong, J.; Carpinone, P.L.; Pyrgiotakis, G.; Demokritou, P.; Moudgil, B.M. Synthesis of precision gold nanoparticles using turkevich method. Kona., 2020, 37, 224-232. doi: 10.14356/kona.2020011
  46. Sanchis-Gual, R.; Coronado-Puchau, M.; Mallah, T.; Coronado, E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord. Chem. Rev., 2023, 480, 215025. doi: 10.1016/j.ccr.2023.215025
  47. Kumar, S.; Gandhi, K.S.; Kumar, R. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res., 2007, 46(10), 3128-3136. doi: 10.1021/ie060672j
  48. Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev., 2016, 8(4), 409-427. doi: 10.1007/s12551-016-0218-6 PMID: 28510011
  49. Iqbal, M.; Usanase, G.; Oulmi, K.; Aberkane, F.; Bendaikha, T.; Fessi, H.; Zine, N.; Agusti, G.; Errachid, E.S.; Elaissari, A. Preparation of gold nanoparticles and determination of their particles size via different methods. Mater. Res. Bull., 2016, 79, 97-104. doi: 10.1016/j.materresbull.2015.12.026
  50. Li, J.; Li, Q.; Ma, X.; Tian, B.; Li, T.; Yu, J.; Dai, S.; Weng, Y.; Hua, Y. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int. J. Nanomed., 2016, 11, 5931-5944. doi: 10.2147/IJN.S119618 PMID: 27877039
  51. Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 596-602. doi: 10.3109/21691401.2014.971807 PMID: 25365243
  52. de la Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev., 2012, 64(11), 967-978. doi: 10.1016/j.addr.2012.01.002 PMID: 22266127
  53. Al Saqr, A.; Khafagy, E.S.; Alalaiwe, A.; Aldawsari, M.F.; Alshahrani, S.M.; Anwer, M.K.; Khan, S.; Lila, A.S.A.; Arab, H.H.; Hegazy, W.A.H. Synthesis of gold nanoparticles by using green machinery: Characterization and in vitro toxicity. Nanomaterials (Basel), 2021, 11(3), 808. doi: 10.3390/nano11030808 PMID: 33809859
  54. Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502. doi: 10.1016/j.jcis.2004.03.003 PMID: 15178278
  55. Ahn, E.Y.; Lee, Y.J.; Park, J.; Chun, P.; Park, Y. Antioxidant potential of Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris extracts for biofabrication of gold nanoparticles and cytotoxicity assessment. Nanoscale Res. Lett., 2018, 13(1), 348. doi: 10.1186/s11671-018-2751-7 PMID: 30377868
  56. de Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed., 2008, 3(2), 133-149. doi: 10.2147/IJN.S596 PMID: 18686775
  57. Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668. doi: 10.1021/nl052396o PMID: 16608261
  58. Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57. doi: 10.3390/pharmaceutics10020057 PMID: 29783687
  59. Abubakr, M.; Osman, T.A.; Kishawy, H.A.; Elharouni, F.; Hegab, H.; Esawi, A.M.K. Preparation, characterization, and analysis of multi-walled carbon nanotube-based nanofluid: An aggregate based interpretation. RSC Advances, 2021, 11(41), 25561-25574. doi: 10.1039/D1RA03780C PMID: 35478865
  60. Mukherjee, S.; Sushma, V.; Patra, S.; Barui, A.K.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45), 455103. doi: 10.1088/0957-4484/23/45/455103 PMID: 23064012
  61. Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692. doi: 10.2217/nnm.16.5 PMID: 27003448
  62. Forest, V.; Cottier, M.; Pourchez, J. Electrostatic interactions favor the binding of positive nanoparticles on cells: A reductive theory. Nano Today, 2015, 10(6), 677-680. doi: 10.1016/j.nantod.2015.07.002
  63. Barai, A.C.; Paul, K.; Dey, A.; Manna, S.; Roy, S.; Bag, B.G.; Mukhopadhyay, C. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg., 2018, 5(1), 10. doi: 10.1186/s40580-018-0142-5 PMID: 29682442
  64. Nath, D.; Banerjee, P. Green nanotechnology – A new hope for medical biology. Environ. Toxicol. Pharmacol., 2013, 36(3), 997-1014. doi: 10.1016/j.etap.2013.09.002 PMID: 24095717
  65. Vilchis-Nestor, A.; Sanchez-Mendieta, V.; Camacho, M.; Gomez-Espinosa, R. Solvent less synthesis and optical properties of Au and Ag nanoparticles using Camelia sinensis extract. Mater. Lett., 2008, 62, 3103-3105. doi: 10.1016/j.matlet.2008.01.138
  66. Mohamad, N.A.N.; Arham, N.A.; Jai, J.; Hadi, A. Plant extract as reducing agent in synthesis of metallic nanoparticles: A review. Adv. Mat. Res., 2013, 832, 350-355. doi: 10.4028/ href='www.scientific.net/AMR.832.350' target='_blank'>www.scientific.net/AMR.832.350
  67. Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem., 2017, 10, S3029-S3039. doi: 10.1016/j.arabjc.2013.11.044
  68. Sharma, G.; Nam, J.S.; Sharma, A.R.; Lee, S.S. Antimicrobial potential of silver nanoparticles synthesized using medicinal herb Coptidis rhizome. Molecules, 2018, 23(9), 2268. doi: 10.3390/molecules23092268 PMID: 30189672
  69. Sivasubramanian, K.; Sabarinathan, S.; Muruganandham, M.; Velmurugan, P.; Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Sivakumar, S. Antioxidant, antibacterial, and cytotoxicity potential of synthesized silver nanoparticles from the Cassia alata leaf aqueous extract. Green Process. Synth., 2023, 12(1), 20230018. doi: 10.1515/gps-2023-0018
  70. Li, W.Y.; Chan, S.W.; Guo, D.J.; Yu, P.H.F. Correlation between antioxidative power and anticancer activity in herbs from traditional chinese medicine formulae with anticancer therapeutic effect. Pharm. Biol., 2007, 45(7), 541-546. doi: 10.1080/13880200701498879
  71. Majoumouo, M.S.; Sharma, J.R.; Sibuyi, N.R.S.; Tincho, M.B.; Boyom, F.F.; Meyer, M. Synthesis of biogenic gold nanoparticles from Terminalia mantaly extracts and the evaluation of their in vitro cytotoxic effects in cancer cells. Molecules, 2020, 25(19), 4469. doi: 10.3390/molecules25194469 PMID: 33003351
  72. Majoumouo, M.S.; Sibuyi, N.R.S.; Tincho, M.B.; Mbekou, M.; Boyom, F.F.; Meyer, M. Enhanced anti-bacterial activity of biogenic silver nanoparticles synthesized from Terminalia mantaly extracts. Int. J. Nanomedicine, 2019, 14, 9031-9046. doi: 10.2147/IJN.S223447 PMID: 31819417
  73. Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl., 2018, 2018, 9390784. doi: 10.1155/2018/9390784
  74. Farah, M.A.; Ali, M.A.; Chen, S.M.; Li, Y.; Al-Hemaid, F.M.; Abou-Tarboush, F.M.; Al-Anazi, K.M.; Lee, J. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf. B Biointerfaces, 2016, 141, 158-169. doi: 10.1016/j.colsurfb.2016.01.027 PMID: 26852099
  75. Ibrahim, B.; Akere, T.H.; Chakraborty, S.; Valsami-Jones, E.; Ali-Boucetta, H. Functionalized gold nanoparticles suppress the proliferation of human lung alveolar adenocarcinoma cells by deubiquitinating enzymes inhibition. ACS Omega, 2023, 8(43), 40622-40638. doi: 10.1021/acsomega.3c05452 PMID: 37929120

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025