Cytotoxic Effects of Lecaniodiscus Cupanioides (Planch.) Extract and Triterpenoids-derived Gold Nanoparticles On MCF-7 Breast Cancer Cell Lines
- Авторлар: Magadani R.1, Ndinteh D.2, Roux S.3, Nangah L.4, Atangwho I.5, Uti D.6, Alum E.7, Egba S.8
-
Мекемелер:
- Department of Chemical Science, Faculty of Science, University of Johannesburg
- Department of Chemical Science, Faculty of Science,, University of Johannesburg
- Department of Physiology, Faculty of Science, Nelson Mandela University
- Department of Biochemistry, Faculty of Basic, University of Calabar
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar
- Department of Research and Publications, Kampala International University
- Department of Research Publications,, Kampala International University
- Department of Research Publications, Kampala International University
- Шығарылым: Том 25, № 12 (2025)
- Беттер: 841-850
- Бөлім: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694426
- DOI: https://doi.org/10.2174/0118715206325529241004064307
- ID: 694426
Дәйексөз келтіру
Толық мәтін
Аннотация
Background:The prevalent disease known as breast cancer has a significant impact on both men's and women's health and quality of life.
Aim:The aim of this study was to explore the potential roles of Lecaniodiscus cupanioides (planch.) extract and triterpenoid- derived gold nanoparticles (AuNPs) in cancer therapy, specifically targeting MCF-7 breast cancer cell lines.
Methods:Gold nanoparticles were synthesized utilizing triterpenoid (ZJ-AuNPs) and leaf extract from Lecaniodiscus cupanioides (LC-AuNPs). Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), High-resolution transmission electron microscopy (HRTEM), and UV-vis spectroscopy were employed to characterize the nanoparticles. Additionally, the MTT assay was used to assess the impact of AuNPs on cancer cell viability using MCF-7 breast cancer cell lines.
Results:Analysis of ZJ-AuNPs and LC-AuNPs revealed DLS zeta potentials of -31.8 and -35.8 mV, respectively, and a corresponding UV-vis absorption maxima at 540 and 550 nm. Also, the ZJ-AuNPs and LC-AuNPs had respective zeta-sizes that ranged from 25.84 to 35.98 nm and polydispersive index values between 0.2360 and 0.773. Furthermore, the presence of the chemical groups -OH and -NH was shown to be necessary for the green method of capping and reducing the gold nanoparticles. Nevertheless, a significant decrease in cell viability percentages was noted in the MTT experiment, accompanied by an increase in the quantity or concentration of the nanoparticles for both ZJ-AuNPs and LC-AuNPs.
Conclusion:Given the data obtained in this study, the biosynthesized ZJ-AuNPs and LC-AuNPs were shown to possess potent cytotoxic effects on breast cancer cells. Hence, they may be valuable tools in the development of new cancer chemotherapy drugs.
Авторлар туралы
Roshudufhadzwa Magadani
Department of Chemical Science, Faculty of Science, University of Johannesburg
Email: info@benthamscience.net
Derek Ndinteh
Department of Chemical Science, Faculty of Science,, University of Johannesburg
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Saartjie Roux
Department of Physiology, Faculty of Science, Nelson Mandela University
Email: info@benthamscience.net
Louisiane Nangah
Department of Biochemistry, Faculty of Basic, University of Calabar
Email: info@benthamscience.net
Item Atangwho
Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Daniel Uti
Department of Research and Publications, Kampala International University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Esther Alum
Department of Research Publications,, Kampala International University
Email: info@benthamscience.net
Simeon Egba
Department of Research Publications, Kampala International University
Email: info@benthamscience.net
Әдебиет тізімі
- Bertucci, F.; Finetti, P.; Birnbaum, D. Basal breast cancer: A complex and deadly molecular subtype. Curr. Mol. Med., 2012, 12(1), 96-110. doi: 10.2174/156652412798376134 PMID: 22082486
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the human development index (2008–2030): A population-based study. Lancet Oncol., 2012, 13(8), 790-801. doi: 10.1016/S1470-2045(12)70211-5 PMID: 22658655
- Arzanova, E.; Mayrovitz, H.N. The epidemiology of breast cancer. In: Breast Cancer; Exon Publications, 2022. doi: 10.36255/exon-publications-breast-cancer-epidemiology
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; Soerjomataram, I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 2022, 66, 15-23. doi: 10.1016/j.breast.2022.08.010 PMID: 36084384
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33. doi: 10.1186/s40659-017-0140-9 PMID: 28969709
- Mullaguri, S.C.; Mungamuri, S.K.; Puligundla, K.C.; Annamaneni, S.; Kancha, R.K. Breast Cancer. In: Biomed. Asp. Solid Can; Kancha, R.K., Ed.; Springer, 2024; pp. 15-27. doi: 10.1007/978-981-97-1802-3_2
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), 12320-12364. doi: 10.1002/anie.201403036 PMID: 25294565
- Puri, A.; Mohite, P.; Maitra, S.; Subramaniyan, V.; Kumarasamy, V.; Uti, D.E.; Sayed, A.A.; El-Demerdash, F.M.; Algahtani, M.; El-kott, A.F.; Shati, A.A.; Albaik, M.; Abdel-Daim, M.M.; Atangwho, I.J. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed. Pharmacother., 2024, 170, 116083. doi: 10.1016/j.biopha.2023.116083 PMID: 38163395
- Ojo, O.; Ndinteh, D.T. Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: A review. Phys. Sci. Rev., 2023, 8(4), 549-565. doi: 10.1515/psr-2020-0207
- Adesegun, S.A.; Coker, H.A.; Hamann, M.T. Anti-cancerous triterpenoid saponins from Lecaniodiscus cupanioides. J. Nat. Prod. (Gorakhpur), 2014, 7, 155-161. PMID: 27867280
- Alayande, K.A.; Ashafa, A.O.T. Evaluation of cytotoxic effects and antimicrobial activities of Lecaniodiscus cupanioides (Planch.) leaf extract. Trans. R. Soc. S. Afr., 2017, 72(1), 33-38. doi: 10.1080/0035919X.2016.1214851
- Albahri, G.; Badran, A.; Abdel Baki, Z.; Alame, M.; Hijazi, A.; Daou, A.; Baydoun, E. Potential anti-tumorigenic properties of diverse medicinal plants against the majority of common types of cancer. Pharmaceuticals (Basel), 2024, 17(5), 574. doi: 10.3390/ph17050574 PMID: 38794144
- Prasher, P.; Sharma, M.; Sharma, A.K.; Sharifi-Rad, J.; Calina, D.; Hano, C.; Cho, W.C. Key oncologic pathways inhibited by Erinacine A: A perspective for its development as an anticancer molecule. Biomed. Pharmacother., 2023, 160, 114332. doi: 10.1016/j.biopha.2023.114332 PMID: 36736282
- Almatroudi, A.; Allemailem, K.S.; Alwanian, W.M.; Alharbi, B.F.; Alrumaihi, F.; Khan, A.A.; Almatroodi, S.A.; Rahmani, A.H. Effects and mechanisms of kaempferol in the management of cancers through modulation of inflammation and signal transduction pathways. Int. J. Mol. Sci., 2023, 24(10), 8630. doi: 10.3390/ijms24108630 PMID: 37239974
- Nigam, M.; Mishra, A.P.; Deb, V.K.; Dimri, D.B.; Tiwari, V.; Bungau, S.G.; Bungau, A.F.; Radu, A.F. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed. Pharmacother., 2023, 164, 115015. doi: 10.1016/j.biopha.2023.115015 PMID: 37321055
- Basha, N.J. Small molecules as anti‐inflammatory agents: Molecular mechanisms and heterocycles as inhibitors of signaling pathways. ChemistrySelect, 2023, 8(9), e202204723. doi: 10.1002/slct.202204723
- Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology, 2021, 28(2), 250-272. doi: 10.3390/pathophysiology28020017 PMID: 35366261
- Ren, Y.; Kinghorn, A.D. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med., 2019, 85(11/12), 802-814. doi: 10.1055/a-0832-2383 PMID: 30658371
- Rodríguez-Hernández, D.; Demuner, A.J.; Barbosa, L.C.A.; Csuk, R.; Heller, L. Hederagenin as a triterpene template for the development of new antitumor compounds. Eur. J. Med. Chem., 2015, 105, 57-62. doi: 10.1016/j.ejmech.2015.10.006 PMID: 26476750
- Fakhri, S.; Abdian, S.; Moradi, S.Z.; Delgadillo, B.E.; Fimognari, C.; Bishayee, A. Marine compounds, mitochondria, and malignancy: A therapeutic nexus. Mar. Drugs, 2022, 20(10), 625. doi: 10.3390/md20100625 PMID: 36286449
- Hussain, A.; Bourguet-Kondracki, M.L.; Majeed, M.; Ibrahim, M.; Imran, M.; Yang, X.W.; Ahmed, I.; Altaf, A.A.; Khalil, A.A.; Rauf, A.; Wilairatana, P.; Hemeg, H.A.; Ullah, R.; Green, I.R.; Ali, I.; Shah, S.T.A.; Hussain, H. Marine life as a source for breast cancer treatment: A comprehensive review. Biomed. Pharmacother., 2023, 159, 114165. doi: 10.1016/j.biopha.2022.114165 PMID: 36634590
- Rai, T.; Kaushik, N.; Malviya, R.; Sharma, P.K. A review on marine source as anticancer agents. J. Asian Nat. Prod. Res., 2024, 26(4), 415-451. doi: 10.1080/10286020.2023.2249825 PMID: 37675579
- Greco, G.; Pellicioni, V.; Cruz-Chamorro, I.; Attisani, G.; Stefanelli, C.; Fimognari, C. Marine-derived compounds targeting topoisomerase ii in cancer cells: A review. Mar. Drugs, 2022, 20(11), 674. doi: 10.3390/md20110674 PMID: 36354997
- Nasrollahzadeh, M.; Sajjadi, M.; Soufi, G.J.; Iravani, S.; Varma, R.S. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials (Basel), 2020, 10(6), 1072. doi: 10.3390/nano10061072 PMID: 32486364
- Kumar, M.S.; Rajni, Y.; Prasad, S.T. Recent advances in nanotechnology. Int. J. Nanomater. Nanotechnol. Nanomed., 2023, 9, 15-23. doi: 10.17352/2455-3492.000053
- Баснукаев, И.Ш.; Исламов, А.А.; Мусостова, Д.Ш. Nanotechnologies and nanomaterials Technical sciences, 2021. Available from: https://gstou.ru/science/ggntu-works.php(accessed on 28-9-2024)
- Gidde, N.D.; Nitalikar, M.M.; Raut, I.D. Nanocomposites: A review on current status. Asian J. Pharm. Technol., 2021, 11, 231-237. doi: 10.52711/2231-5713.2021.00038
- Munir, O.; Arpita, R.; Rouf, A. B.; Fazilet, V. S.; Fernanda, M. Policarpo, T. Ed. Synthesis of bionanomaterials for biomedical applications. Elsevier, 2023, 1st Edition.
- Deepak, P.; Vadivel, A.; Kamaraj, C.; Govindasamy, B.; Aiswarya, D.; Perumal, P. Chemical and green synthesis of nanoparticles and their efficacy on cancer cells. In: Green Synthesis, Characterization and Applications of Nanoparticles Micro and Nano Technologies; Elsevier, 2019. doi: 10.1016/B978-0-08-102579-6.00016-2
- El-Saadony, M.T.; Saad, A.M.; Taha, T.F.; Najjar, A.A.; Zabermawi, N.M.; Nader, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.; Salama, A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J. Biol. Sci., 2021, 28(12), 6782-6794. doi: 10.1016/j.sjbs.2021.07.059 PMID: 34866977
- Siddiqi, K.S.; Husen, A. Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Res. Lett., 2016, 11(1), 98. doi: 10.1186/s11671-016-1311-2 PMID: 26909778
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 2008, 10(3), 507-517. doi: 10.1007/s11051-007-9275-x
- Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng., 2015, 2015, 1-9. doi: 10.1155/2015/682749
- Mishra, S.; Sahoo, S.; Kumar S, P.; Kumar, S.N. Recent advancements in the plant and microbial assisted green synthesis of nanomaterials. Mater. Today Proc., 2023, 2023, S2214785323050502. doi: 10.1016/j.matpr.2023.10.144
- Huston, M.; DeBella, M.; DiBella, M.; Gupta, A. Green synthesis of nanomaterials. Nanomaterials (Basel), 2021, 11(8), 2130. doi: 10.3390/nano11082130 PMID: 34443960
- Jeevanandam, J.; Kiew, S.F.; Boakye-Ansah, S.; Lau, S.Y.; Barhoum, A.; Danquah, M.K.; Rodrigues, J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 2022, 14(7), 2534-2571. doi: 10.1039/D1NR08144F PMID: 35133391
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol., 2023, 14, 1155622. doi: 10.3389/fmicb.2023.1155622 PMID: 37180257
- Salimi, M.; Mosca, S.; Gardner, B.; Palombo, F.; Matousek, P.; Stone, N. Nanoparticle-mediated photothermal therapy limitation in clinical applications regarding pain management. Nanomaterials (Basel), 2022, 12(6), 922. doi: 10.3390/nano12060922 PMID: 35335735
- Magadani, R. Biosynthesis and characterization of gold nanoparticle using phytochemical and investigating their cytotoxic effect against cancerous and non- cancerous cell lines. Master thesis, University of Johannesburg, 2021.
- Ramalingam, V.; Raja, S.; Sundaramahalingam, S.; Rajaram, R. Chemical fabrication of graphene oxide nanosheets attenuates biofilm formation of human clinical pathogens. Bioorg. Chem., 2019, 83, 326-335. doi: 10.1016/j.bioorg.2018.10.052 PMID: 30396117
- Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 2009, 5(18), 2067-2076. doi: 10.1002/smll.200900466 PMID: 19642089
- Bharadwaj, K.K.; Rabha, B.; Pati, S.; Sarkar, T.; Choudhury, B.K.; Barman, A.; Bhattacharjya, D.; Srivastava, A.; Baishya, D.; Edinur, H.A.; Abdul Kari, Z.; Mohd Noor, N.H. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules, 2021, 26(21), 6389. doi: 10.3390/molecules26216389 PMID: 34770796
- Nurudeen, Q.O.; Ajiboye, T.O. Aqueous root extract of Lecaniodiscus cupanioides restores the alterations in testicular parameters of sexually impaired male rats. Asian Pac. J. Reprod., 2012, 1(2), 120-124. doi: 10.1016/S2305-0500(13)60062-7
- Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci., 2011, 16(1), 980-996. doi: 10.2741/3730 PMID: 21196213
- Dong, J.; Carpinone, P.L.; Pyrgiotakis, G.; Demokritou, P.; Moudgil, B.M. Synthesis of precision gold nanoparticles using turkevich method. Kona., 2020, 37, 224-232. doi: 10.14356/kona.2020011
- Sanchis-Gual, R.; Coronado-Puchau, M.; Mallah, T.; Coronado, E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord. Chem. Rev., 2023, 480, 215025. doi: 10.1016/j.ccr.2023.215025
- Kumar, S.; Gandhi, K.S.; Kumar, R. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res., 2007, 46(10), 3128-3136. doi: 10.1021/ie060672j
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev., 2016, 8(4), 409-427. doi: 10.1007/s12551-016-0218-6 PMID: 28510011
- Iqbal, M.; Usanase, G.; Oulmi, K.; Aberkane, F.; Bendaikha, T.; Fessi, H.; Zine, N.; Agusti, G.; Errachid, E.S.; Elaissari, A. Preparation of gold nanoparticles and determination of their particles size via different methods. Mater. Res. Bull., 2016, 79, 97-104. doi: 10.1016/j.materresbull.2015.12.026
- Li, J.; Li, Q.; Ma, X.; Tian, B.; Li, T.; Yu, J.; Dai, S.; Weng, Y.; Hua, Y. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int. J. Nanomed., 2016, 11, 5931-5944. doi: 10.2147/IJN.S119618 PMID: 27877039
- Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 596-602. doi: 10.3109/21691401.2014.971807 PMID: 25365243
- de la Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev., 2012, 64(11), 967-978. doi: 10.1016/j.addr.2012.01.002 PMID: 22266127
- Al Saqr, A.; Khafagy, E.S.; Alalaiwe, A.; Aldawsari, M.F.; Alshahrani, S.M.; Anwer, M.K.; Khan, S.; Lila, A.S.A.; Arab, H.H.; Hegazy, W.A.H. Synthesis of gold nanoparticles by using green machinery: Characterization and in vitro toxicity. Nanomaterials (Basel), 2021, 11(3), 808. doi: 10.3390/nano11030808 PMID: 33809859
- Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502. doi: 10.1016/j.jcis.2004.03.003 PMID: 15178278
- Ahn, E.Y.; Lee, Y.J.; Park, J.; Chun, P.; Park, Y. Antioxidant potential of Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris extracts for biofabrication of gold nanoparticles and cytotoxicity assessment. Nanoscale Res. Lett., 2018, 13(1), 348. doi: 10.1186/s11671-018-2751-7 PMID: 30377868
- de Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed., 2008, 3(2), 133-149. doi: 10.2147/IJN.S596 PMID: 18686775
- Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668. doi: 10.1021/nl052396o PMID: 16608261
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57. doi: 10.3390/pharmaceutics10020057 PMID: 29783687
- Abubakr, M.; Osman, T.A.; Kishawy, H.A.; Elharouni, F.; Hegab, H.; Esawi, A.M.K. Preparation, characterization, and analysis of multi-walled carbon nanotube-based nanofluid: An aggregate based interpretation. RSC Advances, 2021, 11(41), 25561-25574. doi: 10.1039/D1RA03780C PMID: 35478865
- Mukherjee, S.; Sushma, V.; Patra, S.; Barui, A.K.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45), 455103. doi: 10.1088/0957-4484/23/45/455103 PMID: 23064012
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692. doi: 10.2217/nnm.16.5 PMID: 27003448
- Forest, V.; Cottier, M.; Pourchez, J. Electrostatic interactions favor the binding of positive nanoparticles on cells: A reductive theory. Nano Today, 2015, 10(6), 677-680. doi: 10.1016/j.nantod.2015.07.002
- Barai, A.C.; Paul, K.; Dey, A.; Manna, S.; Roy, S.; Bag, B.G.; Mukhopadhyay, C. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg., 2018, 5(1), 10. doi: 10.1186/s40580-018-0142-5 PMID: 29682442
- Nath, D.; Banerjee, P. Green nanotechnology – A new hope for medical biology. Environ. Toxicol. Pharmacol., 2013, 36(3), 997-1014. doi: 10.1016/j.etap.2013.09.002 PMID: 24095717
- Vilchis-Nestor, A.; Sanchez-Mendieta, V.; Camacho, M.; Gomez-Espinosa, R. Solvent less synthesis and optical properties of Au and Ag nanoparticles using Camelia sinensis extract. Mater. Lett., 2008, 62, 3103-3105. doi: 10.1016/j.matlet.2008.01.138
- Mohamad, N.A.N.; Arham, N.A.; Jai, J.; Hadi, A. Plant extract as reducing agent in synthesis of metallic nanoparticles: A review. Adv. Mat. Res., 2013, 832, 350-355. doi: 10.4028/ href='www.scientific.net/AMR.832.350' target='_blank'>www.scientific.net/AMR.832.350
- Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem., 2017, 10, S3029-S3039. doi: 10.1016/j.arabjc.2013.11.044
- Sharma, G.; Nam, J.S.; Sharma, A.R.; Lee, S.S. Antimicrobial potential of silver nanoparticles synthesized using medicinal herb Coptidis rhizome. Molecules, 2018, 23(9), 2268. doi: 10.3390/molecules23092268 PMID: 30189672
- Sivasubramanian, K.; Sabarinathan, S.; Muruganandham, M.; Velmurugan, P.; Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Sivakumar, S. Antioxidant, antibacterial, and cytotoxicity potential of synthesized silver nanoparticles from the Cassia alata leaf aqueous extract. Green Process. Synth., 2023, 12(1), 20230018. doi: 10.1515/gps-2023-0018
- Li, W.Y.; Chan, S.W.; Guo, D.J.; Yu, P.H.F. Correlation between antioxidative power and anticancer activity in herbs from traditional chinese medicine formulae with anticancer therapeutic effect. Pharm. Biol., 2007, 45(7), 541-546. doi: 10.1080/13880200701498879
- Majoumouo, M.S.; Sharma, J.R.; Sibuyi, N.R.S.; Tincho, M.B.; Boyom, F.F.; Meyer, M. Synthesis of biogenic gold nanoparticles from Terminalia mantaly extracts and the evaluation of their in vitro cytotoxic effects in cancer cells. Molecules, 2020, 25(19), 4469. doi: 10.3390/molecules25194469 PMID: 33003351
- Majoumouo, M.S.; Sibuyi, N.R.S.; Tincho, M.B.; Mbekou, M.; Boyom, F.F.; Meyer, M. Enhanced anti-bacterial activity of biogenic silver nanoparticles synthesized from Terminalia mantaly extracts. Int. J. Nanomedicine, 2019, 14, 9031-9046. doi: 10.2147/IJN.S223447 PMID: 31819417
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl., 2018, 2018, 9390784. doi: 10.1155/2018/9390784
- Farah, M.A.; Ali, M.A.; Chen, S.M.; Li, Y.; Al-Hemaid, F.M.; Abou-Tarboush, F.M.; Al-Anazi, K.M.; Lee, J. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf. B Biointerfaces, 2016, 141, 158-169. doi: 10.1016/j.colsurfb.2016.01.027 PMID: 26852099
- Ibrahim, B.; Akere, T.H.; Chakraborty, S.; Valsami-Jones, E.; Ali-Boucetta, H. Functionalized gold nanoparticles suppress the proliferation of human lung alveolar adenocarcinoma cells by deubiquitinating enzymes inhibition. ACS Omega, 2023, 8(43), 40622-40638. doi: 10.1021/acsomega.3c05452 PMID: 37929120
Қосымша файлдар
